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This study aimed to examine the relationship between the maximal lactate
accumulation rate (ċLamax) and sprint performance parameters in male
competitive swimmers. Seventeen male competitive swimmers volunteered to
perform a 20 m maximal front crawl sprint without pushing off the wall from a
floating position. ċLamax was determined by the 20-m sprint time and blood
lactate measured before and after the 20 m sprint. For the sprint performance
parameter, a 50 m time trial with the front crawl swimming stroke was
conducted, and the times taken from 0 to 15 m, 15–25 m, 25–35 m, and
35–45 m were analyzed. A semi-tethered swimming test was conducted to
investigate the load-velocity profile of each swimmer. From the load-velocity
profile, theoretical maximal velocity (V0), maximal load (L0) and relative
maximal load (rL0) were examined. The slope of the load-velocity profile was
also determined. According to the results, ċLamax correlated with 50 m front
crawl performance (r=−.546, p < .05). Moreover, a higher ċLamax was related
to faster 0–35 m section time. Furthermore, ċLamax correlated with L0
(r= .837, p < .01), rL0 (r= .820, p < .01), and load-velocity slope (r= .804,
p < .01). ċLamax is a good indicator of 50 m front crawl performance in male
swimmers, and higher glycolytic power contributes to the faster time at the
beginning of the sprint race. ċLamax could also evaluate the ability of a
swimmer to apply force to the water during high-intensity swimming.
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1 Introduction

Competitive swimming events include different distances, from 50 m to 1,500 m. The

energy required to swim these distances is supplied by the aerobic and anaerobic systems;

the relative contributions of each energy system vary depending on the duration of each

race (1). Therefore, improvements in both energy systems are essential to enhance

swimming performance, and effective monitoring is key to assessing the impact of

training and achieving successful performance (2).
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Several reliable parameters are available to monitor aerobic

capacity in swimmers, including lactate threshold (3, 4), onset of

blood lactate accumulation (5), and critical velocity (4, 6).

Measurement of maximal accumulated oxygen uptake (MAOD)

is widely used to assess anaerobic capacity in sports and is

also used in swimming (7–9). However, MAOD is a time-

consuming procedure to measure, and it may not be a fully

defensible method to determine anaerobic capacity (10).

Therefore, alternative practical methods and indices have been

explored (11, 12).

The maximal lactate accumulation rate (ċLamax) is also an index

to access anaerobic capacity. ċLamax is calculated by dividing the

maximum difference in blood lactate (Bla) before and after a

maximal sprint by the sprint time, which is reportedly a

parameter to evaluate the athlete’s glycolytic power (13). Due to

its applicability in the training setting, ċLamax regained popularity

and was investigated recently in cycling (14, 15), running (16),

and rowing exercises (17). In addition, Quittmann et al. (16)

investigated ċLamax during 100 m sprint running and reported that

ċLamax was significantly correlated with sprint performance

parameters, suggesting that it can be used as a sport-specific field

test. ċLamax reportedly differs between handcycling and cycling

(15) or cycling and running (18) even when investigated in the

same individual, so it has been suggested that ċLamax is an

extremity and movement-specific parameter.

ċLamax has also been investigated in swimming (19). Sperlich

et al. (20) reported that ċLamax increases with high intensity

interval training and decreases with high volume training, and that

ċLamax is sensitive to detecting the change of anaerobic capacity in

swimmers. Studies on the relationship between ċLamax and sprint

performance in swimming have yet to reach consensus. Mavroudi

et al. (21) reported a significant correlation between 50 m sprint

performance and ċLamax which was investigated at that sprint. On

the other hand, Kellar and Wahl (22) reported no significant

correlation between ċLamax assessed by a 20-s sprint test and the

average velocity of a 50 m official race. Thus, it is still being

determined whether ċLamax is a genuinely valid measure that can

assess anaerobic capacity in swimmers.

