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The role of torso stiffness and
prediction in the biomechanics of
anxiety: a narrative review
Seong Chin*

Department of Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, United States
Although anxiety is a common psychological condition, its symptoms are related
to a cardiopulmonary strain which can cause palpitation, dyspnea, dizziness, and
syncope. Severe anxiety can be disabling and lead to cardiac events such as
those seen in Takotsubo cardiomyopathy. Since torso stiffness is a stress
response to unpredictable situations or unexpected outcomes, studying the
biomechanics behind it may provide a better understanding of the
pathophysiology of anxiety on circulation, especially on venous impedance.
Any degree of torso stiffness related to anxiety would limit venous return,
which in turn drops cardiac output because the heart can pump only what it
receives. Various methods and habits used to relieve stress seem to reduce
torso stiffness. Humans are large obligatory bipedal upright primates and thus
need to use the torso carefully for smooth upright activities with an accurate
prediction. The upright nature of human activity itself seems to contribute to
anxiety due to the needed torso stiffness using the very unstable spine. Proper
planning of actions with an accurate prediction of outcomes of self and non-
self would be critical to achieving motor control and ventilation in bipedal
activities. Many conditions linked to prediction errors are likely to cause
various degrees of torso stiffness due to incomplete learning and
unsatisfactory execution of actions, which will ultimately contribute to anxiety.
Modifying environmental factors to improve predictability seems to be an
important step in treating anxiety. The benefit of playful aerobic activity and
proper breathing on anxiety may be from the modulation of torso stiffness
and enhancement of central circulation resulting in prevention of the negative
effect on the cardiopulmonary system.
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anxiety, torso stiffness, prediction, venous return, intra-abdominal pressure, aerobic
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1 Introduction

Anxiety can be a normal presence in stressful situations. Still, excessive anxiety can

lead to a panic attack, which can cause the sensation of suffocation and doom, as well

as common symptoms of palpitation, rapid breathing, sweating, and dizziness. Some

people may pass out, risking injuries. Anxiety is also linked to an increased risk of

cardiovascular disorders (1), premature mortality (2), sudden cardiac arrest (3),

self-harm (4, 5), and suicidality that is not explained by depression (6, 7). While the

pathophysiology of anxiety and panic disorder is not well understood, many

professionals advise doing other things to take one’s mind off of the stressor: knitting,

coloring books, deep breathing, regular exercise, hiking, and partaking in hobbies.
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Hyperventilation is common in panic attacks and characterized

by a shift from a diaphragmatic to a thoracic breathing pattern,

which imposes a biomechanical stress on the neck and shoulder

region due to the ancillary recruitment of the

sternocleidomastoid, scalene, and trapezius muscles in support of

thoracic breathing (8). In hyperventilation theory,

hyperventilation causes a drop in arterial CO2 and a change in

the blood pH (i.e., respiratory alkalosis), disrupting blood acid-

base equilibrium. This disruption can further induce adverse

effects, including muscle tension and muscle spasms from an

amplified response to catecholamines. Even though

hyperventilation theory is appealing and provides some clues to

many symptoms of anxiety and panic disorders, this theory has

lost popularity due to a lack of experimental evidence (9).

Instead, aerobic exercise, which would cause hyperventilation,

appears beneficial in mitigating anxiety (10). Even acute aerobic

exercise mitigates negative symptoms of obsessive-compulsive

disorder (OCD), a severe form of anxiety disorder characterized

by unwanted thoughts and repetitive irrational behaviors (11).

While the beneficial effect of physical activity on anxiety seems

to be far superior to medications and cognitive behavioral

therapy (12), there is no single major mechanism to explain the

positive effects of exercise, thus limiting the development of

optimal strategies in the application of exercise for the treatment

of anxiety (10, 13).

Anxiety with an increased adrenergic tone has a lowered heart

rate variability (HRV) (14) which is a valuable tool to evaluate the

function of the autonomic nervous system. HRV is lower in

cardiovascular disorders (15), metabolic disorders (16), and other

mental conditions known to cause anxiety (17, 18). How aerobic

exercise (19, 20) and quiet breathing (21) improve HRV may be

understood through a biomechanical approach to the effects of

anxiety on circulation and ventilation.

In this review of the biomechanics of anxiety, we will discuss

the complexity of bipedalism which is the evolutionary hallmark

of humans for energy-efficient endurance running and walking

(22). Using the upper body and arms via successful bipedalism,

humans developed sophisticated skills to use various tools

including weapons. However, due to inherent instability, upper

body activity requires torso stabilization and accurate prediction

for balance in complex bipedal locomotion. Torso stiffness (23)

is common in anxiety and seems to present as various symptoms

of the circulatory system. A biomechanical approach to the roles

of the respiratory muscles and abdominal wall muscles in torso

stabilization (24–28) and circulation (29–33) may help

understand the pathophysiology of anxiety in many disorders

including autism.
2 Expanded spinal canal and trunk
control in bipedal humans

In a study on the evolution of human speech (34), the authors

suggested that the evolution of breathing control through increased

thoracic innervation to abdominal muscles and thoracic muscles

(including intercostal and subcostal muscles) was essential for
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developing human language. They reported that Neanderthals

and early modern humans had expanded thoracic canals. They

also suggested that earlier hominids did not possess the

enhanced breathing control necessary for modern language until

at least 1.6 Mya, the time of Homo ergaster (or early Homo

erectus). Increased thoracic innervation to thoracic muscles and

abdominal muscles is also necessary for many functions of

humans: upright bipedal locomotion, flexion, breathing, and

expulsion (e.g., coughing and defecation).

Compared to Eocene primates, the evolutionary expansion of

the spinal canal in modern-day primates is to support

sophisticated locomotor control of both the forelimb and the

hindlimb (35). Spinal cord expansion in early hominins occurred

well before the expansion of the brain and was necessary for

complex balance control of obligate bipedal movement (36). In

addition, the control of breathing for speech needs delicate

control of the thoracoabdominal muscles to prevent the fading of

sound volume from the uncontrolled elastic recoil of the lungs.

Humans can produce a more than 7-fold increase in the

duration of exhalation compared to the 2–3 times increase seen

in the majority of nonhuman primate species (34).
3 Functional anatomy of torso
stabilization

3.1 Abdominal wall muscles

Among the multiple anterior abdominal muscles, the rectus

abdominis (RA) is a paired muscle located in the midline of the

anterior wall. This muscle is covered by a rectus sheath which

consists of the aponeuroses of the lateral abdominal muscles. The

transverse tendinous intersections of the muscle give the

appearance of a “six pack”. It runs vertically between the anterior

lower rib cage and the pubic bone. It functions as an antagonist

to the erector spinae muscles to flex the lumbar spine during sit-

ups. It is also important for respiration during forced expiration.

The sides of the abdominal wall are supported by the external

oblique muscle (EO), the internal oblique muscle (IO), and the

transversus abdominis muscle (TrA) (37).

The external oblique muscle (EO) is the most superficial of the

three flat muscles of the lateral anterior abdomen. It is attached to

the external surfaces and inferior borders of the fifth to twelfth ribs.

The serratus anterior muscle is in proximity to the EO on the ribs.

The aponeurosis of the external oblique muscle forms the inguinal

ligament (37).

The internal oblique muscle (IO) is located just under EO and

over TrA. It runs perpendicular to EO. Beginning in the

lumbodorsal fascia of the lower back, IO reaches the anterior 2/3

of the iliac crest and the lateral half of the inguinal ligament. The

muscle fibers run up to the inferior borders of the 10th through

12th ribs and the linea alba (abdominal midline seam). During

expiration, it can contract to compress the abdominal cavity to

push the internal organs up into the diaphragm while the

diaphragm is returning back into the chest cavity with the elastic

recoil of the lung structure (37).
frontiersin.org

https://doi.org/10.3389/fspor.2024.1487862
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Chin 10.3389/fspor.2024.1487862
The transverse abdominal muscle (TrA) is the innermost of the

flat muscles of the abdomen just under IO. It has many attachment

sites: the lumbodorsal fascia, the lateral third of the inguinal

ligament, the anterior three-fourths of the inner lip of the iliac

crest, the inner surfaces of the cartilages of the lower six ribs,

and the diaphragm. It inserts into the linea alba; its upper three-

fourths lie behind the rectus muscle and blend with the posterior

lamella of the aponeurosis of the internal oblique; its lower

fourth is in front of the rectus abdominis. The contraction of

TrA can help to compress the ribs and viscera to provide spinal

stability (37).
3.2 diaphragm and pelvic floor muscles in
torso stabilization

In a study on diaphragm contraction (24), the authors found

that the electromyogram (EMG) activity of the diaphragm and

the transverse abdominal muscle (TrA) showed about 20 milli-

seconds earlier to the onset of the EMG activity of the deltoid

muscle during rapid flexion of the shoulder to a visual stimulus.

