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A comparison of individual force
decline profiles during a fatiguing
eccentric trunk flexion and
extension protocol: a pilot study
Yasemin Paksoy*, David Kpobi, Jakob Henschke, Lucie Risch
and Tilman Engel

University Outpatient Clinic, Sports Medicine and Sports Orthopedics, University of Potsdam,
Potsdam, Germany
Introduction: Muscle fatigue, characterized by diminished force production and
contraction sustainability, can impair muscle coordination and increase joint
instability. Differing force profiles used in fatiguing tasks, such as prolonged
eccentric trunk protocols, might provide insights into individualized strategies
and resulting spinal stability. Thus, this study assessed individual differences in
fatigue characteristics during an eccentric trunk flexion-extension protocol in
a population of asymptomatic individuals.
Methods: Twelve participants (2 f/10 m, 29 ± 4 years, 78.4 ± 16.9 kg, 1.76 ±
0.10 m) performed an eccentric trunk flexion and extension protocol on an
isokinetic dynamometer (45° flexion to 10° extension; 60°/s), with final analysis
on 8 participants for trunk flexion and 11 for trunk extension due to data
exclusions. Participants engaged in a maximal all-out (AO) task for 2 min. Each
participant’s torque output (Nm) was assessed on a repetition-by-repetition
basis, and smoothened by a moving average of 5 repetitions. Individual time
profiles for reaching fatigue thresholds (10%, 15%, 20% and 30% reduction of
initial torque output), and inter subject variability (by coefficient of variation,
CV in %) were assessed throughout the AO task. Further, percentage torque
reduction and variability were assessed at mid (1-minute) and end (2-minute)
of task.
Results: On average, for flexor and extensor muscles combined, participants
reached a force reduction of 10% within 23.2 ± 19.1 s, of 15% within 44.9 ±
19.6 s, of 20% in 62.4 ± 26.3 s, and of 30% within 79.2 ± 21.8 s. The variability
between individuals for the timepoint of reaching the defined torque
thresholds was assessed by CV ranged between 23.4% and 103.8% for trunk
flexor muscles, and between 28.4% and 56.5% for trunk extensor muscles.
Discussion: A reduction of up to 20% was seen on average for all participants
within 1-minute of eccentric trunk flexion and extension. Different
inter-individual force output profiles were seen throughout the AO protocol,
potentially related to physiological, skill-based, technical, adaptational, and/or
motivational factors. The increase in fatigue resulted in a reduction in
variability among individuals. A 2-minute protocol effectively induced
pronounced fatigue, offering insights into individual force profiles and strategies.
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1 Introduction

Muscle fatigue, a non-specific symptom that affects the

performance and function of the musculoskeletal system during

sportive and daily life activities (1), can be defined as the

transient inability of a muscle to maintain a given level of force

or power output (2). Muscle fatigue reduces the capacity of the

muscle to generate and sustain force, alters the coordination and

control of movement, impairs the reaction time and shock

absorption ability, and increases the muscle weakness and

susceptibility to injury (3–5). Therefore, identifying the timepoint

and degree of muscle fatigue in individuals can prevent

unnecessary strains in the muscles, and ultimately injuries and

musculoskeletal problems (1, 6).

Changes in the recruitment pattern of trunk muscles due to

muscle fatigue have also been posited to have postural implications

that challenge the stability of the spine (7, 8). Various studies

demonstrated that the occurrence of trunk muscle fatigue reduces

muscle coordination, increases spinal instability, and even lead to

impairments in postural control (9–11). Johanson et al. (2011)

have suggested that acute muscle fatigue in back muscles can act

as a precipitating factor for the onset or exacerbation of low-back

pain (11). Lin et al. (2009) have reported that, compared to ankle

and knee muscles, muscle fatigue in the lower back has the most

significant effect on postural control (12). However, since the

complex and multi-joint structure of the trunk makes isolated

assessments difficult, it has been researched only scarcely (13).

Over the past years, research has documented how muscular

fatigue occurs during various types of tasks and attempted to

clarify the underlying mechanisms (14). Baroni et al. (2011) have

suggested that maximal isokinetic eccentric contractions, due to

their higher torque production, provide a more effective way of

assessing fatigue through increased mechanical overload (15).