Mechanical power is one of the factors that determines

maximal swimming velocity (23). Even a semi-tethered

swimming test cannot evaluate pure propulsive power, Gonjo

et al. (24) reported that the index of the load-velocity profile

investigated by semi-tethered swimming can be used to evaluate

sprint swimming performance. Their findings revealed that

theoretical maximal velocity (V0), maximal load (L0), and load-

velocity slope were significantly correlated with the mean velocity

of a 50 m front crawl trial. Given the potential of these indices as

indicators of sprinting ability, understanding the relationship

between ċLamax and these parameters could shed light on

whether pure physiological capacity is related to sprinting ability

in swimming. If glycolytic power is indeed related to sprint

performance parameters, this approach would allow for a more

comprehensive understanding of sprint swimming performance,

combining both mechanical and physiological aspects.

The purpose of the present study was to investigate the

relationship between ċLamax and parameters related to sprint
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performance in male competitive swimmers. The primary

hypothesis of this study was that ċLamax negatively correlates

with 50 m race time. Secondly, we hypothesized that ċLamax

positively correlates with parameters related to sprint

performance (such as V0 and L0) estimated by the load-velocity

profile. By addressing these research objectives, we provide

valuable insights into the use of ċLamax as an index of anaerobic

capacity in competitive swimming.
2 Materials and methods

2.1 Participants

Seventeen well-trained male competitive swimmers

participated in this study. The personal characteristics of the

swimmers are shown in Table 1. Four swimmers specialized in

short-distance front crawl, five in middle-distance front crawl,

five in butterfly, two in backstroke, and one in individual medley.

All swimmers (who were from the same university swimming

team) had engaged in competitive swimming for over 6 years

and competed at national-level championships. The World

Aquatics point scoring of the swimmers’ personal best records of

their major event was 751.8 ± 68.1 point. The participants were

made fully aware of the risks, benefits, and stress factors of the

study and gave their written consent to participate. In addition,

the participants were instructed to refrain from caffeine intake

within 12 h, and water was only allowed within 2 h of testing.

This study received the formal approval of the Research Ethics

Committee of the authors’ institution (No. 024-23) in

compliance with the Declaration of Helsinki.
2.2 Experimental procedure

All experiments were scheduled during the general and

preparation period of the training season (2) and conducted in

an indoor 50 m pool. Participants were instructed to conduct a

self-selected warm-up mimicking their competition routine. This

was followed by 5 min of passive rest while seated. The duration

of the rest period was in accordance with previous research (15,

17, 18). After the passive rest, the participants performed a 20 m

all-out front crawl sprint swim without pushing off the wall to

evaluate ċLamax. In this trial, the participants were instructed to

accelerate as fast as possible from a floating position at the 5 m

point until they passed the 25 m point. Thereafter, a 50 m time

trial and semi-tethered swimming test with a front crawl were

conducted to investigate the sprint performance parameters. All

experiments were separately conducted with minimum interval of

16 h and performed within one week.
2.3 ċLamax investigation

Olbrecht (19) recommends that ċLamax should be obtained and

measured during a maximal sprint exercise of 10–15 s. In
frontiersin.org
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TABLE 1 Participants’ physical characteristics, major swimming style and performance level. The World Aquatics point scoring of the swimmers’ personal
best records of their major event is demonstrated.

Subject Body hieght Body mass Age Major
swimming style

World aquatics
point

(cm) (kg) (yrs)
A 178.0 85.0 24 Butterfly 840

B 175.0 69.0 22 Front crawl (Short) 632

C 176.0 78.0 21 Backstroke 843

D 175.0 72.0 21 Front crawl (Short) 791

E 169.0 73.0 20 Butterfly 737

F 170.0 67.0 21 Butterfly 720

G 178.0 77.0 19 Front crawl (Short) 787

H 172.0 67.0 19 Front crawl (Short) 655

I 172.0 70.0 18 Butterfly 727

J 178.0 74.0 19 Backstroke 739

K 165.0 64.0 22 Front crawl (Middle) 601

L 170.0 69.0 20 Front crawl (Middle) 789

M 173.0 71.0 19 Front crawl (Middle) 776

N 177.0 73.0 19 Front crawl (Middle) 785

O 173.0 67.0 19 Front crawl (Middle) 797

P 175.0 69.0 18 Butterfly 787

Q 170.0 70.0 18 Individual Medlay 775

Ave 173.3 71.5 19.9 751.8

SD 3.7 5.0 1.7 68.1
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swimming, Mavroudi et al. (21) reported that ċLamax values

obtained in a 25 m all-out swim were significantly higher than

those obtained in 35 m and 50 m all-out swims, shorter duration

is appropriate for investigating ċLamax. Instead of a 25 m all-out

swim, we adopted a 20 m sprint swim of front crawl starting

from a floating position at the 5 m mark. As it is reported that

ċLamax is a limb and movement specific parameter (15, 18), this

procedure eliminates the movement of the block start or wall

push and the underwater phase and make it possible to execute

the sprint exercise with front crawl swimming movement only.

