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Introduction: Sleep loss and sleep deprivation (SD) cause deleterious influences
on health, cognition, mood and behaviour. Nevertheless, insufficient sleep and
SD are prevalent across many industries and occur in various emergencies.
The deleterious consequences of SD have yet to be fully elucidated. This study
aimed to assess the extensive influences of SD on physiology, vigilance, and
plasma biochemical variables.
Methods: Seventeen volunteers were recruited to participate in a 32.5-h SD
experiment. Multiple physiological and cognitive variables, including tympanic
temperature, blood oxygen saturation (SaO2), and vigilance were recorded.
Urinal/salivary samples were collected and subjected to cortisol or cortisone
analysis, and plasma samples were subjected to transcriptomic analysis of
circular RNA (circRNA) expression using microarray. Plasma neurotransmitters
were measured by targeted metabolic analysis, and the levels of inflammatory
factors were assessed by antibody microarray.
Results: The volunteers showed significantly increased sleepiness and decreased
vigilance during SD, and the changes in circadian rhythm and plasma
biochemistry were observed. The plasma calcium (p= 0.0007) was induced by
SD, while ischaemia-modified albumin (IMA, p= 0.0030) and total bile acid
(TBA, p= 0.0157) decreased. Differentially expressed circRNAs in plasma were
identified, which are involved in multiple signaling pathways including
neuronal regulation and immunity. Accordingly, SD induced a decrease in
3-hydroxybutyric acid (3OBH, p=0.0002) and an increase in thyroxine (T4,
p < 0.0001) in plasma. The plasma anti-inflammatory cytokine IL-10 was
downregulated while other ten inflammatory factors were upregulated.
Conclusion: This study demonstrates that SD influences biochemical,
physiological, cognitive variables, and the significantly changed variables may
serve as candidates of SD markers. These findings may further our
understanding of the detrimental consequence of sleep disturbance at
multiple levels.
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1 Introduction

In modern society, many people experience inadequate amount

of sleep due to sleep disorders, irregular schedule, and excessive

workload, etc. Insufficient sleep and circadian disruption cause

numerous negative health outcomes, such as all-cause mortality,

obesity, diabetes, cardiovascular disease, and impaired vigilance

and cognition (1–4). It is crucial to systematically investigate the

comprehensive influences of sleep insufficiency or deprivation on

physiology and behaviour.

A cross-sectional study of white British adults aged 40–69

showed that among the subjects who slept shorter and longer than

the normal 7–8 h duration, the levels of C-reactive protein (CRP,

an inflammatory biomarker) and gamma glutamyltransferase

(GGT, a liver function biomarker) were increased in those

subjects, despite the modest changes in most blood biomarkers,

suggesting the effects of SD on plasma biochemical variables (5).

In rats, sleep deprivation resulted in decreased plasma

concentration of free Mg2+ and Ca2+ electrolytes which may

contribute to associated physiological problems (6).

Insufficient sleep led to altered gene expression and pathways

associated with the circadian clock, sleep homeostasis, oxidative

stress and metabolism, which are involved in chromatin

modification, regulation of gene expression, macromolecular

metabolism, and inflammatory, immune and stress responses (7).

The association between sleep disturbance and inflammation has

been reported in a number of studies (8–21). However, some of

the reports remain inconsistent. For instance, it has been

reported in some studies that SD can induce the inflammation

factors IL-6 and TNFα (9–12), but a recent meta-analysis

demonstrated that there were no significant changes in IL-6 and

TNFα in sleep deprivation or sleep restriction (13). Therefore,

the SD consequence on inflammation needs further validation.

circRNAs are a new class of RNA molecules characterized by

their covalently closed circular structure, which regulate a diversity

of cellular processes at the post-translational level, e.g., through

acting as miRNA sponges, anchors for circRNA binding proteins

(cRBPs), molecular scaffolds, and regulators of transcription

and translation (22). circRNAs are abundantly present in brain

and deregulation of circRNAs has been implicated in

neurodegenerative, psychiatric, and neurodevelopmental disorders

(23, 24). In mouse suprachiasmatic nucleus (SCN) and predicted

Cdr1as circRNA as an essential regulatory molecule that impacts

the light entrainment in the SCN through binding with miR-7

(25). The study of the function and mechanism of circRNAs in

sleep is very limited and systematic understanding of the circRNA

roles in sleep regulation remain elusive.

