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Advanced quantitative magnetic
resonance imaging of lower
extremity muscle microtrauma
after marathon: a mini review
Yu Cheng and Xiaokai Li*

School of Sports and Health, Shanghai University of Sport, Shanghai, China
This article reviews the existing literature and outlines recent advances in
quantitative Magnetic Resonance Imaging (MRI) techniques for the assessment
of lower extremity muscle microtrauma following a marathon. Single-modality
quantitative MRI techniques include T2 mapping to assess the dynamics of
muscle inflammatory edema and variability at the site of injury, Diffusion
Tensor Imaging (DTI) to detect subclinical changes in muscle injury, Intravoxel
Incoherent Motion (IVIM) imaging to provide simultaneous information on
perfusion and diffusion in muscle tissue without the need for intravenous
contrast, and Magnetic Resonance Spectroscopy (MRS) to noninvasively detect
intramyocellular lipid (IMCL) content in muscle before and after marathon
exercise to explain the use of fatty acids as an energy source in skeletal
muscle during long-distance running. As well as Chemical Exchange
Saturation Transfer (CEST) is particularly suitable for detecting changes in free
creatine, pH values and lactate concentrations in muscles before and after
exercise, providing a more detailed picture of muscle physiology and
chemistry. These metabolic MRI methods enhance the understanding of
biochemical alterations occurring in muscles pre- and post-exercise.
Multimodal techniques combine different modalities to provide a
comprehensive evaluation of muscle structural and functional changes. These
advanced techniques aim to better assess microtrauma and guide clinical
treatment, though further validation with larger studies is needed to establish
their potential over traditional qualitative methods.
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1 Introduction

Marathon is a popular pastime and sporting activity, with over 30 million people

participating annually across the globe, many of whom are novice runners (1).

However, prolonged running (e.g., full marathons, mountain ultra-marathons) tends

to lead to organism fatigue and induces motor microtrauma in the muscles of the

lower limbs, with common microstructural changes including cellular swelling, loss

of membrane integrity, inflammation and fiber tearing (2–5). Although traditional

imaging techniques such as Ultrasonography and x-ray offer some advantages in the

assessment of sports injuries, with Ultrasonography allowing real-time visualization of

soft tissues and x-rays being widely used in skeletal assessment, they have limitations in

detecting deeper microstructural changes in muscle and early injury. In contrast,

Quantitative Magnetic Resonance Imaging (QMRI) provides higher soft tissue contrast
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and sensitivity, enabling the assessment of microstructural

physiological and biochemical changes in lower limb muscle

injuries, which are often not detectable by conventional imaging

techniques (6, 7). Whereas detecting changes at the microscopic

molecular level in lower limb muscles may be useful for injury

prevention, injury assessment in athletes or active individuals,

while minimizing injury risk and rehabilitation time (8, 9).

Currently, researchers (10–12) are using advanced quantitative

imaging techniques to characterize ultramicro changes, monitor

recovery, and estimate return-to-exercise time in lower extremity

muscle kinesiology injuries in order to avoid gross anatomical

damage due to repetitive microtrauma. Therefore, this article

focuses on outlining recent advances in advanced quantitative

magnetic resonance imaging techniques in assessing lower

extremity muscle microtrauma after marathon exercise and

directions for future research.
2 Materials and methods

A comprehensive literature search was conducted using

computerized systems in PubMed, Google Scholar, and China

National Knowledge Infrastructure (CNKI) databases. The search

utilized specific keywords pertinent to the research questions, as

outlined in Table 1. This search encompassed both Chinese and

English literature published from 1998 to 2024. Initially, a total

of 5,862 articles were identified.

After screening the titles and abstracts, 5,712 articles were

deemed irrelevant. The remaining articles underwent a full-text

review, which resulted in the inclusion of 21 articles for analysis1.