Our preliminary investigation confirmed that the duration of this

swim sprint can last approximately 11 s, which falls within the

range recommended by Olbrecht (19). ċLamax was determined

using Equation 1 (13, 19, 25):

_cLamax ¼ (Lamax–Lapre)=(tsprint–talac) (1)

where Lamax is the highest Bla after the 20 m sprint, Lapre is the Bla

measured during the passive rest before the sprint, tsprint is the time

to complete the 20 m sprint, and talac is the estimated time when

energy is delivered by the alactic system.

Bla was measured using a portable analyzer (Lactate Pro2, LT-

1730, Arkray, Kyoto, Japan). Considering the reliability and

accuracy of the measurement device (26), each Bla was examined

using two analyzers, and then the average value was used for

analysis. Immediately after completing the 20 m sprint swim,

participants were seated on the pool deck. An examiner started a

stopwatch at the moment swimmer completed the 20 m sprint.

Blood was sampled from the fingertips at precise one-minute

intervals. The sampling and measurement process continued

until the mean Bla value was lower than the previous

measurement, indicating that the peak had been reached and
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passed. The timing of the blood sampling was consistent for all

participants, ensuring standardized data collection across the

study. The highest value was taken as Lamax, and the time to

reach Lamax after the sprint (tLamax) was also examined. Two

digital cameras (GC-IJ20B; Sports Sensing, Fukuoka, Japan) were

set at 5 m and 25 m points to capture the timing of the passage

of an LED marker attached to the participant’s head through 5 m

and 25 m marks of the pool. Their passing times and tsprint were

analyzed using 2-D motion analysis software (Frame Dias V,

Q’sfix, Tokyo, Japan). Camera synchronization was achieved

through an LED system (LED synchronizer, Q’sfix). talac is the

period at the beginning of exercise for which no lactate

production is assumed. In cycling exercise, talac can be

determined as the time when power output decreased by 3.5%

from peak power output directly measured during the maximal

sprint (27, 28). However, as it is difficult to measure the power

output during swimming exercise, a fixed standard value of 3 s

was used for talac in this study according to previous research

(13, 29). Eleven participants were retested with the same

procedure within 4 days to confirm the reliability of the

measurement data.
2.4 Sprint performance parameters

2.4.1 50 m maximal trial
The 50 m time trial required participants to swim front crawl

with maximum effort for the sprint performance parameter.

After a self-selected warm-up on land and in water, the trial was

performed starting from the starting block. The maximal trial

was conducted by each swimmer at the center lane of the pool to

avoid pacing strategies. The 50 m time trial was recorded by

panning one digital video camera (60 fps, GC-IJ20B; Sports
frontiersin.org
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FIGURE 1

Testing setting for semi-tethered swimming test.

Sengoku et al. 10.3389/fspor.2024.1483659
Sensing) from the second floor of the indoor pool. The timing

when the swimmer’s head passed the 15, 25, 35, and 45 m point,

which was marked on both side of the lane ropes, and the

timing swimmer’s hand touched the wall after the starting signal

was investigated by feeding the video recording frame by frame

at a frame rate of 60 fps. This procedure was repeated three

times by the same researcher, and the total time to complete

50 m swim (t50) and the section time of 0–15 m, 15–25 m, 25–

35 m, and 35–45 m distances were analyzed.
2.4.2 Load-velocity profile
To obtain the load-velocity profile of each participant, a semi-

tethered swimming test was performed using a portable robotic

resistance device “1080 sprint” (1080 Motion, Lidingö, Sweden).