Neurotransmitters coordinatively regulate sleep and

wakefulness (26). At the molecular level, sleep disturbance causes

alterations in the expression of a subset of metabolites, including

some neurotransmitters or neurotransmitter receptors (27, 28).

Benedict et al. reported that an acute SD increased the morning

serum levels of neuron-specific enolase (NSE) and S100 calcium

binding protein B (S-100) by approximately 20%, which reflects

potential neuronal damage (29). However, the implication of
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only very few inflammation factors and neurotransmitters have

been investigated in SD by far. In this study, we recruited 17

volunteers, conducted a 32.5-h SD experiment, and demonstrated

the comprehensive effects of SD on physiology, cognition, and

the plasma circRNA profiles which suggests its potential impacts

on neural and immunity systems. Furthermore, we confirmed

that SD can induce the altered expression of some

neurotransmitters and inflammatory factors.
2 Methods

2.1 Participants

In total, 17 male volunteers (age, 32.0 ± 4.4 years; height,

173.1 ± 4.6 cm; weight, 70.5 ± 9.8 kg; data are the means ± SD)

were recruited to participate in this study, and the experiment

was carried out from Sep 2 to Oct 16 in 2021 at the SPAC Enter

Space Science and Technology Institute, Shenzhen, China. We

recruited only male volunteers was to avoid the potential

gender difference in sleep and associated physiology and

behaviour (30). General physical, psychological and routine blood

tests were performed to exclude ineligible subjects. No

medication, smoking, alcohol, or caffeinated drinks were allowed

during the study.
2.2 Experimental procedures

The experiment comprised a 2-d period prior to SD, 32.5 h of

SD, and a 2-d recovery after SD. The participants arrived on

-2 days prior to SD for adaptation to the environment. From day

-2 to day -1, the sleep time was scheduled from 23:00 to 7:30;

the subjects remained awake from 7:30 on day -1 to 7:30 and

throughout day 2. The period from 7:30 to 23:00 on day -1 was

considered the control period, and the period from 23:00 on day

-1 to 7:30 on day 2 was considered the SD period. Participants

were allowed to sleep or relax freely from 7:30 on day 2, which

was the recovery period. The Karolinska Sleepiness Scale

(KSS) questionnaire, Psychomotor Vigilance Task (PVT), and

assessments of eyesight, tympanic temperature, SaO2, blood

sampling and saliva sampling were performed every four h

according to the schedule (±0.5 h). Blood was drawn after

overnight fasting at approximately 7:00 (±0.5 h) for all subjects,

and plasma samples were separated and stored at −80°C
(Figure 1A). We measured the tympanic temperatures as a

representative of core body temperature (CBT) with a Braun

ThermoScan® PRO 6000 Ear Thermometer (Germany).
2.3 Questionnaire and cognitive tests

The KSS was used to measure subjective sleepiness, which

scored from 1 (extremely alert) to 10 (extremely sleepy) (31).

PVT tests were conducted used to measure the subjects’ alertness
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FIGURE 1

SD led to changes in a variety of circadian rhythms. (A) The schematic protocol of this study. The black block covering the time from -2 days to -1 day
represents the sleep period, and the two grey blocks represent the same time blocks in the following two days but during which the subjects
underwent SD. Different symbols in different colours denote the sampling or testing time points. (B–F) Circadian changes in KSS (B), eye tracking
data (C), tympanic temperature (D), PVT RT and PVT error (E), salivary cortisone level (F), and SaO2 levels (G) Data are the mean ± SE. n= 17.
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(32). In this study, the 3-min PVT-B was used, which comprises 30

visual stimuli; the random stimulus interval ranged from 2 s to 10 s

(25). The two indicators of PVT alertness include reaction time

(RT, ms) and errors (times). The PVT reaction time refers to the

average response time, reflecting the performance speed. PVT

errors refer to the number of errors (integers) out of the 30

stimuli reflecting performance accuracy (33). The eye tracking
Frontiers in Sports and Active Living 03
data were acquired using a Tobii Pro Spectrum (Tobii Pro,