The inclusion criteria were defined as follows: studies must focus

on marathon-related muscle injuries and utilize quantitative

magnetic resonance imaging techniques. Studies that did not

meet these criteria or were not published in peer-reviewed

journals were excluded.
3 Results and discussion

3.1 General findings

In studies assessing lower extremity muscle microtrauma

after marathon exercise, quantitative MRI techniques have

now evolved from single-modality applications to advanced

multimodal assessment methods. Single-modality quantitative

MRI techniques include T2 mapping, Diffusion-weighted MRI

(dMRI), Magnetic Resonance Spectroscopy (MRS) and Chemical

Exchange Saturation Transfer (CEST). Multi-modal quantitative

MRI techniques include combining information from different

modalities and single-scan multicontrast imaging methods

(Synthetic MRI, SyMRI). Their respective advantages,
1The included articles are marked by an asterisk (*) in the reference list.
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disadvantages, and potential clinical applications are summarized

in Table 2.
3.2 Single-modality quantitative MRI
techniques

3.2.1 T2 mapping
Magnetic resonance T2 mapping is a commonly used method

to quantify motor physiologic impairments in lower extremity

muscles. The technique obtains multiple T2-weighted images

(T2WI) using a series of different echo times (TE) and fitting

them with mono-exponential or multi-exponential models to

obtain T2 values, and also generates pseudo-color maps for a

more objective assessment of the T2 relaxation time of muscle

tissue (13). T2 relaxation time is highly sensitive to changes in

the overall water content of muscle tissue and to intra- and

extracellular water redistribution (14–16). Under normal

conditions, T2 values are low due to the orderly arrangement of

collagen fibers and the structural integrity of cell membranes in

muscle. When the muscle underwent intense exercise, the water

content and freedom of skeletal muscle cells increased, resulting

in the extension of T2 value. This change reflects microscopic

changes in muscle tissue that may occur as a result of

pathological conditions such as inflammation and edema (11, 17).

In two recent studies (18, 19) the dynamics of T2 values in the

hamstring muscle before and after marathon exercise were

quantified by the T2 mapping technique; the results showed a

significant prolongation of the muscle’s T2 values after exercise

compared with those before exercise, suggesting that marathon

running may induce inflammatory edema in the hamstring

muscle. In another study (10), T2 values of foot muscles before

and after 22 college students participated in a full marathon were

also analyzed using the T2 mapping technique; the results

showed that the T2 values of all extrinsic and some intrinsic foot

muscles (plantar flexors) were significantly elevated on day 1

after the race compared to the pre-race period, and that the T2

values were gradually restored to the baseline level by day 8 after

the race; moreover, changes in the T2 values of extrinsic foot. In

addition, the changes in T2 values of external muscles of the foot

(flexor digitorum longus and flexor pollicis longus) between pre-

competition and post-competition day 1 were directly related to

the corresponding changes in the arch height ratio. This

indicates that T2 mapping can accurately reflect the differences

in foot muscle injuries caused by full marathon, and the changes

in T2 values are reversible, suggesting that micro-injuries of foot

muscles can be recovered. Therefore, T2 mapping can be used to

quantitatively assess the changes and differences of lower limb

muscle inflammatory edema caused by marathon exercise, and

may be used to estimate the time to resume marathon

participation and the risk of re-injury.

3.2.2 dMRI
dMRI is an imaging technique that reflects microstructural

changes by detecting the diffusion properties of water molecules

within tissues. It holds significant potential for application in
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TABLE 1 Literature search keywords.

Concepts (AND) Magnetic resonance imaging Marathon Muscle Microtrauma
Keywords (OR) Magnetic resonance imaging Marathon running Muscles Wounds and injuries

Muscle Injury

Microtrauma

MRI Marathon Muscle, skeletal Microinjury

Skeletal muscle Damage

MicrodamageQuantitative magnetic resonance imaging

QMRI

TABLE 2 Strengths, limitations and clinical potential of different quantitative MRI techniques in the assessment of lower limb muscle injuries after
marathon running.

Technique Strengths Limitations Potential applications
T2 mapping Highly sensitive to changes in overall tissue water

content and to intra- and extracellular water
redistribution

Lack of standardization, e.g., establishment
of normal values for T2 in muscle tissue,
image acquisition and analysis processes

Assessing the dynamics of muscle inflammatory
edema and difference in site of injury

Estimated time for individuals to return to play and
risk of re-injuryCan be applied to conventional MRI equipment

DTI Observation and tracking of fiber bundle
orientation and microstructure within the muscle

Difficulty balancing signal-to-noise ratio,
resolution and acceptable scan time

Fiber bundle length, pinnation angle, and curvature
can be calculated algorithmically to reflect
biomechanical properties to a certain extentDetection of subclinical changes in lower limb

muscles after long-distance running, e.g., minor
tears in muscle fibers, abnormal diffusion of water
molecules