The device was positioned 0.5 m above the water surface on the

starting side of the pool (Figure 1). Participants were instructed

to wear a swim belt for resisted sprint training around their

pelvis (Long Belt Slider S11875, StrechCordz, Bloomington, IL,

USA), which was connected to the cord of the resistance device.

Each sprint began with a push-off start in the water, and the

participants were instructed to start swimming before reaching

the 5 m mark. After the warm-up, participants had to perform

five 25 m front crawl sprints with maximal effort. There was a

rest interval of more than 6 min between each sprint. The

instantaneous time-swim velocity data were collected at 333 Hz.

The mean velocity during the three stroke cycles between 10 and

20 m section was analyzed using the 1080 sprint software. The

velocity measurement cord was not aligned with the swimming

direction because the measurement device was placed 0.5 m

above the water surface. As a result, the measured velocity was

adjusted to the horizontal velocity based on Gonjo et al. (30).

The load-velocity profile of the sprint swim was calculated. The

added loads for each sprint were 1, 3, 5, 7, and 9 kg (investigated in

ascending order). Olstad et al. (31) reported that 9 kg load imposed

more than a 50% velocity reduction compared to a 1 kg load trial in

swimmers. This aligns with the suggestion by Cross et al. (32) that

a 50% velocity decrease is appropriate for multiple trial sprint
Frontiers in Sports and Active Living 04
testing with external loads. Based on these findings, Gonjo et al.

(24) proposed that an absolute load with a maximum of 9 kg is

adequate for a semi-tethered swimming test. While Olstad et al.

(31) indicated that using five trials (i.e., 1, 3, 5, 7, and 9 kg) in

semi-tethered front crawl swimming does not significantly

change the outcomes of load-velocity profiling compared to three

trials (1, 5, and 9 kg), we opted the five-load protocol to obtain a

more precise load-velocity relationship. By examining the linear

regression line of the five load-velocity plots (33), the theoretical

maximal velocity (V0) and maximal load (L0) were investigated.

L0 was also expressed as a percentage of body weight (rL0). The

slope of the load-velocity relationship was also determined (31).

The load-velocity slope indicates the resistive force and is

reportedly correlated with active drag in front crawl swimming.

A steeper slope indicates lower active drag (34). Figure 2 shows

an example of the load-velocity profile measured for the sprint

performance parameters.
2.5 Statistical analysis

All data are reported as mean ± SD and 95% confidence

intervals was calculated. Normal distribution of variables was

assessed using the Shapiro–Wilk test. The reliability of ċLamax

(measured twice in 11 swimmers) was analyzed using the intra-

class correlation coefficient (ICC). ICC was classified as

“excellent” (ICC≥ 0.90), “good” (0.90 > ICC≥ 0.75), “moderate”

(0.75 > ICC≥ 0.50), or “poor” (ICC < 0.50) (35). The

relationships between ċLamax and sprint performance parameters

were investigated using Pearson’s correlation coefficient for

normally distributed data and Spearman’s rank correlation

coefficient for non-normally distributed data. Correlation

threshold values of 0.1, 0.3, 0.5, 0.7, and 0.9 were interpreted as

small, moderate, large, very large, and extremely large

correlations, respectively (36). The power of the correlation test

was also computed. The analysis was performed with SPSS
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https://doi.org/10.3389/fspor.2024.1483659
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 2

An example of the load-velocity profile measured from one swimmer in this study.

TABLE 2 Ċlamax and its correlation with measured parameters.

Mean ± SD 95% confidence
interval

Correlation between
ċLamax

Power of
correlation

ċLamax (mmol/L/s) 0.63 ± 0.14 0.56∼0.70
50 m time trail 0–15 m (s) 5.93 ± 0.27 5.80∼6.05 -.627** .817

15–25 m (s) 5.18 ± 0.18 5.10∼5.26 -.618** .796

25–35 m (s) 5.31 ± 0.16 5.24∼5.39 -.604* .771

35–45 m (s) 5.41 ± 0.14 5.34∼5.48 -.465 .490

total
time

(s) 24.58 ± 0.73 24.23∼24.93 -.546* .657

Load-velocity
profile

V0 (m/s) 1.81 ± 0.09 1.77∼1.86 .224 .139

L0 (kg) 18.56 ± 3.83 16.74∼20.38 .837** .996

rL0 (%) 25.94 ± 4.79 23.66∼28.21 .820** .993

slope (−m/s/kg) −0.10 ± 0.02 −0.11 to −0.09 .804** .989

*p < .05, **p < .01.