The authors also visualized the eccentric contraction of the

diaphragm after initial shortening (at the time of low intra-

abdominal pressure) when TrA was co-contracting to increase

the intra-abdominal pressure. The contraction was independent

of the phase of respiration. However, during rapid movement of

the thumb and wrist, a posture not nearly as challenging as the

shoulder, was not associated with this anticipatory EMG in the

diaphragm. The simultaneous contraction of the diaphragm and

TrA was thought to be pre-programmed and not from reflex

since the EMG activities preceded that of the deltoid muscle. It

was also considered to contribute postural stability of the human

trunk during sudden voluntary movement of the limbs.

In another study (25), the authors found that, during limb

movement (flexion and extension of a shoulder joint), the

diaphragm and TrA were tonically active with added phasic

modulation at the frequencies of both respiration and limb

movement. They also measured intra-abdominal pressure

(measured through intragastric pressure: Pga), which increased

during limb movement in proportion to the reactive forces from

the movement. The rapid repetitive limb movement during

breathing increased mean Pga by 26 cmH2O. During the

repetitive limb movement, the diaphragm and the trunk muscles

(TrA, EO, RA, and the erector spinae muscles/ES) were

contracting tonically. The diaphragm and TrA showed varying

patterns in EMG activity with respiration but the other trunk

muscles (EO, RA, and ES) did not have the variation in EMG

amplitude between respiratory phases. They concluded that the

coactivation of the diaphragm and abdominal muscles caused a

sustained increase in intra-abdominal pressure (Pga). They

suggested that the increase of the Pga and the tonic activity of

the diaphragm contributed to the mechanical stabilization of the

trunk during the movement of limbs.

In a study (26) on the co-activation patterns of abdominal

muscles in response to the contractions of pelvic floor muscles

(PFM), the authors reported that the contraction of abdominal
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muscles was a normal response to PFM activity. In another study

on the postural and respiratory functions of PFM (27), the EMG

activity of PFM was increased in advance of deltoid muscle

activity as a component of the pre-programmed anticipatory

postural activity (as seen in the diaphragm and TrA). The EMG

activity of PFM was primarily modulated in association with arm

movement with little respiratory modulation. PFM with the

diaphragm and other abdominal muscles seem to take an

important role in generating and sustaining intra-abdominal

pressure (IAP) to stabilize the spine for posture control. In a

study using biomechanical models of the spine and its

musculature, the researchers found that spinal compression force

was lower, with an increase in IAP through the contraction of

antagonistic muscles of the abdominal wall (28).
3.3 Other muscles in torso stabilization

Through the unique anatomical location and complex vertebral

attachment (37), the psoas muscles (PS) can provide postural

stability for the trunk (38) and spread the force across the

lumbar area (39). However, there was no active EMG activity of

PS during quiet sitting (38). The lack of PS activity during quiet

sitting can have implications for the structural stability of the

spine in the modern-day lifestyle with excessive sitting.

The erector spinae muscles (ES), which are important extensor

muscles of the back, can be silent when the spine column is flexed

beyond a certain angle, known as the flexion-relaxation

phenomenon. Interestingly, the EMG activity of PS disappeared

when ES were silent in a flexion position (40). At this point,

force distribution for spinal stability via ES and PS would be very

difficult. In a study on abdominal wall muscle activities during

quiet breathing (reflecting non-stress conditions), the abdominal

muscles had no muscle activity (41). Some apprehended

participants had irregular activities (which ceased altogether

later) of one or two abdominal muscles unrelated to the phases

of respiration. The intragastric pressure (Pga) at the end of a

quiet expiration was 1–15 cmH2O above atmospheric pressure

(42) with the overall variation being no more than 3–5 cmH2O

and there was no muscular activity of abdominal muscles during

the quiet breathing. During maximal voluntary breathing, the

Pga rose abruptly to over 50 cmH2O at the beginning of each

expiration. This type of rise in the Pga during expiration never

occurred in the absence of voluntarily controlled breathing even

if the subjects became cyanosed and distressed in the involuntary

respiration of asphyxia. In a study on maximal inspiratory and

expiratory efforts (43), the Pga could rise to a range of 57–

183 mmHg (77–250 cmH2O).

In a study on lumbopelvic stability and co-contraction of the

lumbopelvic muscles (44), the authors found that, during the

unpredictable trial of stability challenge, TrA remained active

when the EMG activity of all lumbopelvic muscles was decreased.

The EMG activity of TrA did not differ between the predictable

and unpredictable trials. However, there was a tendency for TrA

EMG activity to be greater when there was less predictability of

the perturbation. During the lumbopelvic flexion and extension
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trials, TrA contraction (which does not have a directional torque

when activated unlike other abdominal wall muscles) appeared to

be more important for stabilization during the physical

disturbances. TrA contraction, which stabilizes the torso and

spine by raising IAP (45), can be important for posture control

during responses to unpredictable situations or outcomes.

In another study on sudden perturbations on the trunk (46),

TrA was always the first abdominal muscle (other muscles are

EO/IO/RA) to be activated. The contraction of the abdominal

muscles and diaphragm with an increase of IAP appears to cause

increased stiffening of the intervertebral joints within the lumbar

spine. Additionally, the authors noted that there was a rapid

backward head movement during unexpected ventral loading.

This extension movement of the head/torso seems to be a

common reflexive motion that we make when we miss a step or

encounter a surprise.
4 Guyton’s venous return curve and
intra-abdominal pressure

Bipedalism is the hallmark of human locomotive success and

our ancestors were able to chase their prey through successful

bipedalism and endurance running and walking (22), were able

to use the arms, and developed language via delicate breathing

control with complex thoracic innervation to the abdominal

muscles and thoracic muscles (34). However, they still had to

manage to stabilize the torso/pelvis during bipedal running on

uneven natural surfaces due to the inherently unstable posture

during running, as the ligamentous spine without muscular

contribution is very unstable (47, 48). For the upright posture

and applied stiffness to the trunk for various upper body

activities, a degree of trunk stiffness is expected (25). This

stiffness will affect venous return negatively, considering the very

low central venous pressure (3–8 mmHg), right atrial pressure

(2–6 mmHg), and left atrial pressure (6–12 mmHg). If prolonged

venous impedance continues during static upright upper body

activities without proper rest, extrinsic impedance will decrease

the cardiac preload and performance.

Considering Guyton’s venous return curve (49) with a basic

principle that the heart can pump out only what it receives from

the large reservoir of circulatory volume (50), the proper venous

return seems critical for proper cardiac function and tissue

perfusion. In the equation of the venous return curve in steady

conditions, he showed that the right atrial pressure and cardiac

output are inversely related (14% drop in cardiac output by every

1 mmHg increment in pressure). While the implication of his

findings is very important in caring for patients, many agreements

(51) and disagreements (52) surround the equation from the lack of

agreement on the hypothetical mean circulatory filling pressure

(MCFP, the average integrated pressure throughout the circulatory

system) which needs to be higher than the right atrial filling pressure.

Considering the very high intra-abdominal pressure (IAP) of a

range of 57–183 mmHg (77–250 cmH2O) during maximal

respiratory efforts, although very low IAP is achievable with a

little variation during quiet breathing (42, 43), it is evident that
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there will be a negative impact on circulation by venous impedance

(53) if a degree of torso stiffness during strenuous or stressful

upright bipedal activities is prolonged. Increased adrenergic tone

not only causes excessive shortening of cardiac sarcomeres

(contraction band/necrosis) (54) but also worsens torso stiffness in

response to decreased preload if not reversed fast enough. This

contraction band necrosis of cardiac muscles is found in stressed

animals (55) and humans (56). To become successful hunter-

gatherers, human ancestors with endurance running must have

achieved proper motor skills for safe and proper venous return. To

summarize, excessive torso stiffness, if not handled safely, can

deteriorate venous return and be destructive to myocardial

structural integrity causing myocardial rigors.

A pressure higher than 10 mmHg in the peritoneum is defined

as “Intra-Abdominal Hypertension” which needs to be avoided (57).

The negative effect can be observed even at 8 mmHg in animal

models (58). The increase in muscular stiffness and IAP will

contribute to an increase in intrathoracic pressure and a decrease

in cardiac output. In a study on the relationship between

abdominal pressure, pulmonary compliance, and cardiac preload

in a porcine model (59), the authors found that increased IAP was

transferred to the thoracic compartment and resulted in decreased

respiratory system compliance (due to decreased chest wall

compliance) and stroke index (SI: ml/kg). They noted a 22%

decrease in SI at 30 mmHg of IAP. Filling pressures like CVP

(central venous pressure) and PAOP (pulmonary arterial occlusion

pressure) also increased significantly in response to increasing IAP

which indicates the increased resistance to filling cardiac chambers

and subsequent drop of cardiac stroke volume.

While proper weight-bearing activity (60) and quiet breathing

(61) are the most important mechanisms for venous return in

humans, prolonged static sitting causes decreased venous return

and cardiac output with a compensatory increase in adrenergic

tone. The lack of contribution from the PS during quiet sitting

(38) and the inherent instability of lumbar spines (48) will

require activation of TrA and other abdominal wall muscles (62)

with related increases in IAP accordingly. Various degrees of

stress response (63) and stiffening of the abdominal wall muscles

(25) are expected depending on the level of risk involved in the

given tasks. Seemingly harmless quiet sitting with a hydrostatic

pressure of 28–32 mmHg in the pelvis (64) can reach a harmful

level of IAP in the pelvis during a prolonged sitting to cause

various negative impacts (57, 58, 65) which would get worse

during demanding near-point work on computer screens (66).

