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Motor flexibility to stabilize the
toe position during obstacle
crossing in older adults: an
investigation using an
uncontrolled manifold analysis
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1Department of Health Promotion Science, Tokyo Metropolitan University, Tokyo, Japan, 2Japan
Society for the Promotion of Science, Tokyo, Japan, 3University Education Center, Tokyo Metropolitan
University, Tokyo, Japan, 4Department of Physical Therapy, School of Health and Social Services,
Saitama Prefectural University, Saitama, Japan
Introduction: An age-related decrease in the ability to exploit the abundant
degrees of freedom of the body, referred to as motor flexibility, leads to a
heightened fall risk. The present study investigated motor flexibility to stabilize
the toe position during obstacle crossing in older adults and its correlation
with the magnitude of foot elevation.
Methods: Twenty-six older adults (70.9 ± 7.4 years old) and 21 younger adults
(25.4 ± 5.0 years old) walked and crossed an obstacle, during which the
dominant limb was always the leading limb. An uncontrolled manifold (UCM)
analysis was used to quantify the flexibility during obstacle crossing as the
synergy index, with the vertical toe position being regarded as the performance
variable and the segment angles of the lower limbs as the elemental variables.
Results and discussion: The results showed that older participants had a
significantly lower synergy index for the trailing limb before the moment of
obstacle crossing than younger participants, suggesting reduced flexibility in part.
The results also showed that, regardless of age, foot elevation was negatively
correlated with the synergy index, suggesting that a so-called “conservative
strategy” (i.e., a tendency to show extraordinarily high foot elevation to ensure
collision avoidance) may be related to their reduced motor flexibility.
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Introduction

Precisely controlling the toe position is critical to avoiding tripping and destabilization

when stepping over an obstacle (1–3). Experimental studies have produced contradictory

findings about the foot elevation of older adults in the vertical dimension in stepping over

an obstacle. In some studies, older adults showed a lower foot elevation (i.e., lower

clearance height), which could lead to tripping (4, 5). In other studies, older adults

exhibited a higher foot elevation while stepping over an obstacle (2, 6, 7). Although

such behavior, which has been referred to as “a conservative strategy” (6, 7) is helpful

to avoid tripping as a result of creating a greater safety margin, this behavior could also

result in destabilization, which could also lead to falls (8–11). These findings suggest
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that not only much lower foot elevation but also much higher foot

elevation during stepping over an obstacle of height could lead to

falls due to tripping or destabilization, respectively.

Precisely controlling the foot elevation to step over an obstacle

may be achieved with flexible control of body parts, termed motor

flexibility. Motor flexibility is defined as “the ability to

synergistically control the abundant degrees of freedom (DoFs) of

the body to ensure stable performance of a task” (12). For several

reasons, such as the existence of neuromotor noise, having

different sets of joint coordination is beneficial for accomplishing a

same task goal, rather than mastering coordination of a single set of

joints (13). For example, when reaching for a target with the

fingertips, a combination of shoulder, elbow, and wrist joint angles

(i.e., the element variables) is controlled to stabilize the fingertip

position [i.e., the performance variable (14)]. Even when an obstacle

exists on the usual reaching trajectory, various movement patterns

can be used to successfully reach for a target by altering the

combination of these joint angles (14). When elevating the foot to a

certain height, a combination of hip, knee, and ankle joint angles is

controlled to stabilize the foot position. Even when one joint is fixed

or cannot be used due to injury, various movement patterns can be

used to succeed in elevating to the same height by altering the

combination of these joint angles. Considering these cases, it is

natural to consider that motor flexibility would be the key to

achieving precise control of foot elevation for stepping over an obstacle.