Sengoku et al. 10.3389/fspor.2024.1483659
software (version 29, IBM, Tokyo, Japan), and the statistical

significance level was set at 5%.
3 Results

The measured parameters are shown in Table 2. The average

time of the 20 m sprint for the ċLamax measurement was 11.5 ±

0.4 s, Lapre was 1.6 ± 0.4 mmol/L, Lamax was 6.8 ± 1.2 mmol/L,

tLamax was 1.8 ± 0.8 min, and ċLamax was 0.63 ± 0.14 mmol/L/s.

ICC of the twice-measured ċLamax was 0.913 (95% confidence

interval: 0.724–0.976, p < .01). ċLamax showed significant

correlation with t50 (r =−.546, p < .05) and the section time of

0–15 m (r =−.627, p < .01), 15–25 m (r =−.618, p < .01), 25–35 m
(r =−.604, p < .05) of the trial. L0 (r = .837, p < .01), rL0 (r = .820,

p < .01), and the slope (r = .804, p < .01) obtained from the load-

velocity profile also significantly correlated with ċLamax.
Frontiers in Sports and Active Living 05
4 Discussion

The present study explored the relationship between ċLamax and

factors associated with sprint performance in male competitive

swimmers. The main findings of this study were that ċLamax is

significantly correlated with 50 m front crawl performance in male

swimmers and that a higher glycolytic power contributes to a faster

time at the beginning of the sprint race. We were also able to clarify

that ċLamax is significantly related to the theoretical maximal load a

swimmer can pull with front crawl swimming.

The time taken for the 20 m sprint to measure ċLamax was 11.5 ±

0.4 s, which falls within the recommended range of 10–15 s for this

parameter (19). In a study by Langley et al. (37), it was found that

the 10-s sprint duration produced the highest ċLamax value when

compared to the 15-s and 30-s sprints in cycling tests. Mavroudi

et al. (21) also reported higher ċLamax values when investigating

shorter sprints in swimming. Additionally, Quittmann et al. (16)
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suggested that investigating ċLamax based on a fixed distance instead of

a fixed duration protocol may be more appropriate in field-based

settings if the duration variation is minimal. Overall, the 20 m sprint

utilized in this study was appropriate and applicable for assessing a

swimmer’s highest glycolytic power. The ċLamax value calculated in

this study was 0.63 ± 0.14 mmol/L/s, which is similar to the values

reported by Sperlich et al. (20) and Mavroudi et al. (21) of 0.64 ±

0.29 and 0.75 ± 0.18 mmol/L/s, respectively. However, in research

with young female swimmers, Kellar and Wahl (22) found a lower

value of 0.38 ± 0.11 mmol/L/s in their research with young female

swimmers. It is worth noting that although ċLamax was assessed

using different methods in these studies, it seems that the value is

lower in females compared to males, possibly due to differences in

muscle mass (38), which could affect lactate production during

exercise (39). Generally, female swimmers tend to have longer

completion times for a 20 m sprint compared to male swimmers.

Additionally, if lactate production is lower in females, ċLamax

values will tend to be lower due to the formula used to calculate this

parameter (Equation 1). These factors suggest that the relationship

between ċLamax and performance may be gender-specific.

The reliability of the ċLamax was “excellent” when measured

twice within 4 days (ICC = 0.913). This ICC value was slightly

higher than those reported in previous investigations on cycling

[ICC = 0.904, (40)], running [ICC = 0.907, (16)], and rowing

[ICC = 0.85, (17)]. The accuracy and reliability of the Bla

measurement device used in this study were evaluated as good

according to the methods of Bonaventura et al. (26). It is worth

noting that given the small volume of sampled blood (0.3 µl), we

took the average Bla value assessed by the two devices to ensure

a stable value. The measurement procedure used in this study

clarified that ċLamax could be investigated with high reliability.