When venous return gets limited during sitting by the inactive

skeletal muscles and restricted respiratory muscles, additional

hydrostatic intraabdominal pressure can harm internal organs,

and even worse if related risk is high.
5 Expiratory flow limitation and
dynamic hyperinflation: biomechanics
of dyspnea

Dyspnea is a common symptom of anxiety (67) and people

with panic attacks report that they are very frightened by the
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feeling, sometimes referencing feelings of doom and a feeling that

they are going to die from the sensation of choking. The

mechanisms and pathways of the sensation of dyspnea are not

completely understood (68). Juxtacapillary (J) receptors (or

pulmonary C-fiber receptors) are non-myelinated slow-acting

sensory vagus nerve fibers located within the alveolar walls in

juxtaposition to the pulmonary capillaries of the lung. They are

believed to be “nociceptors” responding to tissue damage and

edema. They are stimulated during pulmonary congestion

produced by occluding the aorta or left atrioventricular junction,

which causes an increase in left atrial pressure with a consequent

rise in pulmonary arterial pressure.

In feline experiments (69), there was a delayed response time

(5–10 s) after the start of the occlusion of the aorta or

atrioventricular junction. The interval between the start of the

rise in systolic right ventricular pressure and the onset of

stimulation in different fibers varied considerably. In some fibers,

it was as little as 2 s; in others, about 15 s or more. Two nerve

endings were not excited even 30 s after occlusion occurred. This

considerable lag was the same after an injection of alloxan (a

stimulant used in similar experiments by others). The author

believed that the main physiological stimulus to the receptors

was an increase in interstitial fluid in the alveolar wall.

It appears that the activation of pulmonary C-fiber receptors in

animals produces inhibition of spinal motoneurons, reflex

bradycardia, apnea, and hypotension via the vagus nerve. The

injection of lobeline (a drug that activates pulmonary C-fiber

receptors) can cause small animals (like cats) to collapse from

reflex spinal motor neuron inhibition. When lobeline is injected

into human subjects, they report noxious sensations of smoke or

fumes in their airways. The sensation evokes an element of fear.

It contributes to the sense of dyspnea. Even though human

subjects do not collapse after the injection, they develop

bradycardia (a decrease of 10–15 beats/min) with the

accompanying hypotension (a decrease of ∼40 mmHg). In

human subjects, the inhibition at a spinal level by lobeline was

thought to be overridden by increased descending excitation,

either from arousal or voluntary cerebral command (70).

However, in the study on the mechanisms of stimulation of

pulmonary C-fiber receptors (69), the author noted that the

application of local pressure on the lungs of cats was a very

effective way to localize the nerve endings. The peak frequency

in response to pressure stimulation was greater than that

following phenyl diguanide injection. He wrote:

“Effects of local pressure. Application of local pressure on the

lungs was an effective method of stimulating the endings so that it

became possible to localize the endings in the individual lobes…

Some endings could be stimulated by stroking the surface of the

lungs; others needed strong pressure in order to stimulate them…

[It] was found that mechanical stimuli set off a relatively

prolonged discharge of impulses which continued for several sec

after the mechanical stimulus had been withdrawn.”

From the observation above, we can infer that the most

important function of pulmonary C-fiber receptors may be

intrathoracic pressure monitoring during trunk control. This is

essential for human bipedal locomotion and speech, especially
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with very low central venous pressure (3–8 mmHg), right atrial

pressure (2–6 mmHg), and pulmonary capillary pressure

(4–12 mmHg). Because human ancestors spent a significant

amount of time as arboreal animals before becoming an

obligatory bipedal species (71), they must have developed the

necessary skills of trunk control which eventually became an

essential part of bipedal locomotion and energy efficiency. Unlike

quadrupedal animals, our human ancestors had to overcome the

dilemma of controlling the needed stiffness of the trunk while

avoiding excessive pressure on internal organs and vascular

structures. Having a well-developed sensory system to monitor

internal pressure can be accomplished via pulmonary C-fiber

receptors. The varying degrees of response rate can be

interpreted as the results of different degrees of applied pressure

during activities of torso stiffness.

In a study (72) on the central integration of signals from

pulmonary vagal C-fiber receptors along with those arising from

cardiac, peripheral chemoreceptor, and baroreceptor afferents to

neurons within the nucleus of the solitary tract, the author found

that, after stimulation of pulmonary C-fiber receptors with

phenylbiguanide, none of these neurons were activated by

increasing right atrial pressure. After phenylbiguanide injection,

only 13% of the cells responded to the stimulation of

baroreceptors and only 6% to cardiac mechanoreceptor

stimulation. The author indicated that there was a high

proportion of afferent convergence from pulmonary C-fibers,

cardiac receptors, and peripheral chemoreceptors in the nucleus

of the solitary tract. The role of pulmonary C-fiber receptors was

considered to be inhibitory and a part of the defense mechanism,

even though the exact role was still unknown.

The term expiratory flow limitation (EFL) is a physiological

concept to indicate that maximal expiratory flow is achieved

during tidal breathing (73). When we reach EFL during

expiratory breathing, further effort to increase the expiratory

volume cannot increase the expiratory flow rate due to

intrathoracic airflow obstruction. The presence of EFL during

tidal breathing promotes dynamic pulmonary hyperinflation

(DH) and intrinsic positive end-expiratory pressure (PEEPi). This

will cause an increase in respiratory work and an adverse change

in hemodynamics commonly seen in patients with advanced

chronic obstructive pulmonary disease (COPD). When EFL and

DH develop, one can overcome EFL by increasing alveolar

pressure and elastic recoil by increasing air through increasing

inspiratory work. However, in excess, this may lead to people

feeling like they “cannot breathe”. In patients with COPD with

EFL, the DH will cause a further increase in inspiratory work

due to air-trapping. In a study on the effect of bronchodilators

on patients with COPD (74), the authors found that patients

with COPD with EFL may experience less breathlessness after a

bronchodilator during light exercise than those without EFL.

This beneficial effect of bronchodilation occurs even in the

absence of a significant improvement in forced expiratory volume

at 1 s (FEV1). Grossly obese people appear to have EFL and

PEEPi through small airway closure and air trapping (75). In the

study subjects, EFL was more common when they were in a

supine position, and tidal breathing was affected by EFL and
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PEEPi. A consequence of EFL will be an increase in end-expiratory

lung volume, resulting in an increase in functional residual capacity

(FRC) at the end of expiration. The PEEPi can impose an

additional elastic load on the inspiratory muscles and thus

increase the work of breathing.

The great deal of breathlessness an inexperienced swimmer

undergoes is likely from an increased intrathoracic pressure and

trapped air causing an increase in inspiratory work to generate

the needed venous return, in addition to the activation of

pulmonary C-fiber receptors. Talking in unstable postures

necessitating torso stiffness with an increase in intra-abdominal

pressure may bring a subsequent development of air-trapping

and PEEPi. If this airway trapping and development of EFL and

DH continues over an extended period of time, he/she may

develop a functional impairment of inspiratory muscle and

adverse effects on hemodynamics, resulting in shortness

of breath (76).
6 Biomechanics of laughter and crying

Laughter, often said to be the best medicine, decreases tension

(77) and anxiety and is not unique to humans. Laughter is

instinctive and contagious, is a form of social play and

vocalization, and is unusual in solitary settings. If loud laughter

can be induced by tickling and a young infant laughs during a

simple game of “peekaboo”, the primary role of laughter must be

physiological rather than psychological. When rats were tickled

to induce laughter, the laughing rats were more optimistic in

making decisions when uncertainty was involved (78). Laughter

among shelter dogs helped the shelter dogs to reduce stress and

increase prosocial behavior, which could potentially lead to

reducing residency time (79).

Developing delicate systems to avoid excessive and prolonged

pressure on thoracoabdominal organs while maintaining

necessary stiffness for postural maintenance would be a

prerequisite to becoming successful obligatory bipedal primates.

Young infants have to learn to control their trunks to sit and

stand before they start walking and running with a much higher

degree of trunk control (80). However, avoiding excessive

pressure while learning trunk control will be a crucial step as we

already discussed the harmful effect of sustained increased IAP.

Although normal IAP of a child is reported as 7 ± 3 mmHg (81),

a healthy newborn may even have a lower value. When sitting

infants react to motions with a degree of trunk control, they may

utilize a rapid decompression of air (laughter) that can lower the

pressure inside the torso to protect internal organs and maintain

bonding with parents since they are defenseless at this stage of life.