Sweden), including pupil diameter and eyelid closure. The screen

was 60 cm from the eyes, the head was stabilized with a chin

rest, and the sampling frequency was 150 Hz. Both the data of

the pupil diameter and eyelid closure data were recorded. The

relative eyelid closure PERCLOSE 80 (P80) was calculated

according to the P80 standard (34).
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2.4 Biochemical analysis of salivary
cortisone

Salivette tubes (Sarstedt, Numbrecht, Germany; 51.1534.500)

were used to collect salivary samples. The cortisone level in

100 µl saliva of each sample was measured with LCeMS/MS

(TSQ Quantum Ultra), which comprises an ultimate 3,000

system and a Thermo Scientific TSQ Quantum Access Triple

Stage Quadrupole Mass Spectrometer (Thermo Fisher, USA).
2.5 Microarray screening of differentially
expressed circRNAs

Total RNAs were isolated using TRIzol reagent, and the purity and

concentration were determined by NanoDrop ND1000 (Thermo

Fisher Scientific). Subsequently, the total RNAs were digested with

RNase R (1 U/μg, Cat# RNR07250, Epicenter) to enrich circular

RNAs, which were then amplified, and transcribed into fluorescent

cRNA using Arraystar Super RNA Labeling Kit (Cat# 074301,

Arraystar) by following with the manufacturer’s instruction. The

labeled cirRNAs were subjected to hybridization onto Arraystar

Human circRNA Array v2 which detects the expression of 13,617

circular RNAs (Aksomics, China). Agilent Feature Extraction

software (version 11.0.1.1) was used to analyse acquired array

images. A series of data processing including quantile normalization

were performed by R software limma package. Differentially

expressed circRNAs with statistical significance between four groups

were identified by fold change cutoff or through Volcano Plot

filtering (FC ≥2.0 and p-values ≤0.05). Heat map, Volcano plot and

KEGG pathway analysis was performed using the OmicStudio tools

at https://www.omicstudio.cn/tool.
2.6 Profiling of plasma neurotransmitters
and inflammatory factors

Haemolysis occurred in the plasma samples from three

volunteers; therefore, the samples of these three subjects were

precluded for the assays of plasma neurotransmitters and

inflammatory factors. The samples of the remaining 14 volunteers

were subjected to metabolomic analysis of the expression profile of

neurotransmitters and profiling of inflammation factors.

To measure the levels of plasma neurotransmitters, the samples

were analysed using an LC-ESI-MS/MS system, and the analytical

conditions were as follows: HPLC column, Waters ACQUITY

UPLC HSS T3 C18 (100 mm× 2.1 mm i.d. 1.8 µm); solvent system,

water with 0.1% formic acid (A), acetonitrile with 0.1% formic acid

(B); gradient started at 5% B (0 min), increased to 95% B (0–8 min),

95% B (8–9.5 min), and finally ramped back to 5% B (9.6–12 min);

flow rate, 0.35 ml/min; temperature, 40°C; and injection volume:

2 μl. Ultraperformance liquid chromatography (UPLC) (ExionLCTM

AD) coupled with tandem mass spectrometry MS/MS (QTRAP®

6500+) was performed by Metware Biotechnology Co. Ltd. (China).

The data were analysed with Analyst 1.6 software (AB Sciex).

Plasma inflammatory factors were profiled using an antibody

array, the Human Inflammation Array Q3 (QAH-INF-3-2;
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Raybiotech, Inc., USA). Each sample was assayed four times. The

fluorescence data were converted to concentration values with

RayBio Q Analysersoftware (Raybiotech, Inc., USA). The detailed

experiment was conducted by following the manufacturer’s protocol

(https://doc.raybiotech.com/pdf/Manual/QAH-INF-3.pdf). In the

analysis of plasma neurotransmitters and inflammatory factors,

changes with fold changes >1.2 or <0.83 (p < 0.05) were considered

differentially expressed factors (DEFs) with statistical significance.
2.7 Statistics

GraphPad Prism (version 8.0.2) was used for statistical analysis.

