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Generalization in de novo
learning of virtual upper limb
movements is influenced by
motor exploration
Tomoya Kawano1, Motoki Kouzaki2,3 and Shota Hagio1,3*
1Laboratory of Motor Control and Learning, Graduate School of Human and Environmental Studies,
Kyoto University, Kyoto, Japan, 2Laboratory of Neurophysiology, Graduate School of Human and
Environmental Studies, Kyoto University, Kyoto, Japan, 3Unit of Synergetic Studies for Space,
Kyoto University, Kyoto, Japan
The acquisition of new motor skills from scratch, also known as de novo
learning, is an essential aspect of motor development. In de novo learning, the
ability to generalize skills acquired under one condition to others is crucial
because of the inherently limited range of motor experiences available for
learning. However, the presence of generalization in de novo learning and its
influencing factors remain unclear. This study aimed to elucidate the
generalization of de novo motor learning by examining the motor exploration
process, which is the accumulation of motor experiences. To this end, we
manipulated the exploration process during practice by changing the target
shape using either a small circular target or a bar-shaped target. Our findings
demonstrated that the amount of learning during practice was generalized
across different conditions. Furthermore, the extent of generalization is
influenced by movement variability in the control space, which is irrelevant to
the task, rather than the target shapes themselves. These results confirmed
the occurrence of generalization in de novo learning and suggest that the
exploration process within the control space plays a significant role in
facilitating this generalization.
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1 Introduction

New motor skills are acquired when starting a new activity. For instance,

beginner tennis players improve their abilities through consistent practice over

time. In motor-skill acquisition, a variety of practices are crucial for motor

exploration (1). For example, in the context of mastering tennis, precise targeting

of various areas of the court and executing shots from different locations are

perfected through many rounds of practice. Previous studies have demonstrated

that the outcome of motor learning depends on the motor exploration

process associated with the learning methods (1–3). However, the effect of the

motor exploration process on the acquisition of new motor skills from scratch

remains unclear.

The process of acquiring entirely new motor skills, referred to as de novo learning,

involves constructing a new controller that implements a novel sensorimotor

transformation (4–6). De novo learning has been studied using tasks that require
01 frontiersin.org
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participants to learn new mapping of their body position to the

location of an on-screen cursor (7, 8). This learning process

differs from motor adaptation, which refers to the ability to

adjust an existing controller to adapt to a changing environment

(9–11). In adaptation tasks, when participants practiced one

condition, the amount of learning was generalized to other

conditions (12, 13). The motor experience available for learning

is inherently limited when acquiring new motor skills from

scratch. Consequently, in de novo learning, the ability to

generalize the skills acquired for one condition to new conditions

plays a crucial role in facilitating learning. In addition, previous

studies have demonstrated that in force field adaptation, a

generalization pattern is formed around actual rather than

planned movements (14, 15). These results suggest that the

motor exploration process, that is, how motor experience

accumulates, is important for the generalization of learning.

However, the relationship between the exploration process during

de novo learning and generalization remains unclear.

Motor variability plays the role of motor exploration, which

is necessary to learn a new motor skill (16). Several studies

have reported that motor variability in the control space

facilitates motor learning (17–20). In redundant motor tasks,

the control space is comprised of two subspaces: task-relevant

and task-irrelevant space (21, 22). To minimize motor errors

during the learning process, motor commands must be

modified in a task-relevant space (23). Therefore, the motor

system must explore the motor commands and identify the

task-relevant space. Moreover, a previous study theoretically

demonstrated that motor exploration in a task-irrelevant

space facilitates de novo learning (23). Therefore, in this

study, we attempted to manipulate the exploratory process

during de novo learning.

Previous studies demonstrated that the control strategy during

upper limb reaching movements varied depending on the shape of

the target (24, 25). For instance, when reaching toward a small

circular target is laterally perturbed, corrective movements are

elicited, directing the movement towards the location of the

target. In contrast, when perturbations are introduced while

reaching toward a larger bar-shaped target, movement

trajectories are redirected to different nearby locations along the

bar axis (25). Therefore, we exploited these distinct control

strategies depending on task goals to manipulate the exploration

process during de novo learning. It is expected that when

learning with a small target, motor exploration characterized by

corrective movements will be elicited, whereas when learning

with a wide target, motor exploration involving various reaching

directions will be predominant. We compared skill acquisition

through these two exploratory processes and investigated the

factors affecting generalization in de novo learning.