Laughter with its repetitive expiratory contractions (average

frequency of 4.6 ± 1.1 Hz) causes a final drop in functional

residual capacity (FRC) by 1.55 ± 0.40 L (82). As the diaphragm

counteracts contracting abdominal muscles, this counteraction

appears to protect intra-thoracic structures from the contracting

abdominal muscles. Closure of the glottis at the beginning of

each expiratory contraction slows down expiratory effort and

increases intra-alveolar pressure. The contracting abdominal
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muscles increase both intra-gastric pressure (Pga) and

intra-esophageal pressure (Pes), but the increase in Pga is much

higher than Pes by an average of 27 ± 7 cmH2O during the entire

fit of laughter. Contrary to trapping of air and dynamic

hyperinflation during a stress response, a fit of laughter with the

drop of FRC and the abdominal compression (with the pressure

gradient between Pga and Pes) and following large negative

inspiratory force will increase venous return and, in turn, cardiac

output. In a study on the impact of laughter through humor on

air trapping in severe COPD (83), the authors noted that

laughter and smiling through humor intervention could induce a

decrease in total lung capacity (TLC) by up to 1.55 L via

reduction of RV (residual volume). FRC did not change. This

indicated that there was a reduction in air trapping. Additionally,

true laughter evoking more H-reflex suppression than simulated

laughter (77) can be helpful in social interaction as the person is

less guarded, more relaxed, and often falls off the chair.

When an individual encounters a stressful event or news and is

unable to make a “fight-or-flight” reaction, crying seems to help

avoid air-trapping and excessive intrathoracic pressure by

contraction of abdominal muscles with narrowing of the

laryngeal airway for enhanced sighing-like expiration. Subsequent

inhalation after the contraction of abdominal muscles will induce

an increased venous return to maintain circulatory volume. This

contraction of the abdominal wall muscle during crying seems

important for ventilation in a newborn with weak elastic recoil

strength of the lung, In a study on expiratory muscle activity in

preterm babies (84), the authors observed that the well-preterm

babies used external oblique muscles during the expiratory cry

but not during the intake of breath between cries. The grunting

preterm babies were using external oblique muscles during

grunting by forcing gas through the partially closed larynx which

may help force gas into unexpanded regions of the lung. These

expiratory abdominal muscle activities can help distribute force

through the compliant lung areas to increase pressure inside the

torso. The proper increase of pressure during crying, unlike

laughing, can help maintain a degree of torso stiffness while

avoiding dangerous air-trapping and hyperinflation and may be

needed for posture control, unlike laughter. When a toddler falls

after leaning on an unsecured object and starts to cry

immediately, the toddler may get helped by extending his/her

arms out by maintaining the hypertonicity of the torso (85).

During temper tantrums in neurally underdeveloped toddlers

who are unable to control ventilation upon stress, excessive

outbursts of anger and crying may be compensatory strategies to

handle ventilation and perfusion and would be worse if there are

underlying deficits in inhibitory control, leading to future

psychopathology (86). Although many illnesses cause

pathological crying and laughing (87), crying and laughing are

also interchangeable in many situations (i.e., award ceremonies).

People accepting the award are likely to show their excitement

and happiness through laughter first, but soon they will need to

stiffen up in front of the audience while holding the trophy. The

avoidance of excessive internal pressure can be achieved by

laughing, crying, or both for a proper response to the

given situation.
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7 Predictive processing of perception

The reason that we cannot tickle ourselves seems to be the fact

that the sensory consequence of self-generated movement is

accurately predicted and suppressed. The amount of attenuation

is proportional to the accuracy of the sensory prediction in self-

generated movement with a narrow window (<100 ms) (88).

Mechanisms to suppress or attenuate unnecessary information

before it reaches the brain seem to be important to keep our

attention on needed targets; otherwise, any such distractions

would be dangerous for the survival of animals in the wild.

Without proper prediction and suppression in vision, we will not

be able to see at all during fast saccades due to the carried-over

visual information formed on the retina (89). Indeed, we cannot

see our own eyes moving in the mirror. Additionally, sensory

inputs of unexpected events can be sensed acutely with a proper

amount of attention, as toe cramps at night (which don’t have an

efferent copy from not being planned in the brain) are sensed as

quite annoying.

Predictive processing is a well-accepted theory of perception

and seems to be the main mechanism to enable us to engage in

complex and fast social interaction (90, 91). Additionally,

spontaneous activities (SA) of sensory areas of the brain in the

absence of sensory stimuli appear to contribute to the perception

and filtering of relevant inputs to integrate diverse sensory and

non-sensory information to modulate behaviors and facilitate

learning (92) with maturity (93). The complex neural sensory

computation may be critical for the survival of animals, as any

delay in perception and reaction by a fraction of a second can be

deadly. Especially for large animals, including humans, on-site

programming of action after computation of sensory input would

not be compatible with survival in nature during hunting/

escaping because there is a significant sensory-motor delay due

to slow nerve conduction by distance and slow force generation

of large muscle mass (94). For large animals, it can also be quite

challenging to properly balance during fast locomotion if reactive

jerks become frequent and cause perturbation of posture. For the

mechanical property of large-bodied animals, predictive

processing of incoming sensory signals of self and non-self origin

would be a proper strategy for smooth and fast movement (95, 96).

Among many conditions, autism and psychosis are known to

cause errors in prediction (97, 98) and anxiety-related symptoms

in individuals (99, 100). Due to the presence of prediction error,

people with deficits in higher level supraspinal computation

would have a degree of torso stiffness from activation of TrA

(44, 45) during various tasks, and might avoid those tasks in the

future due to experience related to the negative impact on

circulation and ventilation.

The theta waves in electroencephalography reflect the resting

and default modes of brain activity (101) and appear during

predictable motor activity (102). Easily predictable activities can

be restful for the brain, like knowing the exact time of arrival of

the last bus at a bus stop without a need for constant watch-out.

Mind wandering (daydreaming) can also be restful for the brain

from the fact that such activities do not require preparation for

the pre-programmed motor activity of abdominopelvic muscles
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(24, 26) and arrangement of real-life predictions and monitoring

of outcomes, thus allowing for more theta activity of the brain

(103). Relaxation during watching clouds or far scenery would be

from the fact that there is no need for immediate motor

planning and monitoring. Maladaptive daydreaming is known to

be linked to various psychopathological symptoms (104) and

may reflect the underlying struggle to ease the tension of the

torso for circulation and ventilation. Various habits (including

nail-biting and lip-biting) would be easy real-life motor tasks, as

motor actions on oneself are very predictable. Simple motor

activity in a state of stable balance (like knitting while sitting)

may induce relaxation of the diaphragm since it no longer needs

to take on a postural role in humans (24) and promote theta

waves from increased predictability of ongoing action. Many

rituals can be helpful to ease one’s tension due to their

predictability (if practiced and familiarized) and used more

during stressful times (105). In the same sense, Western classical

music of highly regular and predictable rhythms may give us

relaxation (106), and the predictability of the next note in the

music being listened to increases as it is played repeatedly. The

reverberating resonance in low-pitch meditation music may do

the same, as the following sound becomes predictable due to the

lasting resonance.
8 Vision and inhibition of return

Visual information is important for learning, prediction, and

guidance of body actions in everyday activity (107, 108) with

temporal guidance in space (109, 110). While the status of

external ocular muscles appears to influence vestibulo-ocular

reflex (111, 112), which is known to be important for balance,

significantly, gaze direction seems to guide cervical muscles (113)

and override vestibular signals for postural motor responses

(114). Oculomotor deficit, which is common in many psychiatric

illnesses including anxiety disorder (115) and autism (116, 117),

may affect learning and executing motor activities negatively in

everyday life.

While viewing behavior is quite biased toward given tasks

(118), the clear foveal vision is only 1–2 degrees of the visual

field with rapidly fading retinal images, and the need for

redevelopment of perfectly-fused binocular retinal images with

frequent saccades seems quite challenging when there is constant

often irregular movements of self and others. Proper allocation of

visual attention (119) with an accurate prediction of the future

location of moving targets (120) can be important for complex

social activity and is critical for animals to search for food and

avoid predators.

Inhibition of return (IOR) is a well-known concept in vision

research and states that response time to previously attended

areas is slower. This inhibitory mechanism allows a person to

allocate visual attention to unattended areas (121). Having a

degree of deficit in IOR can have a negative impact on fast

learning in complex social activities. Due to errors in prediction

(97) with deficits in IOR, people with autism may have

significant torso tightness (44, 45) from lowered predictability
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and perceptions of unexpectedness (46) in challenging

environments, and may feel worse during actions including gait

and language which would get influenced by less efficient gaze

patterns for the guidance of motor activities (107–110) and

postural balance (112, 113, 122). Deficits in IOR in obsessive-

compulsive disorders (123) and attention deficit hyperactivity

disorders (124) can be presented as anxiety during social activity

if the allocation of visual attention is impaired in a complex and

rapidly changing world.
9 Common conditions related to
anxiety

9.1 Vasovagal syncope: neurally mediated
syncope

There are many reasons for syncopal attacks, but a neurally

mediated type is the most common and quite prevalent in the

general population. Although the exact pathophysiological

mechanisms of neurally mediated syncope (NMS) are not well

known, the Valsalva maneuver can induce lightheadedness by

blowing hard against the closed vocal cords to generate positive

intrathoracic pressure. During the resisted expiration procedure

to bear down the force meter at 20 cmH2O for 7 s, both end-

diastolic and end-systolic volumes of the left ventricle fell

precipitously during the strain phase of the procedure with a

concomitant decline in cardiac output (53). These findings

suggested that the change in cardiac performance was due to the

altering of ventricular filling and changing afterload. However,

mildly-resisted inspiration, unlike resisted expiration, improves

cardiovascular performance and tissue perfusion through a

decrease in intrathoracic pressure and an increase in venous

return (125–127).

