
TYPE Original Research
PUBLISHED 24 October 2024| DOI 10.3389/fspor.2024.1474537
EDITED BY

Susanna Rampichini,

Università degli studi di Milano, Italy

REVIEWED BY

Cristian Romagnoli,

Università telematica San Raffaele, Italy

Marta Borrelli,

Università degli studi di Milano, Italy

*CORRESPONDENCE

Pierangelo Cifelli

pierangelo.cifelli@univaq.it

Riccardo Di Giminiani

riccardo.digiminiani@univaq.it

RECEIVED 01 August 2024

ACCEPTED 11 October 2024

PUBLISHED 24 October 2024

CITATION

La Greca S, Antonacci G, Marinelli S, Cifelli P

and Di Giminiani R (2024) The acute effect of

verbal instructions on performance and

landing when dropping from different heights:

the ground reaction force-time profile of drop

vertical jumps in female volleyball athletes.

Front. Sports Act. Living 6:1474537.

doi: 10.3389/fspor.2024.1474537

COPYRIGHT

© 2024 La Greca, Antonacci, Marinelli, Cifelli
and Di Giminiani. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Sports and Active Living
The acute effect of verbal
instructions on performance and
landing when dropping from
different heights: the ground
reaction force-time profile of
drop vertical jumps in female
volleyball athletes
Stefano La Greca, Gaetano Antonacci, Stefano Marinelli,
Pierangelo Cifelli* and Riccardo Di Giminiani*

Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
Introduction: The drop vertical jump (DVJ) is extensively utilized for conditioning
and evaluating physical performance, as well as reducing the likelihood of injury
by enhancing joint stability through the coactivation of muscles acting on the
joint. The execution of DVJ can be controlled by verbal instructions and
evaluated by the vertical ground reaction force (vGRF)-time profile.
Methods: Our hypothesis was that varying verbal instructions could have an
impact on the DVJ’s parameter, thereby optimizing vertical performance and
minimizing the impact during landing in young female volleyball players.
Sixteen female volleyball players volunteered to participate in this study (age:
21.3 ± 2.6 years; stature: 1.66 ± 0.1 m; body mass: 62.0 ± 8.1 kg and BMI:
22.2 ± 1.8). They executed DVJs following verbal instructions ranging from
“jump as high as possible” (1A), “jump as quickly as possible” (2A), “jump as high
as possible and during the landing attempt to dampen the impact at ground
contact” (1B), and “jump as high as quickly as possible and during the landing
attempt to damp the impact at ground contact” (2B). The reactive strength
index (RSI), vGRF (1st and 2nd peaks), and flight time (FT) were evaluated.
Results: The verbal instructions 1A improved the FT and the first peak of the
vGRF (P < 0.05), whereas 2A the RSI (P < 0.05). On the contrary, “the damping”
required in the 1B, and 2B verbal instruction reduced the 2nd peak of vGRF
(P < 0.05), without altering the task required during the jump (P < 0.05).
Discussion: The instructions provided for the final landing (the second peak of
vGRF) have the potential to enhance safety by reducing the peak of vGRF
without affecting the performance required during the jump. When designing
DVJ training, coaches or kinesiologists must consider the use of verbal
instructions to induce specific adaptation over time.
Clinical relevance: The present study supports the use of specific verbal
instructions to reduce impact forces in landing and injury risk.
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1 Introduction

Verbal instructions represent a powerful stimulus capable of

influencing higher cognitive processes such as behavior, attention

and learning. Indeed, verbal instructions have been reported to

have a major impact on movement and posture control,

highlighting their importance in improving movement execution

and suggesting the existence of an influence of the mind on the

body (1, 2). Particularly, it has been (3–6), suggested that verbal

instructions could induce a focus on execution task accelerating

the learning process so that an advanced level of performance is

achieved sooner (7). This information becomes relevant in the

sports context, highlighting the importance of verbal instructions

in improving performance. In fact, in nearly every training

situation that involves learning motor skills, athletes are

instructed to follow the correct movement pattern or technique.

According to the “constrained action hypothesis” proposed by

Wulf (7, 8), instructions appear to direct the attention towards

correct movements, triggering an automatic mode of motor

control guided by unconscious processes (operating at an

automatic level) and achieving the desired outcome. Moreover,

when comparing conditions with instructions to those without

them, the muscular activity for the identical performance

outcomes is significantly diminished, both in the muscles of

agonists and antagonists (9). This indicates a higher degree of

movement efficiency in terms of the recruitment of muscle fibers,

as well as enhanced inter-muscular coordination. It appears that

the instructions increase movement efficiency and reduce noise

in the motor system, which hampers fine control and makes the

outcome of the movement less effective (8).