Lack of multi-center comparisons
Assessment of subclinical microinjuries in lower limb
muscles induced by different types of marathon
exercise

IVIM No need for intravenous contrast The effect of marathon exercise on muscle
microcirculatory perfusion is unclear

IVIM, based on multiband acceleration technology,
greatly reduces scanning time and is expected to be
applied in routine clinical monitoring

Also provides information on perfusion and
diffusion in tissues Long scanning time

MRS Non-invasive detection of intramyocellular lipid
content in muscle, which may have a U-shaped
relationship with marathon running intensity

High requirements for spatial homogeneity
of the static magnetic field, hardware
stability, and scanning technology

Adjustment of exercise or rehabilitation programs
based on muscle metabolism to optimize treatment
results

Selectable CEST technology

Multi-modal MRI
techniques

Comprehensive information on muscle structure
and function can be provided by combining
information from different modalities or applying
SyMRI techniques

Combining different modal imaging
techniques requires longer scanning times

Multiple sets of quantitative parameters can
comprehensively detect microscopic changes in
muscles before and after exercise, accurately reflecting
the degree of injury and monitoring the recovery
process
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sports medicine, particularly in the assessment of muscle injuries

related to marathon running. dMRI encompasses various

imaging modalities, with this paper focusing on Diffusion Tensor

Imaging (DTI) and Intravoxel Incoherent Motion Imaging

(IVIM), discussing in detail their application in the evaluation of

lower limb muscle injuries following marathon exercise.

3.2.2.1 DTI
DTI is based on the stochastic Brownian motion of water molecules

in living tissues, and a diffusion-sensitive gradient field is applied in

multiple directions to quantify the anisotropy of water molecule

diffusion, and to observe and track the orientation of fiber

bundles and the microstructure within the muscles of the lower

extremities. Under normal conditions, the diffusive motion of

water molecules in tissues is blocked by intact cell membranes,

allowing water molecules to move in the direction of the long

axis of the muscle fibers, and the muscle fibers are aligned in an

orderly fashion (12). After marathon running, lower limb

muscles may show subclinical changes (8), such as minor tears

in muscle fibers and disruption of cell membrane integrity,

leading to enhanced free diffusion of water molecules and
Frontiers in Sports and Active Living 03
increased free water content between muscle fibers. Subclinical

changes of muscle fibers that could not be detected by

conventional T2WI sequences can be demonstrated by DTI

technique, e.g., minor tears in muscle fibers, abnormal diffusion

of water molecules, and are usually manifested as a fractional

anisotropy (FA) of the muscle on the image is significantly

decreased and mean diffusivity (MD) and apparent diffusion

coefficient (ADC) values are increased (20–22). DTI

measurements of lower limb muscles can be performed using

1.5T or 3T MRI equipment, and technical adjustments in

sequence design (e.g., using b-values between 400 and 600 s/mm²

and at least 12 diffusion gradient directions) are usually required

to obtain accurate measurements (8, 12, 20).

Furthermore, the available evidence is inconsistent. A recent

study of 20 mountain ultra-marathoners found (23) that both T2

and T2* values of the quadriceps were significantly higher after

the race compared with before the race and did not return to

baseline levels after 48–72 h; this suggests that mountain ultra-

marathons may lead to recurrent eccentric contractions and

exposure of the quadriceps muscles of the lower limb to high

mechanical stress, which in turn lead to quadriceps injuries that
frontiersin.org
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are not easy to recover from. In contrast, a study of 17 amateur

marathoners participating in a half-marathon showed (20) that

DTI measurements (thigh muscle group FA values) changed

reversibly before, 3 h, and 3 days after exercise, demonstrating

that running on a flat and non-gradient surface is less susceptible

to lower limb muscle kinematic injuries. Therefore, DTI is

promising for detecting subclinical changes in lower limb

muscles and monitoring recovery after different marathon runs.

However, the use of DTI measurements as markers in the

clinical setting remains challenging due to the difficulty of

balancing signal-to-noise ratio, resolution, and acceptable

scanning time, and also the need for reference values and large

samples for prospective studies.