Alternatively, Lou et al. (2012) assessed muscle fatigue during

maximal isometric contractions, finding considerable force declines

within a period of less than a minute (16). Regardless of the

assessment method, a precise starting point for the onset of fatigue

is still debated in literature, due to the gradual nature of muscle

fatigue (3). Still, a decrease in torque of about 10%–15% is

commonly defined as threshold for the onset of muscle fatigue (17).

Due to interindividual differences in neuromuscular

adaptations, varying strategies to maintain torque output in the

presence of fatigue might be deployed (18, 19). This can be

attributed to differences in their capacity to recruit additional

muscle fibers or motor units, with some individuals relying more

on metabolic processes and alternative compensatory

mechanisms (19, 20). These individual differences in coping

strategies may lead to different patterns of force decline, in

response to an identical fatiguing protocol.

The majority of available studies compared force or power

outputs at the start and end of the testing protocol exclusively.

However, it has not been reported so far, at which time point

muscle fatigue is reached (according to predefined threshold of

force reduction) and how torque profiles vary between

individuals. Therefore, the aim of the present pilot study was to

assess fatigue characteristics during an eccentric trunk flexion-
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extension protocol and to identify differences and the time

required to reach different fatigue thresholds in a population of

asymptomatic individuals. We hypothesized that participants

would exhibit individual differences in the time required to reach

predefined fatigue thresholds during the protocol, reflecting

varying neuromuscular adaptations and compensatory strategies

to maintain torque output.
2 Materials and method

2.1 Participants

A convenience sample was recruited by announcements at the

University campus and the surrounding local area. All participants

met the following criteria: age between 20 and 55 years, being pain-

free/asymptomatic prior to the measurement day, no previous

history of back pain in the last six months, and being capable of

English literacy. Exclusion criteria were any apparent

musculoskeletal, vascular or neurological injury, surgery or illness

within the last six months, acute infection/cold, or severe and

debilitating pain that contraindicates physical activity (21, 22).

All participants provided written informed consent prior to

enrollment. The study was conducted in accordance with the

ethical standards for scientific research, including adherence to

the principles outlined in the Helsinki Declaration, and was

supervised by the medical board of the University Outpatient

Clinic. Ethical approval was given by the local university ethics

committee (registration number: 26/2022).
2.2 Study design and procedure

This investigation employed an experimental pilot study

design. A clinical anamnesis and examination by a physician

were conducted prior to the measurement to clarify the eligibility

for participation in the study. Additionally anthropometric data

were documented in a standardized case report form. Training

load, defined as the weekly hours of training, was also collected

for each participant. Prior to the fatigue protocol a concentric

warm-up trial (30 repetitions of concentric trunk flexion-

extension at approx. 50%–70% of the subjectively predicted

maximum force) and an eccentric familiarization trial (5

repetitions of eccentric trunk flexion-extension at approx. 50% of

the subjectively predicted maximum force) were performed,

followed by a resting period of 5 min. The subsequent testing

protocol comprised two parts: (1) 5 repetitions maximal eccentric

trunk flexion-extension contraction (MVC5) followed by 3 min

of rest, and (2) a 2 min all-out (AO) maximal eccentric trunk

flexion-extension fatiguing protocol. Participants also provided

subjective ratings of perceived exertion (RPE) using the Borg

Scale (ranging from 6 to 20, where 6 indicates no exertion at

all and 20 indicates maximal exertion) before and after the

fatigue protocol (23).

An isokinetic dynamometer (Con-trex dynamometer MJ with

adapter type TP-1000, Physiomed, Germany) was used to measure
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TABLE 1 Descriptive statistics of study population (mean ± SD).

Sex (N ) Female (2) Male (11)
Age (yr) 27 ± 7 29 ± 4

Height (m) 1.59 ± 0.06 1.78 ± 0.07

Weight (kg) 52.5 ± 0.7 80.7 ± 15.6

BMI 21 ± 2 25 ± 4

RPE Pre-AO 8.0 ± 2.8 8.8 ± 2.7

RPE Post-AO 16.5 ± 0.7 17.3 ± 2.8

Yr, years; m, meter; kg, kilogram; BMI, body mass index; SD, standard deviation.
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torque output (Nm) during trunk flexion and extension movements.

Participants were placed inside the dynamometer with an upright

standing position and slight knee flexion (10° flexion). To

maintain the position, pads were placed on the knee, waist and

chest. The test was performed in a movement range between 10°

of trunk extension and 45° trunk flexion, at a rotational velocity of

60°/s. During the eccentric task individuals were told to maximally

resist the movement of the machine, at every repetition.