During the tilt-table test (used to diagnose NMS), a patient in a

supine position with a foot plate is secured by straps and belts.

After the patient is fully upright, the table is then gradually tilted

backward at a 60–80 degree angle. Sometimes, vasodilator agents

are infused intravenously to increase the sensitivity and

specificity of the test. A positive (abnormal) test result is

characterized by a loss of consciousness that follows various

hemodynamic patterns including hypotension with or without

bradycardia. Even though the test is considered a safe procedure

and an asystolic pause itself is considered a positive response,

extremely prolonged asystole has been reported (128, 129).

While skeletal muscles pump venous return (60) via the

eccentric contraction of large posterior posture muscles during

the weight-bearing stance phase of gait (130), a restrained person

in a tilted backward position after the initial upright standing

will not be able to recruit large eccentric posterior postural

muscles. This tilted posture mimics the non-weight-bearing

swing phase of the legs to limit venous return. Further, straps

and belts applied to the front torso will limit outward inspiratory

movement which is important in restoring circulatory volume in

hypovolemia (126) and hypotension (125). If a susceptible

person is on the table for a prolonged period and activates
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torso muscles (including the diaphragm, TrA, and pelvic

floor muscles) for the needed stiffness of the spinal column

(24, 25, 27, 28, 131), this will result in a further deterioration

of venous return.

In a Mueller maneuver (opposite of the Valsalva maneuver),

the increase in abdominal pressure using rib cage muscles can

briefly increase the venous return from the abdomen (132). This

mechanism can be seen during “sighing breathing”. However, a

prolonged increase in IAP will cause a drop in venous return

which, in turn, will decrease the volume of the left ventricle. The

static contraction of the diaphragm during continued thoracic

breathing for postural control will inhibit the elastic recoil of the

lungs upon exhalation and cause air-trapping with dynamic

hyperinflation. At higher lung volumes, the expiratory effort will

cause a much higher intrathoracic pressure due to air-trapping

and dynamic hyperinflation (132). Because of the higher lung

volumes, the greater expulsive effort needed for expiration may

induce the Valsalva effect (like blowing a balloon). When

thoracic breathing (inspiration and expiration) at higher lung

volumes causes a decrease in venous return and an increase in

intrathoracic pressure, there will be a compressive effect on

pulmonary capillaries (4–12 mmHg), right atrium (2–6 mmHg),

and left atrium (<13 mmHg) with a subsequent decrease in left

ventricular volume (dimension) and cardiac stroke volume (133).

Infusion of vasodilating agents (including many antihypertensive

drugs) will cause a decrease in preload and afterload to

contribute to the pathogenesis of vasovagal syncope.

A necessary increase in adrenergic tone, when preload is low,

can induce poor relaxation of muscles and further limit cardiac

filling. If excessive adrenergic flow into the cardiovascular system

by the activation of afferent baroreceptors is not

counterbalanced, the excessive cardiac contraction with decreased

venous return (underfilling) could cause an over-shortening of

the sarcomere of left ventricular muscles at the end of systole

(the beginning of diastole). This overshortening of sarcomere

with decreased diastolic volume could allow “contraction band”

formation (hypercontracted sarcomeres) which can be seen in

“Takotsubo” cardiomyopathy (134, 135) and in the cardiac death

of stranded animals (55, 136).

If there is an activation of pulmonary C-fiber receptors as a

result of increased intrathoracic pressure (which causes

bradycardia, hypotension, and a decrease in muscle tone), then

the loss of consciousness (syncope) can be seen as a defense

mechanism rather than an abnormal neuro-humoral reaction

(like a circuit breaker in a system overload) as spontaneous

breathing is beneficial over positive-pressure ventilation during

hypotension (126) if maintained during syncope.

The vasovagal reaction seems to happen even after heart

transplantation (137) because of the existing defensive role of

pulmonary C-fiber receptors rather than paradoxical stimulation

of left ventricular baroreceptors from neurohumoral dysfunction

(or the reaction should not happen after denervated transplanted

heart). In this study (137), patients after heart transplantation

underwent head-up tilt (up to 60 degrees) testing while resting

on a saddle support (bicycle saddle fixed on a steel tube which

prevents proper weight-bearing for venous return and posture).
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During the tilt with saddle support, the patients could induce the

activation of torso muscles to increase IAP and induce air-

trapping with dynamic hyperinflation.

Selective Serotonin Reuptake Inhibitors (SSRIs) appear to

prevent vasovagal syncope in patients with refractory NMS

(138). Although negative conversion of the tilt test seems to

support the efficacy of the drug on the neural mechanism,

people treated with SSRIs still continue to have a positive

response to lower body negative pressure (inducing decreased

venous return by venous pooling) during the tilt test (139).

These findings appear to indicate the possible role of SSRIs on

NMS through the change of motor (behavioral) patterns

during stressful situations rather than through the

modification of the sympathetic tone or its withdrawal as

serotonin is known to modulate the central pattern generators

(CPGs) in animals (140–142).
9.2 Takotsubo cardiomyopathy (stress
cardiomyopathy: broken heart syndrome)

Although many people assume that the heart pumps blood out

by shortening the length of the sarcomere (concentric contraction)

with widening muscle fibers based on sliding theory, if this were

the case, then the concentrically contracting cardiac muscles yield

11.6% work with the rest lost as heat energy (143). While

moderate heat stress is already detrimental to cardiac conduction

(144), if the heart beats >100,000 times a day with that much

heat, survival is impossible. For this reason, there must be other

mechanisms to prevent excessive energy use leading to fatigue

and rigor. Unloaded shortening-induced deactivation by the

structural change of the physical state of the regulatory protein

complex of the actin and myosin units, not due to the depletion

of chemical energy, seems important for energy saving in skeletal

muscle physiology (145). In cardiac muscles, the recoil moment

of stretched elastic titins upon unloading seems to contribute to

the mechanical deactivation of calcium-dependent acto-myosin

bindings to spare ATPs (146). Obliquely running elastic regions

of cardiac titins can provide a longitudinal and radial force that

compresses the lattice upon lengthening (147). After the initial

shortening of fibers upon the start of systole, through the unique

spatial arrangement (148) and radial branching pattern of cardiac

muscle fibers, there is a lengthening event during cardiac

contraction with geometric alteration in fiber and sheet structures

to induce circumferential shortening and regional wall thickening

rather than an increase in fiber size (149, 150). However, when

preload is low with an adrenergic surge during stressful

situations, a degree of concentric contraction forming contraction

band may occur (54). This may explain the sensation of internal

“heat” in many people with recurrent syncope just before they

pass out.

Takotsubo cardiomyopathy was once thought to be rare but

now seems to have been an under-recognized condition with

increasing numbers of case reports in various countries (151). In

a tertiary hospital, it may account for approximately 2% of

hospital admissions for acute coronary syndrome (152). Even
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though a complete recovery is expected in the majority of cases,

it can be fatal. It is an acute illness with a sudden onset of chest

pain and shortness of breath, usually triggered by an emotionally

or physically stressful situation. It appears to happen more

often in women over 50 years old. When they present to an

emergency room for chest pain and dyspnea, the initial

findings are suggestive of acute coronary syndrome with

changes in EKG (electrocardiogram) and blood biochemical

testing including elevation of cardiac enzymes. However,

objective findings usually fail to show any significant coronary

atherosclerotic stenosis, coronary vasospasm, or myocarditis

(134). Instead, the patients with this condition show a

distinctive pattern of apical akinesis of the left ventricle in

angiographic images which is similar to the shape of a fishing

pot used for trapping octopus in Japan.

If a sudden severe (emotionally or physically) stressful situation

causes a severe adrenergic response, the required postural stiffness

will increase intraabdominal and intrathoracic pressure. Suppose

this reactive stiffness is not compensated by physical movement

(fight-or-flight) and proper ventilation. In this case, there will be

a significant drop in intraventricular volume (53) from decreased

venous return and extrinsic compression on the cardiac

chambers and vena cava veins (153). If pulmonary C-fiber

receptors are not activated immediately or are overridden by

supraspinal (cerebral) command (70), excessive and continuous

contractions of the left ventricle under the adrenergic influence

with decreased preloads will cause over-shortening of muscular

fiber length to form “contraction bands” from hypercontraction

of sarcomeres (134, 135). This hypercontraction of cardiac

muscle fibers may be the cause of the chest pain (cramps) and

happens more at the apex sparing the peri-valvular area due to

its valvular attachment.