In this context, plyometric exercises have been a subject of

great interest in sports exercise research for over 60 years (10).

The plyometric jumps or drop vertical jump (DVJ) are exercises

typically employed in explosive strength training (11–13) to

improve vertical jump performance (14, Bosco and Komi 1979b,

15, 16), running speed, and acceleration (17). Moreover, DVJ

exercises are extensively utilized in diverse settings, including

but not limited to preventive measures, which aim to reduce the

likelihood of injury to the Anterior Cruciate Ligament (ACL)

due to non-contact mechanisms (18, 19); screening assessments,

which assess susceptibility to ACL rupture (3, 6, 19); and as

adapted exercises, for ankle stability (20). One of the most

renowned techniques employed in DVJ is the Depth Jump (DeJ)

and the Drop Jump (DJ). The concept of DeJ was proposed by

Verkhoshansky’s initial studies (21), where in a subject standing

on a box performs a free fall and, subsequent to ground

contact, must attain a greater jump height, without any

restrictions on the contact time or range of motion (ROM) of

the lower limb joints (10, 22). In the DJ, according to (Bosco

and Komi 1978, 15, 23), the subject must accelerate rapidly after

contact with the ground, thereby enhancing the reactive

strength index (RSI) (24).

In the training process, these two exercises have often been

confused and used without consideration. Nonetheless, the
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distinction between the two-modality lies precisely in the

execution mode; ground contact time and emphasis on ROM

degrees serve as the primary distinguishing factors underlying the

two plyometric jump modes (22). The effectiveness of DVJ on

vertical performance appears to be superior to other types of

jumps (25, 26).

During DVJ exercises, the interaction between the body and the

environment is characterized by a significant shift in reaction forces

(27) and a muscle action called the stretch shortening cycle (SSC)

is performed, in which the stretching force is imposed on

the neuromuscular system, preparing the body to counteract the

effects of gravity. In the active braking phase of the SSC, the

impact loads and the nature of the stretches are determined by

the drop height (15, 26, 28, 29), and regulated by afferents from

proprioceptive receptors that are integrated by the central

nervous system (30, 31). Hence, during the propulsion phase, the

power production could be enhanced by the neural potentiation

(26, 30, 32, 33) occurring at individual dropping heights or

stretch loads (28, 29). On the contrary, when an excessively

muscle forces due to high dropping height (high stretch load) is

generated, the Golgi Tendon Organs (GTO) should detect the

tension, and a reflex inhibition could be elicited on the same

muscle in an attempt to reduce the high ground reaction forces

preserving the musculotendinous or joint integrity (34, 35).

Considering these neuromechanical characteristics, the DVJ is an

highly effective technique for enhancing not only the

performance of vertical jump-related tasks but also the functional

characteristics of numerous sports that necessitate reactive

strength abilities, such as soccer, sprinting, and handball (13, 31,

36, 37; Montoro-Bombú).

The impact of verbal instructions in DVJ was investigated by

Khuu et al. (5), who examined different verbal instruction effects

and found that contact was stiffer with a decrease in jump height

when asked to “reduce contact times” in comparison to “reach

maximum height.” The results were similar to those reported by

Yokoyama et al. (6), who studied two different verbal

instructions, “high jump” and “quick jump”, and found that the

second verbal instruction increased the vGRF during the

braking phase.

The studies reported in the literature examined the impact of

verbal instructions on DJ when the subjects were dropped from a

single drop height (4–6) but not during different drop heights.

Another important methodological aspect that has not been

considered in the literature regards the lack of specific verbal

instructions capable of reducing the vGRF during the landing

(2nd peak) without compromising the DJ performance. This

study investigated the effect of four different verbal instructions

on some parameters of the vGRF-time profile recorded during

the DVJ (FT, 1st and 2nd vGRF, and RSI) and their possible

interactions with different drop heights (20, 30, and 40 cm) in

young female volleyball players. We hypothesized that different

verbal instructions could influence the DVJ’s parameter, which

would in turn optimize the vertical performance and reduce the

impact during the landing in young female volleyball players.
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2 Materials and methods

2.1 Study design and participants

A single-group repeated-measures study design was used in

which the kinetics and kinematics parameters of the vGRF-time

profile (i.e., the 1st and 2nd vGRF peak, FT, and RSI) were

considered for analysis. The independent variables were the

different drop heights and the verbal instructions. The

measurements were conducted in the biomechanics laboratory of

the university, and each participant accessed the laboratory on

two separate occasions, with a minimum of one day between

each visit. The ethical standards of the Declaration of Helsinki

were followed, and the participants provided written informed

consent before the measurements. The study was approved by

the Internal Review Board of the University (no. 33/2022).