Several studies have reported age-related decreases in motor

flexibility. Verrel et al. (15) investigated the age-related difference

in motor flexibility in a manual pointing task. Uncontrolled

manifold (UCM) analysis is a technique used to quantify motor

flexibility by exploiting the abundant DoFs (i.e., the elemental

variable) to ensure the critical variable (i.e., the performance

variable) as the synergy index (12, 14, 16, 17). The higher

synergy index means greater motor flexibility (12, 14). Verrel

et al. (15) showed that the synergy index related to coordination

across joints to stabilize fingertip position in older adults was

significantly lower than that in younger adults, despite the fact

that the endpoint precision was similar between the two age

groups. Consistently, Hsu et al. (18) also showed age-related

decreases in motor flexibility for maintaining balance during

upright standing. The results showed that the synergy index

during maintaining balance in older adults was lower than that

in younger adults. These results suggest that motor flexibility to

stabilize the performance variable is decreased in older adults.

Recently, Yamagata et al. (11) reported an age-related decrease

in motor flexibility to maintain stability during stepping over an

obstacle and its relation to higher foot elevation. In Yamagata

et al., healthy older adults walked and crossed an obstacle with a

fixed height (8 cm). Yamagata et al. used UCM analysis, in which

the center of mass (COM) position was set as the performance

variable, while segment angles of the body were set as elemental

variables, and they calculated the synergy index during stepping

over an obstacle with both the leading and trailing limbs. The

results showed that the synergy index was lower for the trailing

limb than for the leading limb, suggesting less stability when an

obstacle is stepped over with the trailing limb. Notably, they

found that the synergy index was negatively correlated with the
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maximum foot elevation in the trailing limb. The findings of

Yamagata et al. are particularly important for the present study

because they indicate that age-related instability during stepping

over an obstacle is associated with lower motor flexibility, as well

as higher foot elevation, i.e., the conservative strategy.

The present study investigated motor flexibility for stabilizing

the toe position during obstacle crossing in older adults and its

correlation with the magnitude of clearance height. The present

study was designed to extend the knowledge obtained by

Yamagata et al. (11). There were two main differences between

Yamagata et al. and the present study. First, whereas Yamagata

et al. used the COM position as the performance variable to

examine motor flexibility to maintain stability of the whole body,

we used the toe position in the vertical direction to examine

motor flexibility to achieve precise control of the toe height.

Second, while Yamagata et al. examined motor flexibility only in

older adults, the present study compared performances of older

adults with those of younger adults to clearly show that the data

obtained from the older participants represent age-related changes.

To investigate whether motor flexibility to ensure foot elevation

is lower in older adults than in younger adults, we conducted the

UCM analysis in which toe height was used as the performance

variable. Based on the previous studies showing an age-related

decrease in the adjustment of foot elevation with both the

leading and trailing limbs (2, 6), we conducted UCM analysis for

the leading and trailing limbs. Furthermore, UCM analysis was

conducted not only at the moment of obstacle crossing but also

for the whole swing phase. Although the toe position at the

moment of obstacle crossing is critical, movement during the

swing phase, especially before stepping over an obstacle, affects

that position (2, 4, 8). Based on these studies, we conducted

UCM analysis for the whole swing phase to examine whether

there would be age-related decline in motor flexibility for

controlling the toe height during the swing phase before stepping

over an obstacle (i.e., the pre-crossing phase).

The excessive foot elevation was not only related to a loss of

balance in older adults, but also may be related to reduced motor

flexibility to ensure foot elevation. A relevant previous study

showed that inactive older adults, who walked less frequently in

their daily activities, showed more stereotyped walking patterns

than active older adults (19). This implies that inactive older

adults have less opportunity to adjust their movements in

response to environmental changes, resulting in more stereotyped

(less flexible) behavior. If this is the case, then we assume that

adopting a conservative strategy allows older adults to perform a

one-size-fits-all pattern (i.e., exaggerated movement pattern) and

could lead to the decline in motor flexibility. Alternatively,

independent of the age-related decline in physical/motor

functions, highly elevating the foot with extreme joint angles (i.e.,

greater hip, knee, and ankle flexions) leads to reduced joint range

of motion (ROM), resulting in lower motor flexibility. Therefore,

we considered that a conservative strategy may be associated with

the decline in motor flexibility.