Mann-Whitney test (for non-normally distributed data) or

Student’s t-test (for normally distributed data) was used to

analyse the differences between the control and SD groups in the

variables. Data are means ± SD or SE as indicated. * p < 0.05,

** p < 0.01, *** p < 0.001.
3 Results

3.1 Disturbed circadian rhythms and
decreased cognition caused by SD

Most of the tested variables showed circadian rhythms during

the control and SD periods, including eyelid closure level, pupil

diameter, PVT reaction time and error occurrence, sleepiness, core

body temperature, and cortisone but not blood oxygen saturation

(Figures 1B–G). The circadian rhythm of eyelid closure showed a

4-h phase delay compared to pupil diameter (Figure 1C). The

PVT reaction time and error rate of PVT operation showed

similar circadian patterns while the CBT and salivary cortisone

showed roughly anti-phase patterns (Figures 1D–F).

Significant increases in KSS score and PVT error were observed

(Figures 2A–D). There was no significant change in PVT reaction

time, eyelid closure level, pupil diameter, salivary cortisone and

urinal cortisol, SaO2 and the average level of tympanic temperature

(Figures 2E–I). Cortisone is a metabolite of cortisol, the comparable

levels of both cortisone and cortisol between control and SD groups

suggest that no stress occurred during SD (Figures 2F,G). In

contrast, the trough values of tympanic temperature at 7:00 were

significantly decreased on day 1 compared to those on day -1

(Figure 2J), suggesting a decreased amplitude.
3.2 Altered plasma biochemical parameters
due to sleep deprivation

The plasma samples of 14 volunteers were subjected to

biochemical analysis and the results demonstrated that the level of

calcium (p = 0.0007) increased after SD while IMA (p = 0.0030)

and total bile acid TBA (p = 0.0157) decreased. The SOD level

showed significant decrease (p = 0.0029) but the change was slight

(Figures 2K–N). No significant changes were detected in the

transferrin, high-sensitivity C-reactive protein, phosphate, ferritin,

and plasma ratio of calcium/phosphate (Figures 2O–S).
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FIGURE 2

SD caused changes in a number of physiological, cognitive and biochemical variables. (A–F) The compared variables included the KSS score (A), PVT
RT (B), PVT error (C), relative eyelid closure level (D), pupil diameter (E), salivary cortisone (F) and urinal cortisol (G), SaO2 (H), tympanic temperature (I),
and tympanic trough values (J). The variables were compared between 7:30–23:00 on day -1 and 7:30–23:00 on day 1 (A–I). In J, the physiological,
cognitive variables of tympanic trough temperature were compared between 7:30 on day -1 and 7:30 on day 1. n= 17. Panels A through I are the
results of calcium (K), ischaemia-modified albumin (L), transferrin (M), total bile acid (N), high sensitivity C-reactive protein (O), phosphate (P),
ferritin (Q), superoxide dismutase (R), and Ca/P ratios (S). n= 14, abnormal data were precluded for analysis (red circles). The data are shown as
the mean ± SE. * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, n.s., nonsignificant.
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3.3 Analysis of changed expression of
circRNAs induced by sleep deprivation

To investigate the molecular changes upon acute SD, in

this study we conducted microarray to investigate the genes

which are potentially associated with sleep deprivation. The

plasma samples of twelve volunteers were pooled into four

groups at random, and the total RNA was isolated and

subjected for circRNA profiling using microarray. The
Frontiers in Sports and Active Living 05
samples from other volunteers were precluded as the quantity

was insufficient (Figure 3A). The circRNA profiling results

showed that SD induced differential expression of a set of

circRNAs, which is well consistent between the four pooled

groups (Figure 3B).