Sixteen female volleyball players voluntarily took part in this

study (age: 21.3 ± 2.6 years; stature: 1.66 ± 0.1 m; body mass:

62.0 ± 8.1 kg and BMI: 22.2 ± 1.8). All the participants were

athletes competing at regional level and the drop jump exercises

were included in their weekly training at least once within the

three-training session per week. They declared that they had not

experienced any injuries or musculoskeletal pain in the past 12

months. The sample size was computed a priori by means of

statistical software for power analysis (G*Power 3.1.9.4, Heinrich

Heine-Dusseldorf University, Düsseldorf, Germany). The

computation was performed in relation to the study design

(F tests—two way ANOVA: Repeated measures, within factors),

setting the effect size, and using the protocol for a power analysis

(test attributes, effect size [0.30], α = 0.01, power [1−β] = 0.95,

total sample size n = 15 participants).
2.2 Test procedure and data collection

During the first lab visit, the participants familiarized

themselves with the experimental procedure. They warmed-up

for approximately 15 min (8 min run on a treadmill at a speed of

6 km/h, 2 min dynamic stretching, and 5 min mono- and

bipodalic stance leaps) and then executed DVJs in a random

manner, for each drop height of 20 cm, 30 cm, and 40 cm. The

DVJs were performed by dropping from a box and immediately

following ground contact, performing a maximal vertical jump.

The exercise was concluded with a second landing. To ensure the

correct execution of the jumps, the subjects were instructed with

explicit verbal instructions, specific to plyometric jumps:

“Keeping your hands on your hips and with the foot you feel

most comfortable, step off the box, land on two feet, and jump

straight up with maximum effort. The box was of different

heights (20, 30, and 40 cm) and was positioned beside a force

plate (D-Wall, TecnoBody s.r.l., Bergamo, Italy; sampling rate

100 Hz) into which the participants performed DVJs.

During the second laboratory visit, prior to the measurements,

the participants underwent a 15-min warm-up, identical to that of

the first laboratory visit. The vGRF-time profile was recorded
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during each DVJ and the following parameters were taken into

account for analysis: FT (the time spent in air between the final

push-off phase and before the initial ground contact at landing),

the 1st peak (the peak of vGRF produced during the braking-

propulsion phase), the 2nd peak (the peak of vGRF produced

during the landing phase), and the RSI [the ratio between the FT

divided by the contact time, the time between the feet’ ground

contact and the take-off, (38)] (Figure 1A).

Each participant executed a total of 24 DVJs; two trials were

averaged for analysis for each jump height (20, 30, and 40 cm)

and for each verbal instruction (4 conditions) in a random order.

The recovery between the several trials was about 40–60 s, and the

verbal instructions included the following: 1A, 2A, 1B, and 2B. In

the 1A condition, participants were instructed to “jump as high as

possible” to achieve the maximum jump height whereas in

condition 2A, the emphasis was placed on minimizing ground

contact time by instructing the participants to “jump as quickly as

possible”. In the other two conditions, the emphasis was placed on

the landing phase, with the aim of reducing the vGRF at landing

(the second peak). Specifically, in the condition 1B, the subjects

were instructed to “jump as high as possible and during the

landing attempt to dampen the impact at ground contact,”

whereas in the 2B condition, the subjects were instructed to “jump

as high as quickly as possible and during the landing attempt to

dampen the impact at ground contact” (Figure 1B).
2.3 Statistical analysis

The analysis was executed using the statistical software

XLSTAT 2013.2.07 (Addinsoft, SARL, New York). The values of

the dependent variables exhibited a normal distribution, as

demonstrated by Shapiro-Wilks’s W test. The dependent

variables were analyzed using a mixed model repeated measures

two-way ANOVA with a compound symmetry working

covariance matrix, and the Bonferroni correction adjusted the

p-values according to the number of comparisons.