There were two hypotheses in the present study. The first

hypothesize was that the synergy index (ΔVz) is lower in older

adults than in younger adults with both the leading and trailing
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limbs in the pre-crossing phase including at the moment of

obstacle crossing. The second hypothesis was that, consistent

with the findings of Yamagata et al. (11), higher foot elevation

(i.e., a conservative strategy) is associated with less motor

flexibility. Specifically, we expected that foot clearance (equivalent

to foot elevation), calculated as the distance between the toe and

the obstacle, was negatively correlated with the ΔVz with both

the leading and trailing limbs.
Methods

Participants

Twenty-six older adults (12 males and 14 females, 70.9 ± 7.4

years) and 21 younger adults (16 males and 5 females, 25.4 ± 5.0

years) participated. The sample sizes were determined based on

similar studies (11, 20, 21) and a priori power analysis assuming

a correlation analysis. We calculated the sample size based on the

power analyses with G∗Power: effect size = 0.5, significant

threshold (α) = 0.05 and power levels (1-β) = 0.8. The effect size

0.5 was decided based on similar previous report (11). In the

sensitivity power analysis for the t-test, the effect size (Cohen’s

d) was calculated to be 0.84: sample size = 47 (21 for younger

adults and 26 for older adults) α = 0.05 and 1-β= 0.8. We

checked on a self-reported basis that all participants had normal

or corrected-to-normal vision, no current musculoskeletal

injuries, and no neurological disorders. For older participants,

cognitive and mobility function were assessed using the Mini-

Mental State Examination [MMSE (22)] and the Timed Up and

Go (TUG) test (23). No cognitive impairment (MMSE score≧ 24

points (22); and mobility impairment [TUG score < 13.5 s (24)]

were inclusion criteria for older adults. The study was approved

by the Ethics Committee of Tokyo Metropolitan University,

Japan (H3–129). All methods were carried out in accordance

with relevant guidelines and regulations. Written informed

consent was obtained from all participants in accordance with

the Ethics Committee of Tokyo Metropolitan University and the

Declaration of Helsinki.
Procedures

The experiment was conducted in a 6.7 m × 4.9 m room at

Tokyo Metropolitan University. The obstacle consisted of two

aluminum poles (1.91 m tall and 0.03 m in diameter) and a

horizontal wooden bar (1.2 m wide and 0.05 m in diameter)

covered with a padding. A bubble wrap was used for padding to

prevent injuries in collisions. The obstacle height was set at 8 cm

including the padding. Participants walked along a straight 4 m

path and crossed the obstacle—which was located 3 m from the

starting position—at a comfortable pace, repeated 20 times.

Sampling of 15–20 trials were recommended for reliable

quantification of the UCM analysis in locomotor task (25). In

fact, relevant studies using the UCM analysis collected the data

with similar numbers of repetition (e.g., 20 trials in (11). A
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smaller number of repetitions is not ideal for the UCM analysis