552 up-regulated and 94 down-regulated circRNAs induced by

SD were identified (Figure 3C). The enrichment results from Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis showed that

many signaling pathways were altered due to SD including a
frontiersin.org
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FIGURE 3

Analysis of differentially expressed plasma circRNAs. (A) The schematic diagram of plasma sampling and treatment for microarray analysis. Top: blood
sampling was conducted around 7:30 on day -1 (control) and day 2 (SD), and plasma was isolated. Bottom: plasma samples from every 3 volunteers
were pooled at random. Subsequently, total RNA was isolated and subjected to microarray analysis. (B) Heat map of the detected circRNA gene
expression between control and sleep deprivation. The data of four groups of pooled plasma samples are present. Hierarchical Clustering was
performed to show the distinguishable circRNAs expression pattern among samples. The heat map was constructed according to the microarray
data. (C) Volcano plot that shows differentially expressed circRNA genes with statistical significance and fold change in the SD and control group.
Significant genes were selected by fold change (>2 or <–0.5) and p-value (<0.05). (D,E) KEGG pathway analysis of upregulated (D) and
downregulated circRNA genes (E) in SD compared to those in control (p < 0.05).
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number of important signaling pathways including PI3K-Akt

signaling pathway, Hedgehog signaling pathway, cGMP-PKG

signaling pathway and phospholipase D signaling pathway, many

basic processed associated with cellular physiology including actin

cytoskeleton, focal adhesion, cell cycle, protein processing in

endoplasmic reticulum, and metabolic pathways including choline

metabolism in cancer, insulin signaling pathway and metabolic

pathways. Neuronal regulatory pathways were also identified, e.g.,

axon guidance, neurotrophin signaling pathway, ampheramine

addiction. Moreover, many pathways involved in cancers and

immunity were also identified, for instance, human T-cell leukemia

virus 1 infection and hepatocelluar carcinoma (Figures 3D,E).
3.4 Changes in the profile of
neurotransmitters and inflammatory factors
caused by sleep deprivation

As the circRNAs profiling results revealed the expression

pathways associated with immunity and neuronal regulation, we

next investigated the influences of SD on neurotransmitters and
Frontiers in Sports and Active Living 06
inflammatory factors. The plasma samples were subjected to

targeted metabolomics analysis to examine the levels of 35

neurotransmitters or related metabolites. Among the

neurotransmitters or related metabolites, 3-hydroxytyramine,

serine, acetylcholine, 3-methoxytyramine and glycine were

undetected in some of the samples; therefore, the data of these

factors were precluded for further analysis. In those detected

neurotransmitters, we found that the level of 3OHB was

significantly decreased (0.72 ± 0.14, p = 0.0002), while the level of

thyroxine increased (1.26 ± 0.06, p < 0.0001) (fold change >1.2 or

<0.83) (Figures 4A–D).

To systematically probe the changes in plasma inflammatory

factors induced by SD, we conducted an antibody microarray

analysis that contained 40 antibodies in total. I-309 in the

control of subject #4 and in the SD of subject #5 was

undetected, which might be due to extremely low levels. Eleven

inflammatory factors with significant changes were identified

through antibody microarray analysis, among which IL-11,

IFNg, EOTAXIN, GM-CSF, IL-5, MIP-1β, IL-1RA, MIG, IL-13,

and IL-17 were upregulated (fold change >1.2), while IL-10 was

downregulated (fold change <0.83) (Figures 5B–M). In contrast,
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FIGURE 4