All conducted measurements were performed at the

biomechanics laboratory of the university outpatient clinic at a

constant time of the day (midday).

TABLE 2 MVC5 values separated for trunk flexor and trunk extensor
muscles (descriptive data with mean ± SD, range).

Muscle group MVC5
mean ± SD (Nm)

MVC5 range
(min-max) (Nm)

Trunk flexor muscles 333.9 ± 113.6 144.3–522.3

Trunk extensor muscles 233.1 ± 115.7 82.2–488.9

SD, standard deviation; Min, minimum; Max, maximum; Nm, Newtonmeter.
2.3 Data processing and analysis

Maximum torque (mean value of the three highest out of five

repetitions) of the MVC5 task was used as reference torque

output for the AO task. To account for random fluctuations of

torque output, a moving average filter over 5-repetitions was

employed to the data recordings of the AO task (24).

Subsequently, peak torque output of each participant was

expressed as percentage value of the MVC5 reference recording.

Fatigue thresholds were defined by reduction of the participant´s

initial torque output of 10%, 15%, 20%, and 30% during AO task

based on common thresholds as provided by literature (17, 25).

Important notice: always the first time point when the individual

reached the respective threshold (based on the smoothed

signal by the moving average technique) was assessed for later

outcome presentation.

Demographic characteristics were presented descriptively as

mean ± standard deviation (SD). Variability between individuals

for timepoint of reaching the defined torque thresholds during

AO was assessed by analysis of coefficient of variation (CV;

standard deviation divided by the mean, and expressed as

percentage value) for each threshold (10%, 15%, 20%, 30%) and

each muscle group (trunk flexors, trunk extensors). Distribution

of the individual’s torque output during AO tasks was displayed

using boxplot graphs and via individual line graphs plotted over

the trial time.
TABLE 3 Time points, range and variability of the different fatigue
thresholds during AO task, separated for trunk flexor and trunk extensor
muscles (descriptive data with mean ± SD, range and CV).

Mean ±
SD (s)

Range
(min-max)

(s)

Coefficient
variation (%)

Trunk flexor
muscles

10% decrease 21.6 ± 22.4 2.4–74.4 103.8

15% decrease 44.9 ± 21.6 19.2–81.6 48.1

20% decrease 60.9 ± 25.2 31.2–100.8 41.4

30% decrease 71.7 ± 16.8 55.2–108.0 23.4

Trunk
extensor
muscles

10% decrease 25.5 ± 14.4 4.8–40.8 56.5

15% decrease 45.3 ± 18.5 7.2–67.2 40.9

20% decrease 64.5 ± 29.4 9.6–98.4 45.6

30% decrease 88.0 ± 25.0 50.4–120.0 28.4

SD, standard deviation; Min, minimum; Max, maximum; s, seconds.
3 Results

In total, 12 healthy adults (10 males and 2 females; age 29 ± 4

years; height 1.76 ± 0.10 m; weight 78.4 ± 16.9 kg; body mass index

25 ± 4; 5.7 ± 5.1 training hours per week), participated in the study.

Due to implausible data or initial torque output below 90% of the

MVC5 task, the torque outputs measured during trunk flexion

in four participants and trunk extension in one participant

data were excluded from the data analysis. Consequently, the

analysis focused on the torque output data from 8 participants

during trunk flexion and 11 participants during trunk extension.

The detailed descriptive characteristics of the study group are

shown in Table 1.

The MVC5 values for trunk flexor and trunk extensor muscles

are presented in Table 2. For all participants, the MVC5 value for
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trunk flexor and extensor muscles combined was found 283.5 ±

123.5 Nm, with a range of 82.2–522.3 Nm.

On average, for flexor and extensor muscles combined,

participants reached a force reduction of 10% within 23.2 ±

19.1 s, of 15% within 44.9 ± 19.6 s, of 20% within 62.4 ± 26.3 s,

and of 30% within 79.2 ± 21.8 s. The coefficient variation (CV)

ranged between 23.4% and 103.8%, depending on the muscle

group and fatigue thresholds. Results of the % decline, and CV

analysis for trunk flexor muscles and trunk extensor muscles are

summarized in Table 3.

Individual courses of trunk flexor and extensor torque output

during the AO task for each participant and averaged across all

participants are shown in Figure 1. Furthermore, each

participant’s individual torque output plotted over time is

provided in Supplementary File S1.