because the standard deviation of the variance components does

not stabilize. In each trial, they were asked to cross the obstacle

with their dominant limb (defined as the kicking foot) as the

leading limb [(26); Figure 1A]. The first step of gait initiation

was chosen by each participant. There were no any other

instructions for crossing (e.g., to cross as low as possible). Trials

in which participants accidentally contacted an obstacle were

regarded as unsuccessful trials and were excluded from the

analyses. An additional trial was run until the number of

successful trials reached a total of 20. In total 940 trials, there

was only a single trial in which a collision—by an older

participant—occurred. Prior to performing the main trials,

participants performed five practice trials to familiarize

themselves with the task, and the starting position was adjusted

so that the leading limb was the dominant limb.
Data collection

Before the experiment, participants’ heights and leg lengths

were measured in cm, and their weights were measured in kg. A

three-dimensional (3D) motion analysis system (OQUS 300,

Qualisys, Sweden) with 17 cameras was used to analyze the

kinematic data relating to the behavior of stepping over an

obstacle. Twenty-six reflective markers were placed on both sides

of the body and trunk as follows: ear canal, acromia, olecranon

processes, styloid processes of the ulnae, 7th cervical, 10th

thoracic vertebra, xiphoid process, manubrium sterni, anterior

superior iliac spine, posterior superior iliac spine, greater

trochanter, lateral femoral condyles, lateral malleolus, calcaneus,

and second metatarsal. Two additional reflective markers also

were placed on the top right and left edges of the obstacle. The

sampling frequency was 120 Hz. The 3D data for all markers

were low-pass filtered at 6 Hz with a fourth-order Butterworth

algorithm. All data analysis was conducted using MATLAB

(R2022a, MathWorks Inc., Natick, MA, USA).

We defined the moment of obstacle crossing as the moment

when the marker on the toe crossed the marker on the obstacle

in the anterior–posterior (AP) direction. All kinematic

parameters, including UCM analyses, calculated the swing phase

(from toe-off until heel contact) when the leading and trailing

limbs crossed an obstacle (e.g., the leading limb and the trailing

limb). Toe-off and heel contact events were determined using the

displacements of the toe and heel markers in the vertical (V)

direction, respectively (27). Specifically, toe-off occurs at the

lowest position of the toe marker, while heel contact occurs at

the lowest position of the heel marker. We divided the swing

phase into two phases (e.g., pre-crossing and post-crossing

phases) and normalized each phase to 100% (Figure 1B). In the

pre-crossing phase, 0% represented toe-off, and 100% represented

the moment of obstacle crossing. In the post-crossing phase, 0%

represented the moment of obstacle crossing, and 100%

represented heel contact. Because the moment of obstacle

crossing is the most critical for avoiding stumbling, we divided

the swing phase based on the moment of obstacle crossing.
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FIGURE 1

(A) participants walked and crossed an obstacle 20 times, during which the dominant limb was always the leading limb. Foot clearance was calculated
as the vertical (V) distance between the markers on the obstacle and on the toe at the moment of obstacle crossing. Because of anthropometric
differences between older and younger adults, each parameter was normalized to the participant’s leg length to account for between-subject
differences. (B) Definition of the pre-crossing and post-crossing phases for the leading and trailing limbs. The moment of obstacle crossing was
defined as the moment when the toe marker crossed the obstacle marker in the anterior–posterior (AP) direction. Each phase was shown as the
normalized movement time. In the pre-crossing phase, 0% represented toe-off, and 100% represented the moment of obstacle crossing. In the
post-crossing phase, 0% represented the moment of obstacle crossing, and 100% represented heel contact.
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Parameters

We calculated parameters representing the movement of

stepping over an obstacle for both the leading and trailing limbs:

foot clearance (Figure 1A). Foot clearance was the vertical (V)

distance between the markers on the obstacle and on the toe at

the moment of obstacle crossing. The center of mass (COM)

position of the whole body was calculated as the sum of body

segmental COM based on the previous study (28). The COM

position at the moment when the COM crossed the marker on

the obstacle in the AP direction was used for the calculation of

the gait speed. We also calculated the toe-displacement variability

in the V direction during the pre-crossing phase and the post-

crossing phase. First, toe displacements were calculated. The V toe

displacements were expressed relative to the ground. Then, the

toe-displacement variabilities were calculated by the standard

deviations of toe displacements across 20 trials and averaged for

every 20% of the movement time. Each parameter was normalized

to the leg length to account for differences between subjects.
UCM analysis

The ability to exploit the abundant DoFs of the body when

stepping over an obstacle was evaluated using UCM analysis (11,

14, 17, 29). For the UCM analysis, kinematic data were time-
Frontiers in Sports and Active Living 04
normalized (see data collection). We used toe position in the V