If unopposed to the excessive adrenergic surge with

hypercontractility, the unsecured freely moving apical

cardiomyocytes can develop rigor and contraction bands unlike

the secured basal cardiomyocytes. The unique inhibitory

mechanism of apical cardiodepression for cardiac protection at

the time of adrenergic surge seems necessary (154) to avoid

myocardial toxicity and contraction band formation and may

give the unique shape in the ventriculogram by the time an

angiogram is done. The extremely high level of catecholamines

(much higher than in normal stress response) can be the result

of cardiac pump failure (135); however, the perfusion pressure to

the vital organs may be maintained by catecholamines increasing

the contractillity of basal cardiomyocytes (154).
9.3 Postural orthostatic tachycardia
syndrome

Postural orthostatic tachycardia syndrome (POTS) is

considered an autonomic dysfunction that causes postural

lightheadedness, fatigue, sweating, tremor, anxiety, palpitation,

and near syncope (155). People with this condition have an

increased heart rate > 120/min (or increase by 30 from resting

heart rate) after standing for 10 min. The condition is more
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common in women (5:1 female to male ratio) in the age

range of 12–50.

If a person develops patterns of excessive activation of torso

muscles with an increase in intra-abdominal and intra-thoracic

pressure, if the patterns are sustained with an increase in

adrenergic tone but limit splanchnic reserve of blood volume

(156), and if the patterns are maintained into daily life activities

with a suppression of pulmonary C-fiber activation by

supraspinal (cerebral) override (70), the patterns causing

decreased venous return and insufficient intrathoracic blood

volume (153) will not be sustainable. With a limited splanchnic

reserve and an impeded venous return, an increase of sympathetic

stimulation of the heart alone will result in only small increases in

cardiac output (156). If activation of baroreceptors with

hyperadrenergic vasoconstriction is prolonged (153), irreversible

myocardial injury with ATP depletion can occur (54).

However, the sympathetic outflow and vascular resistance of

the skin are not regulated by baroreceptor activity (157) but

rather by central motor command (158). The activation of

cutaneous sympathetic tone promoting sweating and flushing

may help to prevent hyperthermia during hyper-adrenergic

situations. While sitting down alleviates POTS by preventing

excessive torso stiffness and bringing the venous pool closer to

the torso, enhanced inspirational drive via common respiratory

symptoms (159) when preload is low (160, 161) can expand

central blood volume to ameliorate orthostatic hypotension (125,

162). POTS seems reactive to the circulatory compromise by an

extended adrenergic response during improper upright activity

rather than an autonomic dysfunction.
9.4 Abdominal pain and irritable bowel
syndrome

These are common symptoms related to anxiety and often

become severe enough to make an emergency room visit.

Contrary to the severe pain causing “doubling-over” posture and

tenderness requiring intravenous pain medications, laboratory

and imaging tests often fail to reveal any significant pathologic

findings to explain the severe pain (163). Other people with

discomfort in the pelvic or suprapubic (bladder) area with

urinary frequency or urgency and sometimes painful urination

are often treated for urinary tract infections (164). It is also

common for many people to have bacteria in their urine without

any symptoms. Occasionally, a normal urine test is obtained

when the clinical presentation is identical to prior urinary track

infection events. Referral to urology is often made and patients

undergo a series of tests with a diagnosis of interstitial cystitis.

Sometimes, surgical implantation of a sacral nerve root

stimulator is attempted with varying results (165).

A motor unit consisting of a motor neuron and all the muscle

fibers it innervates can have a varying number of muscle fibers per

motor unit (from a few to several hundred) and generates force

determined by the number of muscle fibers in the unit. During

muscular activation, because all muscles consist of many

individual motor units mixed amongst fibers of other units,
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activation of one motor neuron can result in a weak but

distributed muscle contraction. There will then be subsequent

activation of more muscle fibers when additional forces are

needed, known as motor unit recruitment (166). Because the

motor unit recruitment reflects how many motor neurons are

activated in a particular muscle, it can be used as a measure of

the muscle contractile force. The larger the recruitment, the

stronger the contractile force will be. The contractile force can

also be increased by the motor unit firing rate. The motor unit

firing rate of each individual motor unit can increase with

increasing muscular effort until a maximum rate is reached.

In slow and low-amplitude muscle contractions, a minimal

firing rate modulation of the early recruited (low threshold)

motor units appeared to be due to an inhibitory mechanism by

the newly recruited motor units (167). The motor units recruited

later showed depression of active firing rates when additional

motor units were recruited for higher force development. In

linearly changing voluntary contractions (168), recruitment is the

major mechanism at low levels of force, but increased firing rate

becomes the more important mechanism at intermediate force

levels. A brief voluntary contraction superimposed on sustained

contraction can induce a short suppression of low-threshold

motor unit activities. This recruitment, de-recruitment, and re-

recruitment appear to represent a mechanism to reduce fatigue

of motor units during sustained contractions (169). However,

during static contractions and slow (and low degree) dynamic

contractions of low force (10% of maximal voluntary contraction

force: common in occupational activities), some early-recruited

motor units had continuous activities without rotating bursting

and depression seen in brief voluntary contraction (170). This

indicates that there are many motor units prone to fatigue and

metabolic injury during prolonged repetitive work with

insufficient pauses for a full recovery.

During the contraction of muscles causing tissue constriction,

it is surprising that resting intramuscular pressure is below

5–10 cmH2O and intramuscular pressure can rise rarely above

20 cmH2O during voluntary contraction (171). However,

maintaining proper blood flow into the feed arteries,

intramuscular arteriolar networks, and capillaries with proper

coordination of the vasoconstriction and vasodilation will be

important to avoid tissue ischemia resulting in injuries. In a

study on vasomotor tone in resistance vessels of hamster pouch

retractor muscles, the authors found that there was a progressive

constriction of arterioles and feed arteries with muscle

lengthening (within a physiologic range) which decreased blood

flow >50% (172). The reciprocal relationship between muscle

length and the diameter of arterioles and feed arteries was

sustained across muscle lengths. These length-induced vasomotor

responses were triggered by norepinephrine release from

perivascular sympathetic nerves within the retractor muscle,

independent of the central nervous system (CNS). They

concluded that intramuscular and extraparenchymal resistance

vessels actively respond to mechanical forces within the muscle,

independent of muscle fiber activation or the release of

vasoactive metabolites. While the passive extension of the

retractor muscle activates periarteriolar sympathetic nerves,
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muscle contraction (with acetylcholine release by the motor nerve

terminals within the muscle) evokes (ascending) arteriolar dilation

in a reciprocal manner, which is then conducted back into feed

arteries (173). With feed arteries located next to skeletal muscles

giving rise to intramuscular arteriolar networks, the

mechanotransduction sequence via the change of length of

skeletal muscle is integrated by the neural regulation of feed

artery (and arteriolar) resistance and the supply of oxygen to

muscle fibers (174). The changes in the cardiovascular system

(which is mediated by hormones, reflexes, and CNS drive) also

appear to be graded according to the degree of muscular activity

and the volume of muscle involved (175). Venules, like arterioles,

dilate actively in response to muscle contraction (176). This

dilatation will help reduce the rise in capillary hydrostatic

pressure to limit the outward filtration of fluid.

Because local mechanisms via length change are the most

important mechanism for muscle perfusion (172–174, 176),

prolonged static sitting with the silent psoas muscles (38) will

recruit the abdominal wall muscles for the stabilization of spine

(27) and resulting ischemic injury to the involved motor units

would be inevitable. Biopsy specimens of work-related chronic

myalgia showed pathologic “ragged red” fibers which are usually

found in ischemic injury to the mitochondria (177), with

decreased levels of ATP and ADP indicating reduced muscle

oxygenation (178). Tissue doppler of the area of pain showed an

impaired local capillary blood flow in the tender part (179). If a

similar ischemic change is to happen in abdominopelvic muscles

over a prolonged period of time, painful afferents from motor

units of local ischemic injury [especially the transverse abdominis

(TrA) muscles with diffuse attachment and no directional vector

unlike other limb muscles with joint motion] may not be

suppressed to give an impression of intraperitoneal pain. The

severe pain perception can be a mismatch of expectations by the

lack of cerebral efferent of the cramping action (like toe-cramps

while sleeping) and related stress response to the unexpected

afferents would incur further tightening of the postural muscles

involved in vicious cycles. It is known that the cramp threshold

gets lower in subsequent cramping contractions (180) to make

the situation much worse.

During prolonged stress posturing while sitting under

demanding tasks, additional ischemic injury to highly aerobic

intraperitoneal organs is expected due to sustained elevation of

IAP. Abdominal bloating, dyspepsia, and diarrhea are common

symptoms related to irritable bowel syndrome. If the diaphragm,

TrA, and PFM are to contract for stress response to raise IAP for

posture control, the compensatory relaxation of internal oblique

muscle and upper rectus muscle will be necessary (181) which

can be seen in CT scan images of patients with functional

abdominal distension as the descent of diaphragm without

change of intra-abdominal volume (182). Then, bloating with

diarrhea can indicate a degree of ischemic strain to internal

organs during stress posturing and also serve as a compensatory

mechanism to decompress the peritoneal cavity from the strain.

Compared to the thoracic inspiration which is common in stress

response, the cyclic diaphragmatic inspiration with a higher

pressure gradient by its descent into the intraabdominal cavity
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(30, 183) can be an efficient way to drain venous blood and

lymphatic fluid and then allow the passage of the incoming

perfusion to the internal organs. The static abdominopelvic

muscle strain with prolonged thoracic breathing causing ischemic

injuries has to be considered in various organic inflammatory

disorders, as stress is known to be the most important trigger in

ulcerative colitis and Crohn’s disease (184).