Subjective ratings of perceived exertion were 8.6 ± 2.6 Pre-AO

and 16.3 ± 3.6 Post-AO.

Individuals’ torque output percentage decline over time is

illustrated as boxplots in Figure 2. For the trunk extensor

muscles, 6 out of 8 participants reached a 30% decrease in

torque output, while for the trunk flexor muscles, 7 out of 11

participants reached a 30% decrease in torque output.
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FIGURE 1

Torque output of trunk muscles during 2-minute AO task, expressed as a percentage of their maximum voluntary contraction during MVC5: (A) trunk
flexor muscles (during eccentric trunk extension), (B) trunk extensor muscles (during eccentric trunk flexion). Light grey lines represent the torque
output of each participant, solid black lines represent the mean torque output during eccentric trunk flexion and extension.
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4 Discussion

The aim of the present preliminary study was to assess fatigue

characteristics in an eccentric trunk flexion- extension protocol and

to identify differences and the time required to induce fatigue in a

population of asymptomatic individuals. Mean torque output

values of the participants during the 2-minute AO protocol

revealed a notable decline in torque output of up to 20% within

the initial minute. Nonetheless, distinct individual variations in
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torque output profiles were observed among participants

throughout the AO protocol. Highest interindividual variability

was observed at a 10% torque output drop; however, as fatigue

levels increased, the variability in torque output between

individuals decreased, resulting in more homogeneous fatigue

timepoints as by the defined thresholds.

Trunk muscle fatigue can occur either following sustained

activity or as a consequence of repeated dynamic contractions,

and its onset exhibits considerable variability influenced by
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FIGURE 2

Boxplot of trunk muscles torque output, expressed as percentage of MVC5 over time: (A) trunk flexor muscles (during eccentric trunk extension),
(B) trunk extensor muscles (during eccentric trunk flexion). The boxplot shows the distribution of the percentage decline in torque output in trunk
flexor muscles for 11 participants and in trunk extensor muscles for 8 participants over 2-minute AO protocol. Depicted are box and interquartile
ranges (75th and 25th percentiles), with median (thick line) and individual data points (dots) of each participant.
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factors such as the intensity, duration and type of activity (3). In

general, most of the studies utilized a 30-second to 2-minute AO

protocol to set off muscle fatigue (21, 26). In line with this

practice, the present study employed a 2-minute AO protocol to

investigate the time point at which acute fatigue is induced

during maximum eccentric contractions. Moreover, fatigue

studies involving maximal eccentric contractions have

consistently shown a substantial decrease in muscle force, with

reductions ranging from 30% to 50% following repeated

contractions (27). In the current study, approximately half of the

participants reached a 30% torque decrease in given time,
Frontiers in Sports and Active Living 05
specifically 6 out of 8 participants for trunk extensor muscles

and 7 out of 11 participants for trunk flexor muscles. Regarding

the average results of this study, a decrease in torque output of

20% within the first minute, and a further decrease to 30%

between 90 and 120 s was observed in trunk flexor muscles. In

line with this study, previous studies have reported that force

decline profiles in abdominal muscles tend to exhibit slightly

steeper declines compared to the back muscles, potentially due to

muscle fiber composition (28–30). Compared to the trunk flexor

muscles, a decrease in torque output of 15% was observed within

the first one minute but a more significant decrease to 30% was
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observed between 60 and 120 s in the trunk extensor muscles. This

suggests that inducing significant fatigue in the trunk extensor

muscles may require a prolonged protocol compared to the trunk

flexor muscles. Previous research has indicated that fatigue

induced changes in torque output during eccentric trunk flexion

tend to display a relatively consistent and gradual decline over

time, in contrast to tasks involving eccentric contractions in

upper or lower extremity muscles (22, 31–33), supporting the

results of the current study.