direction as the performance variable because the motor

flexibility to stabilize the toe height played an important role in

avoiding collisions. The elemental variables for the performance

variable were the elevation angle of each lower limb segment

(Figure 2). We defined the seven body segments (right/left foot,

right/left shank, right/left thigh, and pelvis). The elevation angles

were calculated as the angles between each segment vector and

the horizontal plane (Figure 2). The reason for using segment

angles instead of joint angles was that many prior studies on

walking deal with segment angles rather than joint angles

(30–34). Then, we created a geometric model that has 7 DoFs for

the V direction (TOEV) (30, 35), as follows:

TOEV ¼ L1 sina1 þ L2 sina2 þ L3 sina3 þ . . . þ L7 sina7

where L is the length of each segment, and α is the elevation angle.

A Jacobian (J ) matrix was calculated to obtain a linearization

approximation of the geometric model of the performance

variable. J is the matrix of partial derivatives of changes in the

performance variable with respect to the elemental variables, and

the null space (E) was calculated to provide basis vectors

spanning the J. The E represented n-d vectors by the number of

dimensions of the elemental variables (n) and the performance

variable (d). In this study, n = 7 and d = 1 were used for the

TOEV. At every point of the crossing phase, the differences
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FIGURE 2

Geometric model for UCM analysis. L represents each segment length. The segments were defined by the following markers: each foot (L1, L7) is from
the second metatarsal to the lateral malleolus; each shank (L2, L6) is from the lateral malleolus to the lateral femoral condyles; each thigh (L3, L5) is
from the lateral femoral condyles to the anterior superior iliac spine; and the pelvis (L4) is connected to the right and left anterior superior iliac spine.
The elevation (α) angles for each segment were calculated as shown in the figure on the right, with the starting point of each segment as A and the
endpoint as B from the x-axis of the global reference frame.
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between the elemental configurations (u) and their mean (�u) were

projected onto the null space:

uUCM ¼
Xn�d

i

(u� �u) � Ei,

and onto a component orthogonal to this subspace:

uORT ¼ (u� �u) � uUCM:

VUCM and VORT were calculated as the variance of the θUCM and

θORT and normalized by DoFs within the UCM subspace and

ORT subspace, respectively. These variances were calculated as

the average of the trial:

VUCM ¼ 1
(n � d) � N

X
(uUCM)

2,

VORT ¼ 1
d � N

X
(uORT )

2,

where N was the trial number. The VUCM is a variance that has no

effects on the performance variable, and the VORT is another

variance that negatively affects the performance variable. We also
Frontiers in Sports and Active Living 05
calculated the synergy index (ΔV) as the proportion of the

difference between VUCM and VORT:

DV ¼ VUCM � VORT

VUCM þ VORT
:

A higher ΔV reflects more solutions (i.e., one’s goal by combining

DoFs in different ways) utilized to stabilize the performance

variable. For statistical analysis, ΔV was transformed using

Fisher’s z-transformation (ΔVz) (36).

We used three outcomes (VUCM, VORT, and ΔVz) to investigate

differences in the motor flexibility of older and younger adults. All

data obtained from the UCM analyses computed at each point in

normalized time were then averaged for every 20% of the

normalized time (20, 21).
Statistical analysis

Before statistical analyses, the data were tested for statistical

assumptions of normality. The height, weight, leg length, gender

ratio, normalized foot clearance, normalized toe displacement

variabilities, VUCM, and VORT did not achieve normality for

participants. For VUCM and VORT, we used log-transformation

(34). A Mann–Whitney U-test was used to compare participants’
frontiersin.org
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characteristics (height, weight, and leg length), excluding gender.