Mavroudi et al. (21) studied eight male and four female swimmers

and found that a 50 m sprint trial significantly correlated with ċLamax

measured during that swim; however, this result may be affected

by including both genders. In the present study of male-only

measurements and a 20 m sprint, we also found a significant

correlation between ċLamax and t50. On the other hand, Kellar and

Wahl (22) investigated the relationship between ċLamax and 50 m

swim race performance but found no significant relationship. The

differences in the measurement protocol may cause different results.

Kellar and Wahl (22) investigated ċLamax from a 20-s sprint test in

which the duration is longer than the highest value reportedly

observed. The sprint duration should be shorter to assess ċLamax

related to 50 m performance. Moreover, our measurement setting

was defined by the fact that the short sprint was executed from a

floating position. This execution eliminates the movement of the

block start or wall push and the underwater phase, which is

completely different from the regular swimming motion. Thus, this

indicated that accurately assessing ċLamax could be achieved by

excluding factors other than swimming motion, allowing for the

practical evaluation of glycolytic power during swimming. As a

result, a 20 m sprint swim solely relying on the swimming motion is

an effective way to measure ċLamax, making it an important

parameter to monitor during training.

When examining the relationship between ċLamax and each

section time of the 50 m trial, large correlations were observed at the
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0–15 m, 15–25 m, and 25–35 m section times. The contribution

ratio of aerobic and anaerobic metabolism is reportedly 30:70 in a

50 m race (1). Therefore, a higher glycolytic power is related to a

faster time up to 35 m of the race, while aerobic capacity may be

related to the later performance. Therefore, the present study

confirmed that ċLamax is a good performance indicator in the first

half of a 50 m front crawl swim, suggesting that glycolytic power is

crucial for 50 m sprint performance, and swimmers aiming to start

fast in a 50 m race should focus on improving ċLamax. Research has

shown varied effects of different training modalities on ċLamax.

Sperlich et al. (20) reported an increase in ċLamax following high-

intensity interval training in junior swimmers. Similarly, Nitzsche

et al. (41) observed an increase in ċLamax with resistance training in

male strength-trained volunteers. However, contrasting results were

found by Hommel et al. (14), who reported a decrease in ċLamax

after a six-week sprint interval cycling training program. These

conflicting findings underscore the need for further research on

training interventions specifically aimed at improving glycolytic

power in swimmers.

ċLamax correlated with L0 and rL0, indicating the connection

between glycolytic power and the ability to exert force in the

water. As Maglischo (2) highlighted, the limiting factors of a

50 m race performance are the stroke technique, the rate of

anaerobic metabolism, and the amount of creatine phosphate in

the working muscle fibers of a swimmer. Therefore, ċLamax could

evaluate the first two factors, making it a valuable parameter for

monitoring the swimmer’s sprint performance capacity

throughout the training season. Coaches and athletes can use

ċLamax and aerobic capacity parameter to plan and prescribe

training for performance improvement and to avoid

nonfunctional overreaching (19, 29). Our study also proposed a

practical procedure to evaluate ċLamax in swimming.

Avery large correlationwas found between ċLamax andL0, rL0, and

the slope calculated from the load-velocity profile. L0 represents the

theoretical maximal load that swimmers can exert on the water (31).

As active drag is approximately proportional to the cube of

swimming velocity (42), swimmers need to overcome a large

amount of drag during high-velocity swimming. Consequently, a

high L0 is one of the essential abilities for sprinters. rL0 correlates

significantly with 50 m front crawl performance (24). Therefore, the

present results indicate that the pure capacity to produce power at a

higher rate is related to the higher capacity to apply force to the

water, which could be crucial for achieving high sprinting

performance. Moreover, the significant correlation between ċLamax

and the load–velocity slope may be affected by the significant

relationship between ċLamax and L0. Based on our findings, V0 did

not correlate with ċLamax. As V0 represents the theoretical maximal

velocity, it may be closely associated with the contribution of the

alactic energy system. Furthermore, Gonjo et al. (24) suggested that

V0 should not be used to predict the absolute free-swimming speed

during a race due to the observed systematic bias between the

average swimming velocity of the 50 m front crawl trial and V0,

which may have affected our results.

Beyond evaluating an athlete’s glycolytic power, ċLamax has

potential applications in predicting individual pacing

strategies. Quittmann et al. (43) suggested that this parameter
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could be used to predict pacing strategies in 5,000 m running, a

concept that may be applicable to sprint swimming races.