Noticeable individual differences were seen in force decline

profiles during the AO protocol. Some participants experienced a

rapid decline in torque whereas some participants maintained

their torque output for a longer period. These individual

differences were apparent not only within the same muscle

groups, but also across the different muscle groups such as

flexors and extensors. Previous studies have revealed variations in

muscle activation patterns among participants, suggesting that

individual neuromuscular control strategies may contribute to the

differences in force decline profiles (3). These variations could be

attributed to differences in muscle fiber type composition, motor

unit recruitment strategies, or biomechanics of the trunk muscles

(34). For instance, individuals with a greater proportion of type I

muscle fibers (which are more fatigue-resistant) may show a

slower decline in torque output during the protocol than

individuals with a greater proportion of type II muscle fibers

(which are more fatigable) (34). Similarly, individuals who use

recruitment strategies with larger number of motor units may

experience a more rapid decline in torque output, as their motor

units become fatigued more quickly (3, 35–37). In addition,

maximum effort tests, irrespective to their modality, necessitate a

high level of individual motivation to achieve peak physical

performance (38). When participants are highly motivated,

they’re more likely to push through discomfort to achieve their

goal. Conversely, in cases of low motivation, they might not feel

the need to endure the discomfort. This can negatively affect

how well they perform in activities that require maximum effort

(38). Motivational factors could therefore potentially account for

the observed variations in torque output across participants.

Moreover, differences in force outcome could be attributed to

participants’ varying levels of physical activity, lack of familiarity

with eccentric exercises, disparities in coordination, and differing

levels of physical fitness (39–42). The present study’s findings

also indicate that the varied training loads among participants

might have influenced the results. Notably, participants with

higher training loads exhibited smaller mean fluctuations in force

output over the trial duration but demonstrated higher force

variability. This might suggest that while a higher training load

could lead to less decline in performance, it might also result in

greater inconsistency (43, 44). Additionally, participants with

higher training loads may have developed greater muscle

endurance and strength, potentially affecting their response to

the experimental intervention compared to those with lower

training loads (45).

Neuromuscular fatigue exerts functional implications on motor

output during fatiguing tasks, one of which is increased variability

in motor output (46). Typically this phenomenon is explained by
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alterations in motor unit recruitment and discharge timing as

fatigue progresses (46–48). Expanding upon this, the present

study explored the dynamics of torque output variability during

a fatiguing task and, in accordance with prior research, identified

a decreasing pattern in torque output variability as fatigue

levels increased. Consistent with the existing literature, this

heightened variability was quantified through an increase in the

coefficient of variation (CV) of torque output (3, 46–49). When

comparing the variations in fatigue thresholds, it was revealed

that as fatigue increased, the differences in torque output

between individuals decreased. This implies that as fatigue levels

increase, there is a more uniform distribution of fatigue

timepoints among individuals.

A few limitations need to be taken into account for interpreting

the study results. The small sample size of this pilot investigation,

with only descriptive analysis necessitates careful interpretation of

the results and limits their generalizability. The gender imbalance

may impact applicability of the results, especially regarding

potential gender differences in muscle fatiguability. Participant´s

training hours, hence training status, varied across participants,

though reported levels of perceived exertion after the exercise (as

well as before) were comparable. Standardizing training loads

among participants or including larger sample sizes to

specifically investigate the impact of training variability is

recommended for future studies. Also, while the purpose of

employing data smoothening by a 5-repetition moving average

filter was to alleviate (unphysiological) fluctuations in torque

output data during the protocol, it’s crucial to recognize that this

approach may introduce limitations that warrant a critical

evaluation. The methodology’s focus on assessing the first time

point at which an individual reaches the respective threshold for

outcome presentation, may not fully account for subsequent

variability and nuances in responses, highlighting a further

investigation. Lastly, it is important to note that since this study

solely involved asymptomatic healthy participants, caution should

be exercised in applying the findings to clinical populations.

In conclusion, notable individual variations in torque output

profiles during a fatiguing task were demonstrated, with some

participants showing a rapid drop in torque output, while others

sustained their torque output for longer durations. Regarding the

duration of the protocol, our results suggest that significant

decreases (up to 20% decrease) in torque output can occur

within the initial 1-minute of eccentric trunk flexion and

extension. Furthermore, the variation in fatigue thresholds

occurring in less than 1-minute was greater than the variation in

fatigue thresholds occurring over 1-minute, which indicates

fatigue characteristics among individuals are more homogeneous

in longer protocols. However, to induce more pronounced

fatigue, a 2-minute AO protocol was needed.

The findings of this pilot investigations suggest that this

protocol could be a valuable tool for researchers and clinicians in

various fields, such as sports medicine and physical therapy.

However, further investigations with higher sample size and

assessment of potential factors individually affecting the force

profiles are required. If proven true, the protocol might be used

for identification of muscle fatigue in athletes or individuals who
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perform physically demanding tasks that involve repetitive trunk

movements. By identifying early signs of fatigue, trainers and

therapists, healthcare professionals might adjust training

programs and workloads, thereby reducing the risk of injury and

optimizing performance.
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