In a comparable group (29) the intra-session reliability of the

measurements was quantified using the intra-class correlation

coefficient (ICC of single measures) (39). The ICC values below

0.50 are classified as “poor”, those between 0.50 and 0.69 are

classified as “moderate”, those between 0.70 and 0.89 are

classified as “high”, and those above 0.90 are classified as

“excellent”. The effect size of the ANOVA analysis was

determined by using partial eta squared (ηp
2) (40, 41) with values

that were considered small (ηp
2 = 0.01), moderate (ηp

2 = 0.06) or

large (ηp
2 = 0.14). The effect size of the contrasts was determined

using Hedges’ g, which was considered to be small at g < 0.5,

moderate at 0.5 < g < 0.8, and large at g > 0.8. The significant level

was set at α = 0.05.
3 Results

The intrasession reliability for all drop height measurements

was “excellent” (ICC > 0.90).
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FIGURE 1

(A) vGRF-time profile and the underlined parameters (1st peak vGRF; 2nd peak vGRF; contact time; flight time); (B) representatives force-time profiles
performed with the different verbal instructions (1A: “jump as high as possible”; 2A: “jump as quickly as possible”; 1B: “jump as high as possible and
during the landing attempt to dampen the impact at ground contact”; 2B: “jump as high as quickly as possible and during the landing attempt to
dampen the impact at ground contact”). vGRF, vertical ground reaction force.
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The flight time during the drop jump depended on the drop

height [F(2.180) = 3.419; P = 0.035; ηp
2 = 0.04] and verbal

instructions [F(3.180) = 3.182; P = 0.024; ηp
2 = 0.05], whereas the

interaction between the drop height and verbal instructions did

not affect the flight time [F(6.180) = 0.603; P = 0.728; ηp
2 = 0.02].

Significant contrasts were observed between the verbal

instructions 1A and 2A (P = 0.038, ES = 0.46) and between 1A

and 2B (P = 0.050, ES = 0.44) (Figure 2), whereas the drop

heights did not exhibit any differences (P > 0.05) (Figure 3).

The vGRF during braking phase (1stpeak) depended on drop

height [F(2.180) = 20.036; P = 0. 0001; ηp
2 = 0.18] and verbal

instructions [F(2.180) = 70.152; P = 0.0001; ηp
2 = 0.54]. Vice versa

the interaction between drop height and verbal instructions was
Frontiers in Sports and Active Living 04
not significant [F(6.180) = 0.465; P = 0.833; ηp
2 = 0.01]. Significant

contrasts were found between the verbal instructions 1A and 2A

(P < 0.001, ES = 1.54), 1A and 2B (P < 0.001, ES = 1.32), 2A vs. 1B

(P < 0.001, ES = 1.77), and 1B vs. 2B (P < 0.001, ES = 1.5)

(Figure 2). The drop height from 20 cm to 30 cm and from

20 cm to 40 cm were significant (P = 0.009, ES = 0.49; P = 0.001,

ES = 0.66) (Figure 3).

The verbal instructions affected the landing phase (2ndpeak of

vGRF) [F(3.180) = 58.659; P = 0. 0001; ηp
2 = 0.49]. The drop height

[F(2.180) = 0.318; P = 0.728; ηp
2 = 0.003] or the interaction between

drop height and verbal instructions [F(6.180) = 0.330; P = 0.920;

ηp
2 = 0.01] did not affect the landing phase significantly.

Significant contrasts were found between the verbal instructions
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FIGURE 2

Mean values and standard deviation of the different parameters are reported. *Significant difference: P≤ 0.05; ***significant difference: P < 0.01. vGRF,
vertical ground reaction force; RSI, reactive strength index.
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1A and 2B (P < 0.001, ES = 1.06), 1A and 1B (P < 0.001, ES = 1.12),

2A and 2B (P < 0.001, ES = 1.42), and 2A vs. 1B (P < 0.001,

ES = 1.51) (Figure 2).

The drop height [F(2.180) = 3.636; P = 0. 028; ηp
2 = 0.04] and

verbal instructions [F(3.180) = 69.800; P = 0.0001; ηp
2 = 0.54]

affected RSI. On the contrary, their interaction was not

significant [F(6.180) = 0.674; P = 0.870; ηp
2 = 0.02]. Significant

contrasts were found between the verbal instructions 1A and 2A

(P < 0.001, ES = 1.46), 1A and 2B (P < 0.001, ES = 1.59), 2A and

1B (P < 0.001, ES = 1.77) and 1B vs. 2B (P < 0.001, ES = 2.02)

(Figure 2) but not among the different drop heights (Figure 3).
4 Discussion

This study investigated the influence of verbal instruction on

some biomechanical parameters that are commonly included in

DVJ performance when performed from different drop heights.