Central pattern generators (CPGs), producing rhythmic

outputs in the absence of rhythmic input, seem to be the source

of rhythmic and stereotypical behaviors, like walking, scratching,

chewing, and breathing. Through the contributions from CPGs,

we humans can make rapid adaptations to environmental

changes and store new patterns very quickly (185, 186). Likewise,

the ability to recruit different patterns quickly upon unexpected

outcomes seems critical to avoid falls (187) and injuries (188).

Patterned startle responses, such as in a common scenario when

one might make a misstep going up or down a flight of stairs,

appear to be context-specific (189) and site-specific (190).

Besides central sensitization of pain hypersensitivity (191), if

patterned stress posturing recruits motor units with ischemic

injuries upon recurrent exposures to similar stressful situations,

the motor afferents from ischemic motor units will be sensed as

“unexpected” to cause more painful contractions.

A similar etiology may apply to chronic pain related to

fibromyalgia which is also associated with an increased risk of

irritable bowel syndrome. People with a history of chronic pain

of ischemic/myalgic origin will have a significantly lower cramp

threshold, which can be even lower after painful cramping

contraction of the affected motor units (180). During a painful

contraction (sensed as an “unexpected” afferent), the

“unexpected” pain sensation will not be suppressed unlike how

we suppress our expected senses during everyday activities

(88, 192). Although many consider the pain in fibromyalgia to be

neuropathic in origin, the proper maintenance of the nerve

endings embedded in the muscles will also depend on local

perfusion to the muscles, mainly by length changes. The

structural change of the brain is common in patients with

chronic pain syndrome (but not specific) and is thought to be

secondary to frequent pain stimuli. It may also be reversible

when the pain is well controlled (193). The preservation of the

corresponding brain cortex of chronic pain indicates that pain

generation is a bottom-up process rather than a top-down

process (194, 195). Due to its nature as a bottom-up process,

chronic pain can be perceived as severe from lacking cerebral

efferent copies.
10 Discussion

To understand the pathophysiology of anxiety, the importance

of venous return in circulation needs to be considered because the

heart can pump only what it receives. While weight-bearing activity

is the most important mechanism for venous return (60), proper

breathing (61) through careful control of the torso is needed

during upright bipedal activities. Successful bipedal locomotion

with an inherently unstable spine (47, 48) and significant
frontiersin.org

https://doi.org/10.3389/fspor.2024.1487862
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Chin 10.3389/fspor.2024.1487862
sensory-motor delay for force generation (94) must depend on

accurate prediction and acquisition of many patterns (pre-

programming) while simultaneously avoiding unnecessary torso

stiffness. This must have been a prerequisite in human evolution.

Through CPGs and preprogramming, we can perform fast motor

activities without cognitive delay even before the active top-down

supraspinal command (196). Indeed, we feel clumsy and slow to

learn new skills using new tools in new environments.

It is interesting that, in addition to their failed adaptation to

cold climates (197), the extinction of the Neanderthals might

also be attributable to preeclampsia (198, 199). During

pregnancy, torso control will be even more challenging due to

the rapid growth of the large fetus and significant proprioceptive

challenge from the loosening process of joints and muscles. If

not controlled carefully, excessive pressure in the torso can

impede venous return and circulating intravascular volume.

Rapid fetal growth and exponential growth of the cerebellum in

the large fetal heads in late pregnancy need a secure blood

supply through the invasive placenta to the mother’s womb. The

disturbance of its growth in premature infants can cause

subsequent neurocognitive and behavioral deficits (200) including

autism (201). The vascular hallmarks of preeclampsia are

placental arteriolar narrowing and fibrinoid necrosis which are

likely reflecting the mother’s struggle to preserve her circulatory

reserve for her own survival although the invasive human

placenta on the uterus is supposed to secure the necessary blood

supply for the developing fetal brain.

Although the large pelvic opening of modern humans with

pelvic dimorphism allows the passage of the fetal head, the large

fetal head is still problematic and requires rotation of the fetal

head during descent in the birth canal, unlike other primates

(198). The large size of the Neanderthal’s fetal head might have

been problematic, similar to modern humans. Unlike modern-

day humans, the Neanderthals had bigger pubic bones and wider

pelvises without sexual dimorphism (202) with shorter lower

limbs (203). This might have allowed them to be adept at

activities of the upper body in their environments near glacial

perimeters (204, 205) and wooded sloped terrains (206). They

might have engaged in many anaerobic activities using the upper

body, unlike our ancestors from the African savanna. Both the

Neanderthals and modern humans were able to use sophisticated

weapons technology and well-coordinated group hunting skills

with the knowledge of the anticipatory behaviors of prey animals

(207). However, it appears that modern humans were able to

exploit much larger areas, establish broader social networks, and

use local and non-local materials compared to their Neanderthal

counterparts (207). This locomotive advantage with broader

social networks can be supported by the energy-efficient modern

human locomotion (22), unlike the Neanderthals of high daily

energy demand (208) with wider pelvises and stocky bodies.

Hyperadrenergic stress responses (209) with limited aerobic

muscle activities in cold, wooded, and sloped environments

(204–206) might have been deleterious to the societal bonding of

the groups and the fetal development in pregnant females, as we

know that stress can impair the prefrontal cortex structurally and

functionally (210) and fetal development (211, 212). Further, the
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paternal experience of stress seems to have a lasting effect on

future generations through transgenerational epigenetic

inheritance (213).

Women of childbearing age with wider pelvis orifices and an

open-plan arrangement of pelvic floor muscles (compared to

their male counterparts) would require an increased tone of

abdominopelvic muscles to support intraperitoneal organs during

upright activities. Increased adrenergic tone related to an

increased torso tone would cause a degree of venous impedance

in women of childbearing age. Progesterone is known to have an

inhibitory effect on muscle contraction (214, 215) and peak

saccadic velocity is diminished during the luteal phase (216). The

acute withdrawal of progesterone in the premenstrual period may

have effects on proprioception and gaze control resulting in

errors in motor planning and sensory monitoring (217). This

would be much worse in susceptible individuals with underlying

oculomotor dysfunctions and prediction errors (218) because

gaze has an important role in guiding everyday activities (108)

and postural stability (114), reflects decisional preference (219),

and can be manipulated to bias one’s decisions (220). Various

circulatory symptoms may occur if prediction and monitoring

functions are altered because gaze, sensory discrimination, and

action execution are coupled to cardiac cycles (221–223).

Individuals with convergence insufficiency which is a common

oculomotor dysfunction affecting 5% of the population with

limited reflective convergence capacity at near-point viewing

(224) would need to over-fixate eyes on near-point screen tasks

to cause strain and fatigue on delicate ocular muscles, likely from

the overuse of the superior rectus muscles which are recruited

for needed convergence and connected to the adrenergic system.

Prolonged strain and ischemic injury may cause errors in

saccades accuracy for visual learning and guidance which may

contribute to many psychological symptoms (225) from

unfavorable patterns of viewing of a complex world.

The level of proinflammatory cytokine IL-6 increases during

stress responses including social and psychological stresses (226,

227). Increased IL-6 level is found in many psychiatric

conditions (227–230). The skeletal muscles become a major

source of IL-6 (231), and its production can increase by muscle

damage (232), excessive and fatiguing exercise (233), low pre-

exercise glycogen content from prolonged exercise with limited

rest (234), and insufficient nutritional intake (235). Endurance

training resulting in improved performance (236) and glucose

ingestion (237) attenuate IL-6 release from contracting skeletal

muscles. However, forced exercise does the opposite (238).

During aerobic exercise, the hepatosplanchnic viscera appears to

remove IL-6 from circulation to limit the negative effect (239).

Elevated IL-6 level is also found in chronic myalgia (240) which

is known to have local hypoperfusion and ischemic changes

(177–179) as in other chronic illnesses. Particularly, local

ischemia seems an important trigger of IL-6 production (241, 242).

While IL-6 promotes the production of other cytokines related

to atopy and asthma (243) and causes myocardial failure and

skeletal muscle atrophy dose-dependently (244), it also crosses

the brain-blood-barrier and placenta. In animal models, a

maternal injection of IL-6 mediated the socio-behavioral deficit
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(such as autistic behavior) in offspring, but co-administration of

anti-IL-6 antibodies prevented the deficit (245). Although the

cause of autism is not well known, elevated levels of maternal

IL-6 linked to prenatal maternal stress may contribute to the risk

of autism in humans (246, 247). The increased adrenergic tone

from stress during pregnancy affecting circulating volume may

cause ischemic strain and elevated levels of IL-6, which in turn

may contribute to an increased risk of preeclampsia and autism

(201). Likewise, prolonged static sitting with poor venous return

during demanding tasks may affect systemic perfusion in the

same way in pregnant women. Autism is frequently related to

hypoplasia of the cerebellum, which is critical to coordinate

ongoing motor actions with a precise prediction of the immediate

future events of the self and surrounding environment (248).

Being able to precisely put one’s attention to the necessary

location in response to cues and quick error correction upon

mistakes is critical for the development of social skills. A delay or

deficit of these skills will prevent the development of social skills

from fragmented information in fast-changing environments (248)

causing social anxiety and avoidance of social interactions.