Sleep deprivation resulted in a changed profile of plasma neurotransmitters. (A) Heatmap of the results from targeted metabolomics analysis. Mean
data of the concentration levels were used for drawing the heatmap. (B) Volcano plot of plasma neurotransmitters before and after SD. (C,D) Relative
levels of 3OBH (C) and T4 (D) in the control and SD groups. The data were normalised to the control. Data are means ± SE. n= 14. Significance was
determined by Student’s t-test. * p≤ 0.05, *** p≤ 0.001.
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IL-6, IL-7, TNFα and TNFβ showed no significant changes in this

study (Figures 5N–P).
4 Discussion

In this study, the volunteers showed changes in a number of

variables, including decreased alertness and increased sleepiness,

which is consistent with previous reports (1, 35). Among these

variables, the changes in circadian patterns of sleepiness, PVT

parameters and salivary cortisone levels are consistent with

previous reports (1, 36). In addition, the subjects showed a

continuously decreased vigilance during SD. Together, these

results validate the present experiments. The trough levels of

tympanic temperature were significantly reduced despite its

unchanged average level during SD (Figures 1D, 2J), suggesting

an occurrence of disturbance in metabolism. The altered body

temperature may contribute to decreased vigilance; in addition,

the present results also suggest that tympanic temperature could

be used to monitor the circadian rhythmicity of CBT.

Sleep restriction disturbs the homeostasis of bone metabolism

(37–39). In this study, plasma calcium was significantly increased

during SD (Figure 2K), which may be associated with bone

absorption (40, 41). Furthermore, induced Ca2+ in SD plasma
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samples was observed in this study (Figure 2K), while it has been

reported that in rats sleep deprivation resulted in decreased plasma

concentration of Ca2+ (6). This inconsistency may be attributed to

species difference or different SD durations. Previously we found

that sleep deprivation plus non-24-h routine resulted in significant

upregulation of TBA (42), while here we found a significant

decrease in plasma TBA (Figure 2N). Despite of the different

changes, these findings together suggest a potential detrimental

influence of SD on the functions of liver and hepatic duct.

circRNAs regulate a diversity of cellular processes at the post-

translational level and they play important roles in the neural

development and progression of neurological disorders (43). In

this study, we identified the alteration of circRNAs implicated

the amphetamine addiction pathway (Figure 3). SD can

potentiate the mesolimbic dopaminergic availability and function,

which mimics the neuropharmacological effects of amphetamine

(44). In addition, the pathways regulating neurotrophins and

axon guidance were also identified (Figures 3D,E).

Neurotrophins, e.g., brain-derived neurotrophic factor (BDNF),

are prominent regulators of neuronal survival, growth and

differentiation during development. BDNF plays an important

role in the pathophysiology of many neurodegenerative disorders,

depression, anxiety and other psychiatric disorders (45). Sleep-

dependent synaptic plasticity is crucial for optimal cognition, and
frontiersin.org
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FIGURE 5

Altered profiles of plasma inflammatory factors due to sleep deprivation. (A) Heatmap of the plasma inflammatory factors in the control (C) and SD (S)
groups detected by antibody microarray. The data were processed by plus one, log2 transformation and z-score normalization from raw data to draw
the heatmap. (B-P) Relative levels of the indicated inflammatory factors in the control and SD groups. The data are shown as the mean ± SE. * p≤ 0.05,
** p≤ 0.01, *** p≤ 0.001, n.s., nonsignificant.
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the axon guidance proteins control structural plasticity of synaptic

connections. Disrupted axon guidance underlies some neurological

disorders which are characterised by structural changes in neuronal

connections (46). These facts suggest that SD may cause deleterious

effects on neural and cognitive functions.

Neurotransmitters coordinatively regulate sleep and

wakefulness (26). For instance, γ - aminobutyric acid (GABA)

inhibits the firing of cells associated with wakefulness (47). As a

neurotransmitter, adenosine has been reported to be induced in

an SD experiment (48). By using the targeted LC/MS

metabolomics method, we found that the levels of circulatory

3OBH and thyroid hormone were altered due to sleep loss.

3OHB, serves as an energy source of acetyl coenzyme A for

maintaining neural function when the plasma glucose level is

reduced (49). At the molecular level, 3OHB regulates neuronal

metabolism by increasing mitochondrial respiration, which
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enhances the expression of BDNF in cultured cerebral cortical

neurons (50). In addition, 3OHB is an endogenous and specific

inhibitor of class I histone deacetylases (HDACs), which protect

neurons against excitotoxicity and oxidative stress and inhibit

inflammatory activation in Alzheimer’s disease (51, 52).