Indeed, it is known that verbal stimuli can influence behavior

and motor control through the involvement of neural, cognitive

and motivational mechanisms, with effects on sports

performance. Our findings confirm the hypothesis that verbal

instructions and different drop heights can influence the

performance of the DVJ. On the contrary, the interaction
Frontiers in Sports and Active Living 05
between drop height and verbal instructions was not significant

at any of the analyzed parameters.

The verbal instructions have shown to improve the FT when

asked to jump as high as possible (1A), and the jump performed

is a DeJ. However, when asked to jump as fast as possible (2A),

the RSI increased due to stiff contact, and the jump performed is

a DJ. Based on the previous literature, these results are not

completely unexpected, in fact, some studies have shown how

external feedback (i.e., video feedback showing correct execution

techniques) (4) or verbal instructions (ask to “minimize contact

time” or “maximize jump height”) (5, 6, 42) can influence the

typical parameters of DVJ performance (i.e., CT, RSI, Power,

vGRF, FT, maximum CoG height) and the joints kinematics of

lower extremity (hip, knee, and ankle) (4–6, 42). Similarly,

different jump heights can affect power output (both breaking

and propulsion), contact time and leg stiffness (28, 29, 42).

However, our findings suggest that additional verbal

instructions, such as “during the landing try to damp the impact

at ground contact” (1B and 2B), have the capacity to influence

the landing phase (the second peak of the vGRF), independently

by the drop height. Our findings clearly demonstrate that trials

in which participants were asked to dampen showed a reduced

second spike of the vGRF without affecting the performance, in

terms of FT or RSI.
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FIGURE 3

Mean values and standard deviation of the different parameters are reported. **Significant difference: P≤ 0.05. vGRF, vertical ground reaction force;
RSI, reactive strength index.

La Greca et al. 10.3389/fspor.2024.1474537
In the literature, several studies have focused the attention on

kinetic and kinematics behavior of the vGRF-time profile during

the braking and propulsion phase (10, 14, 43), providing training

information for kinesiologists and practitioners (i.e., how to

begin the drop, the feet position, modality of execution, drop

height or type of ground contact, etc.) (12, 29, 44). Conversely,

few studies have investigated the behavior of the 2nd peak of

vGRF during the final landing (45–49). Bates et al. (45, 47) have

not found significant differences between the 1st and 2nd peak of

vGRF, vice versa in our study a consistent reduction of the

second peak force in the vGRF-time profile (about 700 N) if

specific verbal instructions are given (1B-2B).

Anyway, anecdotal evidence indicates that there is a

lower extremity neuromuscular control deficit during landing

(45, 46, 49); in the latter studies (45, 46), the authors highlight

that during the 2nd peak of vGRF, the participants show a

significant side-to-side asymmetry on kinematics and kinetics

parameter (i.e., GRF, joint moment, and knee flexion), indicating

that the 2nd ground contact during DVJ, exhibits greater

perturbation compared with the 1st. Scarborough et al. (49)

report significant differences between the first and second ground

contact at the LESS (Landing Error Scoring System) score, which

indicates that the 2nd landing was greater than the 1st impact,

indicating poorer neuromuscular control. In the same study,
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differences in LESS scores were also observed between gymnasts

and softball players. Even though the LESS score for the second

ground contact was significantly higher than that of the first

among the two groups, the softball players achieved a superior

result in the LESS score. Bates et al. (45, 46) state that in real

on-field game situations, basketball players seem to focus their

attention more on jumping and how to jump as high as possible

to reach a ball or block a pass, and much smaller on the

subsequent landing. Considering this, the 2nd peak of vGRF

could be a more rigorous parameter and should provide a

superior tool to assess the risk factors (45, 46, 48). From this

point of view, our results indicate that the use of verbal

instructions influences the DVJ’s performance appropriately and

characterizes the subsequent landing phase dampening the

impact with the ground. Etnoyer et al. (4) suggest that the use of

verbal instructions in chronic reduce the susceptibility to injury,

which allows to structure more safety and controlled patterns

during the execution of -landing (the landing is performed

without subsequent propulsion phase, in contrast to what happen

in the DVJ execution). However, we were unable to find studies

evaluating the influence of verbal instructions on the second

peak of the vGRF during the DVJ to compare our results.