3.2.2.2 IVIM
IVIM is a noninvasive MRI technique that utilizes multiple b-value

dMRI to separate and quantify “true diffusion” and “pseudo-

diffusion” information of water molecule movement and

microcirculatory perfusion in tissues (24). “Based on a

biexponential model, perfusion and diffusion components can be

determined simultaneously in lower limb muscle tissue (25).” A

small prospective study involving 16 healthy recreational

marathon runners (18) showed that the IVIM microvascular

perfusion fraction f of the popliteus muscle was significantly

higher 2–3 h after participation in a half-marathon compared

with the pre-run period, suggesting an increase in blood

perfusion. However, another study of 109 athletes with acute

hamstring injuries showed (26) that a modified DTI sequence

scan of the IVIM model of the bilateral thighs, performed 7 days

after injury, revealed significant differences in all IVIM-DTI

diffusion parameters (e.g., FA, MD) between the injured side and

the contralateral healthy muscle, with the exception of the

perfusion fraction, f. To enable routine clinical monitoring of

hamstring injuries, this study also proposed an IVIM-DTI

method using a multiband acceleration technique, which reduced

the scanning time from 11 min 08 s to 3 min 40 s without

compromising the sensitivity of the quantitative outcome

parameters to hamstring injuries. Thus, the effect of marathon

exercise on lower limb muscle microcirculatory perfusion is

unclear. Future studies need to analyze larger longitudinal sample

sizes by IVIM or IVIM-DTI sequences with multiband

acceleration techniques to make routine clinical monitoring of

marathon exercise-induced lower extremity microinjuries possible.

3.2.3 MRS and CEST
MRS is an examination method based on the principle of MRI,

which identifies and quantifies different chemical substances and

their contents by utilizing small differences in the resonance

frequencies of atomic nuclei in different chemical environments

within the body to distinguish between different chemical shifts.

This technology allows for non-invasive detection of energy

metabolism in living muscle tissue. Currently, MRS studies of the

effects of marathon running on lower limb muscle metabolism

have focused on both ¹H-MRS and ³¹P-MRS, which can be

measured using 1.5T, 3T, or mobile MRI equipment (27–29). But

there is little evidence in the literature that MRS Images muscle
Frontiers in Sports and Active Living 04
damage after marathon running. A small prospective study (30)

involving 12 male runners with regular endurance training

examined the effects of marathons of varying intensities and

durations on muscle; the study measured intramyocellular lipid

(IMCL) content in the tibialis anterior and soleus muscles before

and after exercise with the ¹H-MRS, and the results showed that

the content of IMCL in the tibialis anterior muscle and soleus

muscle decreased significantly with the increase of the duration

of moderate intensity marathon running. However, when the

intensity was higher and the duration was similar, the IMCL

content did not decrease significantly. In another more

interesting study (31), IMCL content in the tibialis anterior

muscle was measured pre- and mid-race in 22 regular endurance

runners participating in a multi-stage ultra-marathon using a

mobile ¹H-MRS, and the results showed a significant increase in

IMCL values compared to the pre-run period during higher-

intensity, longer-duration aerobic exercise. Thus, in regular

endurance runners, lower limb muscle IMCL content may have a

U-shaped relationship with intensity and duration of marathon

running. IMCL content at different intensities and durations of

marathon running is critical in explaining the role of fatty acids

as a source of energy within skeletal muscle and in relation to

insulin sensitivity. However, the high requirements of MRS for

spatial homogeneity of static magnetic field, hardware stability,

and complex scanning techniques, especially ³¹P-MRS, which

requires additional hardware equipment and software for

transmitting/receiving at the appropriate resonance frequencies,

limit its clinical application in studying the effects of marathon

running on lower limb muscles. In addition, ¹H-MRS and

³¹P-MRS cannot measure free creatine (Cr) in energy metabolism

(32), whereas the emerging CEST technology can measure

changes in free Cr (32, 33), pH values (34), and lactate

concentrations (35) in human leg muscles before and after mild

to moderate exercise. CEST is a non-invasive, high-resolution

biochemical imaging tool that uses specific pulses to saturate

hydrogen protons in macromolecules and then exchanges the

saturated signal with hydrogen protons in surrounding free

water. This allows for measuring the difference in free water

signals to indirectly reflect macromolecule concentrations.

Therefore, future research could consider using CEST technology

to monitor the impact of marathons on lower limb

muscle metabolites, which may provide new insights into

muscle microtrauma.
3.3 Multi-modal quantitative MRI
techniques

At present, in order to fully analyze the imaging mechanism of

the lower limb muscle microtrauma caused by marathon, multi-

modal quantitative MRI technology is adopted in the research.