Thyroid hormone thyroxine is the major thyroid hormone that

controls neural development and functions of the central nervous

system (53, 54). It has been proposed that T4 is positively

associated with acetylcholine and cognition (54, 55). In this

study, we found that T4 was significantly but not dramatically

induced by SD (Figure 4D). Supportively, elevated thyroxine was

also found in other studies involving partial sleep restriction and

SD (56–58). Considering the decreased vigilance, the increased

T4 may represent a protective response. Furthermore, the

induction of thyroxine may account for the higher plasma

calcium (59). However, inconsistent changes in thyroxine have
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also been reported. For instance, T4 reduction was observed mainly

in female participants in a sleep restriction study (60). In rats, the

levels of free thyroxine were decreased in two different SD

experiments (61, 62). Moreover, significant increases in

tryptophan and serotonin wakefulness have been demonstrated

during a continuous 24-h period (27). In contrast, in this work,

no significant changes in either tryptophan or serotonin were

observed (Figures 4A,B). These inconsistences suggest that the

effects of SD on these factors remains further validation.

Sleep disturbances lead to various consequences on immunity,

e.g., increased risks of infection and cancer, exacerbation of

autoimmune diseases, neurodegenerative diseases and metabolic

and vascular diseases (15–19). In different SD experiments, the

induction of IL-6 and TNFα has been reported (9–12).

Furthermore, changes in the levels of other inflammatory factors

were observed, for instance, the activation of toll-like receptor-4,

STAT1, STAT3, STAT5, TNF-α receptor R1, and TLR-4, and the

reduction of IGF-I (11, 14, 20). At the mRNA level, a 25-h sleep

deprivation induced the expression of whole-blood of TNF-α and

its receptors R1 and TLR4, while IL-6 remained unchanged (9).

The nocturnal increase in IL-6 occurred in stage 1–2 sleep and

rapid eye movement sleep, and partial sleep deprivation delayed

the increase in the plasma level of IL-6 (21).

Nonetheless, a recent meta-analysis excluded the association

between IF-6 and TNFα and sleep deprivation or sleep restriction

(13). Consistently, we systematically measured the protein levels of

40 using antibody microarray and found that there was no

significant change in plasma IL-6, TNFα and TNFβ between the

control and SD groups. Instead, decreased plasma levels of IL-10

and increased levels of ten factors were found in this study, which

play roles in promoting tissue inflammation (Figure 5). IL-10 is an

anti-inflammatory cytokine that limits or suppresses immune

responses (63). In contrast, the ten factors, which were induced by

SD, function to promote immune responses or inflammation

through different pathways. In addition, the decrease in 3OBH

supports the occurrence of inflammation, as it is an inflammation

inhibitor. The converse alterations of IL-10 and the ten

inflammation factors suggest a disturbance of the balance between

proinflammatory and anti-inflammatory effects (64). These data

suggest that sleep insufficiency may cause immunity disturbance.

Interestingly, a recent study revealed that in mice a 4-days long

SD induced severe inflammation through elevating the

prostaglandin D2 efflux across the blood-brain-barrier (65). This

mechanism may also account for the upregulation of inflammation

factors caused by SD in human.
5 Conclusions

In this study we demonstrated that sleep deprivation can cause

extensive physiological, biochemical and cognitive changes. The

neurotransmitters and inflammatory factors identified in this

study may serve as potential biomarkers for sleep deprivation.

The findings in the present study may provide new insights into

the adverse consequence of sleep deprivation and the regulation

of human sleep.
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6 Limitations

The volunteers lived in a well-controlled indoor environment

in the institute, due to the limited room, high organization

workload and expense for the tests and measurements, we

recruited only 17 volunteers in this study. In the future, some of

the results may be necessary to be validated in a larger size of

samples. In addition, we only drew the blood samples at two

time points prior to and after SD in this study. If the blood

samples had been drawn at more time points, the changes in the

rhythmicity of plasma neurotransmitters and inflammatory

factors could be analysed, which may provide more helpful

information in understanding the SD effects.
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