A Pearson’s chi-squared test was conducted to compare the

gender ratio. A Mann–Whitney U-test was also performed on

the normalized toe clearance and normalized toe-displacement

variabilities. Student’s t-test was performed on the gait speed, the

ΔVz, Log(VUCM), and Log(VORT) to compare older and younger

adults. We showed the results of the Log(VUCM) and the Log

(VORT) in the Supplementary Figure S1, not in the main

manuscript, considering the preliminary analyses showing that

these parameters represented no trend for discussion with our

main results. A Spearman’s correlation analysis was used to

examine the relationship between the ΔVz in the V direction for

all participants and the normalized foot clearance under the

leading and trailing limbs. Statistical analyses were performed

using IBM Statistical Package for the Social Sciences (SPSS) for

Windows, version 28 (IBM Corp., Armonk, N.Y., USA).

Statistical significance was set at p < 0.05.
Results

Participant details

Participants’ characteristics are summarized in Table 1. The

gender ratio was significantly different between older and

younger adults. Height was significantly lower in older adults

than in younger adults. No significant difference between older

and younger adults was found in weight or leg length. All older

adults were right-limb dominant, while 19 of 21 younger adults

were right-limb dominant. Gait speed was significantly lower in

older adults than in younger adults.
Lower limb movement when stepping over
an obstacle

Figure 3A shows parameters representing the movement of

stepping over an obstacle—the normalized foot clearance in the

leading and trailing limbs. No significant differences between

older and younger adults were found in the leading (p = .653)
TABLE 1 Participants’ details: mean ± standard deviation.

Younger adults
(n = 21)

Older adults
(n = 26)

p-value

Gender (male/female)a 16/5 12/14 p = .037

Age (years)b 23.28 ± 4.95 70.90 ± 7.43 –

Dominant limb (right/left) 19/2 26/0 –

Height (cm)b 168.97 ± 7.58 160.82 ± 9.54 p = .009

Weight (kg)b 60.57 ± 10.46 57.67 ± 11.64 p = .600

Leg length (cm)b 76.04 ± 3.89 74.76 ± 4.67 p = .472

Gait speed (m/s)c 1.28 ± 0.17 1.11 ± 0.15 p < .001

TUG (s) – 7.27 ± 1.21 –

MMSE (points) – 29.43 ± 1.21 –

TUG, timed up and go test; MMSE, mini-mental state examination.
aPearson’s chi-square test.
bMann–Whitney U-test.
cStudent’s t-test.
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and trailing (p = .669) limbs. Furthermore, the normalized foot

clearance for each trial at each participant are shown in

Supplementary Figures S2, S3. Visual inspection of the figure

shows that no trend for foot clearance in the leading and trailing

limbs to change from the first half of the trial to the second half

was observed in older and younger adults. Figure 3B shows the

toe displacement variabilities in the V direction. There were no

significant differences between older and younger adults in the

leading and trailing limbs during all phases.
The synergy index by UCM analysis

The mean ΔVZ is shown in Figure 4A. In the trailing limb

during the pre-crossing phase, the ΔVZ in older adults was

significantly smaller than that in younger adults at 21%–40% [t

(45) = 2.03, p = .048], 41%–60% [t(45) = 2.41, p = .020], and 61%–

80% [t(45) = 2.20, p = .034]. No significant difference was found

in the trailing limb during the pre-crossing phase at 1%–20%

and 81%–100% and during the post-crossing phase at all

normalized movement times. No significant difference was found

in the leading limb during all phases.

Figure 4B shows the results of correlation analysis between the

ΔVZ at the moment when stepping over the obstacle and foot

clearance. Foot clearance was negatively correlated with the ΔVz

in the leading limb (r =−.48, p < .001). However, no significant

correlation was found in the trailing limb (r =−.27, p = .063).
Discussion

The results showed that, for the trailing limb, during the pre-

crossing phase, the ΔVZ was significantly lower in older adults

than in younger adults (Figure 4A). This partly supports the first

hypothesis, in that, at least for specific limb in specific phases,

motor flexibility was decreased in older adults. The results also

showed that, regardless of age, foot clearance was negatively

correlated with the ΔVz in the leading limb (Figure 4B). This

supports the second hypothesis, that foot clearance is negatively

correlated with the ΔVz.