Aerobic activities improving tissue perfusion through increased

cardiac output (cardiac index) and decreased peripheral vascular

resistance are beneficial to many conditions associated with anxiety

and panic disorders (10, 249–252). Aerobically working muscles

seem to work in tandem with the diaphragm to be the major

pump for circulation over the heart when we consider the

following: First, the stimuli to the cardiovascular responses to

exercise come more from the muscles themselves than others

(hormones, reflexes, and CNS drive) (175). Second, proper coupling

of vasodilation and vasoconstriction within near the active muscles

through cardiovascular adaptation (change in blood pressure and

heart rate) are graded according to the degree of muscular activity

and the volume of muscle involved (175). Third, muscle perfusion

depends on local mechanisms mainly through muscle length

change (172–174). Lastly, venules (like arterioles) dilate actively in

response to muscle contraction to reduce the rise in capillary

hydrostatic pressure to limit the outward filtration of fluid (176).

A typical municipality in the U.S. spends about 25–40 percent

of its total energy bill on drinking water and wastewater systems to

provide safe drinking water, and 90%–99% of energy consumption

at a water system either using groundwater or surface water is

primarily due to pumping (253). A water tower generating

sufficient pressure to deliver water relies on proper pumping

with pressure monitoring, and prolonged pumping failure in a

municipal water system would make the town uninhabitable.

The “lactate shuttle” is now a well-accepted concept that

explains the significant roles of lactate as a major energy source,

a major gluconeogenic precursor, and a signaling molecule with

autocrine, paracrine, and endocrine-like effects (254, 255). A

large amount of lactate in the circulation is produced by the

skeletal muscles during aerobic activities (254–257) and is an

important and preferred fuel for the human brain (258–260) and

heart (261). Lactate also reduces inflammation and organ injury

(262, 263), and has free radical scavenging and antioxidant

effects (264). Since humans have relatively large aerobic muscle

mass compared to other primates (265), proper perfusion to
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those muscles would be necessary by frequent activity (266).

However, modern-day lifestyles with excessive sitting seem to do

the opposite (267, 268), resulting in a lack of the main fuel and

antioxidants for the brain, the heart, and other organs in

addition to spinal instability (38, 39) and activation of the

abdominal wall muscles (44, 45). Further, if predictive processing

is the main mechanism to perceive the world, proper brain

computing is necessary for accurate perception of the world, and

the accurate perception is essential for the prediction of higher

probability and lower error rates; the benefit of sufficient aerobic

activity to maintain and improve brain function can go far

beyond cardiovascular benefits (10, 249, 269–278).

Further, our locomotive behavior on the pavement with a head-

up posture (nice-and-tall) seems unsafe in natural environments

with many obstacles if we walk barefoot. Proper visual attention

(107–110, 279) is needed for balancing (113, 114) over many

ground obstacles via accurate perception and prediction (like

hammering a nail). The head-down flexion posture for visual

guidance will activate posterior spinal muscles before the flexion-

relaxation phenomenon (40, 280) to help the unstable spine (47,

48) by tensile eccentric contraction (281) to improve stability and

balance (282, 283), analogous to cable grips or the counterweight

systems of elevators and ski lifts. This can help free up the front

abdominal muscles (40) for easier ventilation. Although

alternating leg movement in human gait seems like passive

motion, the swing phase is achieved by complex motor control

to perfect dynamic synchronization and to utilize elastic restoring

torques (284) which must integrate accurate prediction of passive

tension. One reason for the benefits of barefoot walking over

shod walking (285–288) on uneven natural ground can be from

leaning forward to locate visual targets in time. Subsequent

measured lifting and controlled landing of the swing leg mass

occur for proper weight loading and dynamic synchronization.

This differs from flat, paved surfaces with limited visual guidance

where the psoas muscles get immediately inactivated after the

initial swing phase (38) instead of stabilizing the spine (39).

Enhanced balance via barefoot walking (285–287) may positively

affect the activation of postural muscles (289, 290) to lessen

anxiety-related symptoms (291, 292) as anxiety is linked to a

deficit in balance (293, 294) and poor balance suppresses cardiac

function and activates sympathetic tone significantly (295, 296).

Improper weight bearing on pavement can affect the venous

return and circulating volume negatively and may contribute to

anxiety in our society that is plagued by prolonged sitting and

excessive near-point activities. On the other hand, playful aerobic

activities in natural environments would make it hard to use

existing motor patterns habitually built on pavements and might

promote sensory integration for better motor outcomes (297) to

improve anxiety (298–301). A similar principle may apply to the

benefit of animal-assisted therapy (302, 303). If exposure to the

natural environment and playful aerobic activity cannot be

applied enough, obsessive thinking as a maladaptive daydreaming

and compulsive behavior as a predictable activity may help ease

tension and torso stiffness for the moment.

Severe emotional experience during a panic attack can pose a

serious risk of cardiovascular events in susceptible individuals
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(coronary heart disease, Takotsubo cardiomyopathy, or sudden

cardiac arrest) (3, 304–306) in young and old (307, 308) with

uncontrolled anxiety disorder. Self-harming behaviors often

associated with OCD (4, 5, 309), if not suicidal, can be seen as

desperate efforts to restore circulation through a highly attentive,

precise, and predictable action on oneself at the moment with

subsequent physical withdrawal from the painful outcome. This

may be more common in people with underlying prediction and

coordination errors (310, 311). If our brain is optimized for the

perception of the immediate future through predictive processing

and spontaneous activity (90–92), frequent panic events caused

by ongoing anxiety might influence the brain to predict and

prepare for one’s death which could be interpreted as suicidal

ideation and attempts (6, 7, 312, 313) which are not explained by

depression (6, 7). Suicidal ideation and an attempt would be

more common in people with underlying prediction errors (314,

315). It is possible that suicidal ideation and even planning may

function as maladaptive daydreaming to ease ventilation and

perfusion if panic symptoms are not well controlled. Low dose

opioid and vagal nerve stimulation are known to bring a

prolonged expiration and an increased tidal volume (316, 317).

Increased venous return from the splanchnic and non-splanchnic

vascular beds (31) and improved cardiovascular function (29) are

expected by enhanced respiratory pump (125, 126) with lowered

intrathoracic pressure and may contribute to lowered suicidality

(318–320). Considering the hypofunctioning prefrontal cortex

during hyperadrenergic crisis (210), more prompt approaches

may be necessary in the treatment of severe panic disorders over

the step-wise approach to prevent irreversible outcomes from

poor cognitive judgements.
11 Conclusion

The brain cannot function well if the heart pauses, and the

heart cannot function well if venous return pauses. A proper

amount of aerobic activity (60) coupled with quiet breathing (61,

321) is important for venous return and circulation to organs

including the brain and the heart. The physical manifestations of

feeling anxious are related to circulatory compromise and

muscular stiffness which will also impede circulation by affecting

skeletal muscle pump and respiratory muscle pump negatively.

The reason that various methods including physical activity (12)

and quiet breathing (321, 322) ease anxiety-related symptoms

seems to be by enhancement of central circulation.

However, the contribution of abdominal muscles as an

auxiliary heart (32, 33) can be significantly constrained if proper

control of torso muscles is limited by various causes,

intrinsically, extrinsically, or both. Considering the unique roles

of the human diaphragm in posture control and ventilation,

accurate prediction of sensory-motor outcomes and proper

allocation of attention seem essential for the complex obligate

bipedal activity. The predictive role of the brain in perception

will be critical to overcome the significant sensory-motor delay.

Through the complex learning process and pattern development,

we humans can perform various motor activities (from walking
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to complex social and sports activities) efficiently with proper

allocation of attention. Any delay in reaction or improper

allocation of attention can be detrimental. As many conditions

with prediction error present as spectrum disorders, various

graded therapeutic activities can be considered to treat anxiety.

Playful aerobic activity for the skeletal muscle pump and proper

ventilation for the respiratory muscle pump with a biomechanical

approach and behavioral modification need to be considered as

the first line of treatment and prevention of anxiety rather than

adjunctive therapy (12). Our society has reduced playful aerobic

activity dramatically with an increasing emphasis on academic

competition and accomplishment, which inherently involves

excessive static near-point activity and screen time. Playful aerobic

exercise can also provide an important fuel and antioxidant to the

brain via the “lactate shuttle” mechanism. Although our society

promotes competition (which incurs stiff emotions unlike caring

and giving) and exceptionality, exceptionality is often linked to

deficits in social skills with a possibility of resultant

overcompensation in the areas where functional individuals can

make better predictions; some of these individuals might be

labeled as “Gifted” (323–325). Promotion of yielding over

competition seems needed to limit many harms from excessive

anxiety as we feel comfortable when the outcome is predictable

with less competition, like yielding over competing for a lane

change while driving. Rapid increases in anxiety among young

adults (326) and exponential rise in the recorded cases of autism

(327) which is characterized by prediction error and anxiety may

indicate that our society is failing from excessive environmental

change and self-inflicted stress: the society of the only remaining

homo species who might instead be remembered as fossils next to

chairs, pavements, and electronics.
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