Through the combination of different modes or the multi-

contrast imaging of a single scan, the muscle structure and

function are comprehensively analyzed from multiple angles. For

example, in a study of 20 extreme mountain ultra-marathon

runners (23), the quadriceps muscle was automatically segmented
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(36) by a T1 3D sequence based on the Dixon algorithm to

quantify its volume, and based on this T1 structure image, the

proton density fat fraction (PDFF), T2*, and internal magnetic

susceptibility (χ) have been simultaneously calculated using 3D

spoiled gradient echo sequence, and muscle T2 values were

quantified by a 2D multiecho T2-weighted spin-echo sequence.

Combined multimodal analyses of quadriceps structure, energy

reserve status, and cellular water content revealed significant

increases in T2 and T2* values and a slight increase in

quadriceps volume from 48 to 72 h post-competition, whereas

PDFF and χ remained relatively stable, suggesting that the

multimodal quantification technique may reveal that extreme

eccentric loading runs place significant biomechanical stresses on

the quadriceps muscle that translate into a pronounced

inflammatory burden. However, the combination of different

modal techniques tends to add additional scan time and is

limited in clinical applications.

SyMRI techniques greatly reduce scan time by allowing

multiple sequences of contrast-weighted images to be acquired in

a single image acquisition. For example, in a study of 24 amateur

marathon runners (37), knee joints were scanned using SyMRI

using a multi-delay multi-echo sequence. Conventional contrast

weighted images such as T1WI, T2WI, proton density weighted

imaging (PDWI) and short time inversion recovery (STIR), as

well as quantitative maps T1, T2 and corresponding relaxation

rates R₁ (1/T1), R₂ (1/T2) and proton density (PD) were

obtained within 8 min and 5 s. The results showed that T1, T2,

and PD values were elevated in the periprosthetic muscle

subregion of the knee joint in most subjects compared to the

pre-race period within 48 h after the marathon, and decreased

after 1 month of rest (37). In conclusion, the various quantitative

parameters obtained from the SyMRI technique effectively detect

microscopic changes in muscles before and after marathon

exercise, offering a valuable tool for the future monitoring of

muscle-related diseases.
4 Conclusion

The microtrauma caused by marathon exercise to lower limb

muscles is manifested in imaging as a diversity of microstructural

and functional changes. Quantitative single-modality MRI

techniques such as T2 mapping, DTI, IVIM, MRS and CEST are

effective in capturing changes in inflammatory edema, subclinical

alterations, microcirculatory perfusion, and energy metabolism in

muscles, and provide a powerful tool for quantitative assessment of

sports injuries. However, the limitations of single-modal techniques

may not fully reveal the whole picture of sports injuries in some

cases. By combining information of different modes or SyMRI

technology, multi-modal quantitative MRI technology can more

comprehensively analyze the structural and functional damage of

lower limb muscles caused by marathon exercise, especially in

extreme mountain ultra-marathon high-intensity exercise, providing

important biomechanical and inflammatory burden indicators.

However, a major problem is the lack of standardization in the

process of clinical conversion of both single-modal and multimodal
Frontiers in Sports and Active Living 05
MRI techniques. Therefore, prospective longitudinal studies with

large sample sizes are necessary to determine standardized

processes for these technologies.

Future studies should further explore the potential application

of quantitative MRI to observe the longitudinal trends of marathon

runners after lower extremity muscle injury by plotting curves

through the time axis (x-axis) and quantitative measurements

(e.g., T2, T2* values, diffusion, perfusion parameters, and

metabolite content) on the y-axis, in an attempt to determine the

threshold for safe return to play; such quantitative thresholds

would help clinicians, compared with traditional MRI

assessments, to physicians to more accurately assess marathoners’

return-to-play time and risk of reinjury (38). In addition,

prospective longitudinal studies should expand the sample size to

cover different types of marathon events and diverse athlete

populations to validate the accuracy and reliability of these

techniques in a wider range of applications. Meanwhile, attention

should be paid to the potential application of multimodal

techniques such as SyMRI-based techniques, exploring their

advantages in rapid scanning and comprehensive analysis, aiming

at efficient and accurate sports injury monitoring and

assessment, and providing a more reliable basis for rehabilitation

and re-injury risk prediction in athletes or active individuals.
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