UCM analysis showed that older participants had a reduced

ΔVz with the trailing limb in the 21%–80% pre-crossing phase.

Yamagata et al. (11) selected the COM position as the

performance variable for the UCM analysis. In the present study,

toe height was selected as the performance variable. Our findings

provide insight into motor flexibility, particularly from the

perspective of precisely controlling toe height. It is possible that,

independent of the age-related decline in physical/motor

functions, highly elevating the foot with extreme joint angles (i.e.,

greater hip, knee, and ankle flexions) leads to reduced ROMs,

resulting in lower motor flexibility. However, our results showed

that normalized foot clearance was not significantly different

between older and younger participants (Figure 3A), implying

that the reduced motor flexibility in the present study was not a

by-product of extreme joint angles with reduced joint ROMs.

Instead, we assumed that an age-related decline in motor
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FIGURE 3

(A) graphs of the normalized foot clearance (foot clearance/leg length) in the leading/trailing limbs. Error bars represent the standard deviation. (B)
Graphs of foot displacement variabilities for the V direction. The toe-displacement variabilities were calculated by the standard deviations of the
toe displacement across 20 trials and then averaged for every 20% of the movement time. Error bars represent the standard deviation among
participants.
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flexibility would be involved. Moreover, the age-related decrease in

motor flexibility for stabilizing toe height was also limited before

the moment of obstacle crossing (the pre-crossing phase). This is

consistent with the previous study which used the reaching task

(15). These results suggest that older adults were unable to adjust

their flexibility just before the obstacle-crossing rather than at the

most critical point (e.g., the moment of obstacle-crossing).

An age-related decrease in motor flexibility for stabilizing the

toe height to step over an obstacle was observed only with the

trailing limb. This was inconsistent with our hypothesis of a

significantly lower ΔVz with both the leading and trailing limbs.

A possible explanation for the result is that control of the leading

limb was less susceptible to aging due to the availability of vision

for its control. Motor flexibility for stabilizing the COM position

during walking was higher when vision was available than when

vision was unavailable (37). Online visual information,

particularly below the peripheral vision, is available for stepping

over an obstacle with the leading limb, but not with the trailing

limb. The effects of aging may be more pronounced when vision

is less involved in the control of movement.

The decrease in the ΔVZ in older adults would be due to a

reduction in the movement patterns of combinations of joint
Frontiers in Sports and Active Living 07
angles. The ΔVZ was decreased by a reduction in motor solutions

or an increase in the variability of the performance variable—

which reflects instability (14, 38). In the present study, the results

of the toe-displacement variability (Figure 3B) showed that the

accuracy of the toe height (the performance variable) did not

differ between older and younger adults. Therefore, the present

findings suggest that older adults ensured the accuracy of the

performance variable across trials but utilized fewer motor

solutions to stabilize the performance variable when stepping

over an obstacle.

Correlation analysis showed that higher foot clearance was

associated with less flexibility to stabilize the toe height in the

leading limb. A conservative strategy would be observed frequently

in older adults (2, 6–8) because the strategy is beneficial to

minimize the risk of tripping. However, previous studies have

indicated that the conservative strategy may disturb balance

maintenance (8, 11). Using toe height as the performance variable

in UCM analysis, the present results showed another disadvantage

of taking a conservative strategy: higher foot elevation was

associated with less ability to flexibly adjust toe height.