The use of the DVJ, similar SLST Single-Leg Squat Test (50), as a

tool to assess risk behavior for ACL injuries in adolescent female
frontiersin.org
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athletes, could have important implications for the future. According

to some studies, females exhibit smaller knee flexion angles than

males during jump-landing activities (45, 51, 52) and exhibit less

knee flexion, coupled with an increase in GRF during landing

(2ndGRF) (45, 46). It is argued that during landing, the force

exerted on the femorotibial joint immediately following contact

results in relative anterior displacement and internal rotation of

the tibia, potentially leading to an increase in the injuries to the

anterior ligament cruciate (53). According to Shimokochi et al.

(54) and Cerulli et al. (55) the magnitude and timing of pressure

on the axis of the tibia are correlated and synchronized with the

magnitude and timing of GRF. Thus, an increase in vGRF elevates

the femorotibial joint pressure, which in turn increases the stress

on the ACL. This suggests that vGRF, especially its peak, could be

a significant risk factor for the ACL injury. Therefore, the absence

of verbal instructions during the execution of DVJs may adversely

affect motor control and landing biomechanics related to an

increased ACL injury risk (3, 6).

Previous studies (3, 28, 56) have displayed the pattern of

muscle activation during the first landing in drop jump

revealing that the hamstring muscles were activated before

ground contact and reaching their peak of activity (anticipatory

activity), while the quadriceps muscle reached its peak of

activity after contact. Cowling (3) found that providing a verbal

instruction focused on performing the landing (first landing

before jumping), the quadriceps muscle activity had a

significantly longer duration, than the condition without

instruction. This enhancement in agonist/antagonist synergy

could be attributed to the fact that verbal instruction enhances

the efficacy of inter-muscular recruitment, resulting from an

unconscious process (8), possibly triggered by the frontal and

parietal cortex (57). From a neuromuscular perspective, the

longer muscle activity has been attributed to the need for the

quadriceps to control knee flexion during the contact by an

eccentric contraction, to prevent the stance limb from

“collapsing” under body weight (56). Hence, if the quadriceps

muscles exhibit a prolonged period of synchronization with the

hamstring, the landing would be more protective for the ACL,

as compared to a shorter period (3). Consequently, verbal

guidance has the potential to enhance neuromuscular control

during the DVJ, thereby potentially reducing the associated

ACL injury factors in young girls (3, 4, 58).

The literature indicates that there are differences in kinetic,

kinematic, and motor control strategies between individuals of

different genders (26, 59, 60). Since women exhibit smaller knee

flexion angles at ground contact in comparison to men (61), this

may affect the ratio between ground reaction force and center of

mass displacement (61). In order to counteract the rate tension

development deficit in the hip extensors, women activate the

knee extensor earlier than men in a different feedforward control

strategy (60). These mechanisms vary depending on the skills

and biomechanical constraints related to the type of jump,

highlighting different neuromuscular strategies enacted in the

two sexes (62), to control the dynamic interactions between the

lower limb and the ground. The control strategy provides
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adequate stiffness differently in the two sexes to safeguard the

musculoskeletal system against excessive impact load and to store

elastic energy effectively (26).
4.1 Limitations

Given that the participants involved were young female adults,

our results are applicable to individuals with similar characteristics

to those who participated in the present study. In addition, the

sample consisted of female athletes from regional levels, therefore

the outcomes cannot be generalized to elite athletes, as they may

exhibit more structured motor patterns and may be less

susceptible to acute verbal instructions. Another limitation

concerns the lack of measurements of kinematic parameters such

as lower limb joint mechanics and contraction phase timing.
5 Conclusion

Our findings suggest that verbal instructions and varying drop

heights should be employed when operating the DVJ to enhance

performance and mitigate the risk of injury. The parameters of

the vGRF-time profile exhibit significant variations during

diverse trials in relation to the verbal instructions provided. One

noteworthy aspect pertains to the guidance provided for the final

landing, which appears to have the potential to enhance safety by

reducing the second vGRF peak, while maintaining the required

performance during the jump. Attentional focus induced by

verbal instruction has a pervasive effect on performance and

learning, affecting positively motor control. Before designing a

DVJ training program, coaches and/or kinesiologists must first

decide what are the goals to provide the athlete with precise and

clear verbal instructions for improving specific parameters. In the

context of exercise physiology, future research should examine

the effect of verbal instruction over time in other populations

(i.e., young athletes) to optimize the training process during

plyometric training, resulting in specific performance adaptations

providing key information on the brain’s ability to translate

verbal information into coordinated motor actions.
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