Swimmers with high ċLamax values are likely to start races

quickly and apply greater force to the water. For these athletes,

coaches should focus on strategies that allow for a fast start

while minimizing effort, to prevent fatigue at the end of the

race. Conversely, swimmers with lower ċLamax values should

avoid an intense burst immediately after the breakout. Instead,

they should focus on gradually increasing their effort towards

the end of the race. By tailoring race strategies to individual

ċLamax profiles, coaches and swimmers can optimize

performance and energy distribution throughout the race.

Comparing the relationship between ċLamax and race

performance across multiple competitions may provide

valuable insights into whether success or failure in a race is

primarily due to physiological or technical factors. This

approach could help coaches and athletes differentiate between

improvements in anaerobic capacity and enhancements in

swimming technique or race strategy. Furthermore, Morais

et al. (44) reported that swimmer with faster critical speed was

more likely to perform better in middle- or long-distance

events than in sprints. By examining critical speed together, it

may provide more detailed information to coaches and

swimmers including evaluation of aerobic capacity.

Longitudinal studies are warranted to fully clarify the practical

applicability of ċLamax in real-world competitive settings. Such

research could reveal how this parameter changes over time

with training and how these changes correlate with

performance improvements. Additionally, it could help

establish ċLamax as a reliable tool for long-term athlete

monitoring and performance prediction.

A limitation of the present study is that a constant value of 3 s

was used for talac to calculate ċLamax. Yang et al. (45) reported that

insights into the inter-individual differences in energy and

glycolytic metabolism would be altered by using different talac
values. An alternative procedure to assess talac is being explored

(46). The actual time of talac likely varies among participants,

which may influence the precision of ċLamax calculations. If

novel approaches to measure power output during swimming can

be developed, it would enable a more accurate evaluation of

ċLamax. Such advancements in measurement techniques could

potentially affect the results of the present study and provide

more precise insights into the relationship between ċLamax and

swimming performance. However, it still seems complicated to

establish a rational method to assess talac during swimming

exercise; using a constant value may remain a practical procedure

to investigate ċLamax in this sport. Second, Affonso et al. (47)

reported an extremely high Bla level of 12.1–17.4 mmol/L after a

5-s short sprint in an elite front crawl swimmer (World Aquatics

point = 985). The high ċLamax in this swimmer suggests that

higher glycolytic power may be essential for achieving high

sprint performance. However, it should be noted that this

relationship may have been observed due to the swimmers

having identical mechanical efficiencies. Toussaint (48) examined

the propelling efficiency of well-trained competitive swimmers

and triathletes, reporting values of 61 ± 6% for swimmers and
Frontiers in Sports and Active Living 07
44 ± 3% for triathletes. This suggests that, even if two swimmers

exert the same glycolytic power, a swimmer with lower

mechanical efficiency will be slower. It is essential to consider the

implications of our study when applied to swimmers at different

performance levels. Several methods exist for investigating

propulsive efficiency during sprint swimming, including the

MAD (Measuring Active Drag) system (48) and pressure

distribution analysis (49). By combining these propulsive

efficiency evaluations with ċLamax assessments, it would be

possible to develop a more comprehensive profile of a swimmer’s

characteristics. This integrated approach could provide valuable

information for planning future training strategies. Specifically, it

would allow coaches and athletes to determine whether to focus

on improving stroke mechanics or enhancing anaerobic power,

based on individual strengths and weaknesses identified through

these complementary assessments. Such a multifaceted evaluation

strategy could lead to more targeted and effective training

interventions, potentially optimizing performance improvements

in sprint swimming.
5 Conclusion

The testing procedure of ċLamax used in the present study was

found to be suitable for training settings and to have high

reliability. The study clarified that ċLamax is a parameter associated

with the 50 m front crawl performance in male swimmers, and a

higher glycolytic power leads to faster times at the beginning of a

sprint race. It also indicated that ċLamax can assess a swimmer’s

ability to apply force to the water during high-intensity swimming.

Therefore, ċLamax is a good indicator of front crawl sprint

performance for well-trained male swimmers.
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