The results of correlation analysis may be interpreted

bidirectionally. On one hand, a conservative strategy might
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FIGURE 4

(A) mean ΔVz in the leading and trailing limbs. The two left panels indicate the ΔVz in the leading limb, and the two right panels indicate the ΔVz in the
trailing limb. Error bars also represent the standard deviation among participants, and * indicates a significant difference. (B) The results of Spearman’s
correlation analysis for examining the relationship between the ΔVz for all participants and the normalized foot clearance of the leading (left panel) and
the trailing (right panel) limbs.
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prevent a person from fine-tuning his behavior in response to

environmental changes, as a conservative strategy enables the

avoidance of any characteristic of obstacles with a stereotyped

behavior. Therefore, a repeated conservative strategy may induce

less flexibility. On the other hand, age-related decrease in motor

flexibility may lead older adults to adopt a conservative strategy.

Tripping with an obstacle has a major impact on maintaining

stability, particularly for those who are less capable of recovering

trip-induced destabilization (39). They would have no choice but

to take a conservative strategy (higher foot elevation to avoid

collision with an obstacle). Future studies are necessary to

address more clearly what the association between higher

foot clearance and lower motor flexibility for stabilizing the toe

height means.

For successful obstacle crossing, not only the toe height but

also the other critical variables need to be controlled. Incorrect

foot placement before stepping over an obstacle (i.e., too far or

too close to it) could lead to tripping (4, 6, 40, 41). Moreover,
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obstacle crossing involves not only successful foot elevation but

also maintaining stability. In our study, we focused only the V

direction of the toe position to address the present question.

Future studies which consider other critical variables to achieve

successful obstacle crossing are necessary to folly explain the how

relevant body parts are to be coordinated.

The characteristics of the movement during stepping over an

obstacle showed a few insights. First, the mean normalized foot

clearance indicated similarities between the previous and present

studies (2, 7). In the present study, because the obstacle used in

this study was of low height (8 cm), no difference between older

and younger adults was found in normalized foot clearance.

Previous studies have showed no difference in the foot clearance

of older and younger adults on obstacles of low height; however,

as the height of the obstacle increased, older adults had greater

foot clearance than younger adults (2, 7). Second, the results of

the normalized foot clearance for each trial at each participant

showed that no learning effects or adaptation in toe clearance
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over the repetitions of 20 trials both the leading and trailing limbs.

We therefore believe this has no impact on the results of the UCM

analysis. Third, the gait speed results showed slower speed for older

participants than younger participants. This indicated that older

participants had low gait ability compared to younger adults.

However, we believe this does not have a significant impact on

the results, based on a previous study demonstrating that the gait

speed does not affect the results of the UCM analysis (42).

This study had two limitations. First, the height of the obstacle

was fixed at 8 cm. Repetition in stepping over an obstacle of the

same height was necessary to conduct the UCM analysis.

Although the UCM analysis allows researchers to quantify the

coordination of elemental variables toward a particular goal, it is

only applicable to the multiple measurements of the same

movement. It cannot be applied to movements on stepping over

different heights of obstacles. However, the use of a constant

height for all participants means that the impact of the obstacle

height could be different based on participants’ leg lengths. The

significantly lower height of the older participants than younger

participants means that the task could be of relatively greater

difficulty for older adults. We believe that the impact would be

relatively small, if any, given that the obstacle height of 8 cm is

low enough. Second, in the present study, the older adults had

high mobility function. Table 1 shows that all older participants

were above the TUG cutoff value. However, the age-related

decrease in motor flexibility should have impacted more severely

those with decreased physical function (12, 43). In fact,

Yamagata and colleagues reported that older adults with histories

of falling showed less kinematic synergy during walking (43).

In conclusion, our results showed that motor flexibility for

stabilizing the toe height of older adults was lower than that of

younger adults, at least with the specific limb in pre-crossing

phases. These results suggest that older adults may have less

flexibility in adjusting to environmental changes and unexpected

perturbations (18, 44, 45, 45) when stepping over an obstacle. In

addition, regardless of age, a conservative strategy was associated

with decreased motor flexibility in the leading limb. A

conservative strategy may not necessarily be useful, in that it may

induce less flexibility in response to environmental changes.
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