This study aimed to clarify how the exploration process in de

novo learning affects the generalization of acquired skills. We

designed a de novo visuomotor learning task with two different

exploration processes by changing the shape of the target during

the training phase. Following training, we assessed the ability of

the two exploration processes to broadly and accurately apply the

newly acquired skills.
Frontiers in Sports and Active Living 02
2 Materials and methods

2.1 Participants

Thirty-two right-handed participants without a history of

neurological or motor disorders participated in this study (28 males

and 4 females; aged 22.3 ± 2.06 years, mean ± standard deviation).

They provided informed consent after receiving a detailed description

of the purpose, potential benefits, and risks of the experiment.

All procedures used in this study were performed in accordance

with the Declaration of Helsinki and were approved by the Ethics

Committee for Human Experimentation at the Graduate School of

Human and Environmental Studies, Kyoto University (22-H-21).
2.2 Experimental apparatus

The participants were seated in front of a gamepad

(DUALSHOCK 4, Sony Interactive Entertainment Inc., Japan)

placed on a table equipped with a 27-inch LCD monitor

(Figure 1A). Participants manipulated the two joysticks on the

gamepad using both thumbs. A cursor with a 4 mm diameter

was displayed on the monitor. The cursor position corresponded

to the tip of the virtual two-link arm in the frontal plane

(Figure 1B). The dynamics of the two-link arm are as follows.

t ¼ I(u)€uþ B(u, _u)þ V( _u)

I(u) ¼
I1 þ I2 þm1r21 þm2r22 I2 þm2r22
þm2l21 þ 2m2l1r2 cos u2 þm2l1r2 cos u2
I2 þm2r22 þm2l1r2 cos u2 I2 þm2r22

0
B@

1
CA

B(u, _u) ¼ �m2l2r2(2 _u1 þ _u2) _u2 sin u2

m2l1r2 _u
2
1 sin u2

 !

V( _u) ¼ m _u

where mi = 4 [kg], Ii = 0.27 [kg·m2], ri= 0.15 [m], ℓi= 2ri, and µ = 3

[N·m·s/rad] represent the mass, moment of inertia, the distance from

the proximal joint to the center of mass, and the length of the

proximal (i = 1), distal (i = 2) segments and coefficient of viscosity,

respectively. The cursor movements displayed on the monitor

were determined by the positions of the two joysticks on the two

axes (X- and Y-axes), which were acquired in 16 bit resolution.

The acquired joystick inputs were converted into torques,

τ = (τ1, τ2)
T, for each joint, θ = (θ1, θ2)

T. The joystick provided

two-dimensional inputs corresponding to the left/right and

up/down directions from one side, resulting in four-dimensional

inputs from both sides. However, only the up/down inputs from

both joysticks were used to control the torque, as follows:

t1
t2

� �
¼ 0 a

0 0
0 0
0 a

� � srx
sry
slx
sly

0
BB@

1
CCA

where a (= 10−4) is the coefficient used to convert the joystick

position to the virtual joint torque. The up/down inputs from the

right joystick, sry, and the left joystick, sly, determined the torque
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FIGURE 1

Experimental design. (A) Participants manipulated two joysticks on the gamepad using both thumbs to control the onscreen cursor. (B) Cursor position
corresponding to the tip of the virtual two-link arm in the frontal plane. The up/down inputs from the right and left joysticks determined the torque
applied to the proximal and distal joints, respectively. Therefore, the up/down inputs were directly relevant to the cursor movements (task-relevant).
Conversely, the left/right inputs from both joysticks were irrelevant to the cursor movements (task-irrelevant). (C) In the training task, the participants
were required to quickly move the cursor from the starting position to the target. The participants were divided into two groups based on the target
shapes: small and wide. In the small target condition, the target was a small circle with a 10 mm diameter, whereas in the wide target condition, the
target was an arched and wide shape with a curvature radius of 68 mm, width of 79 mm, and center angle of 60°. (D) The test task involved moving the
cursor towards a target selected pseudo-randomly from 1 of 5 directions: −60°, −30°, 0° (above the starting position), 30°, 60°. (E) Sequence of tasks
across the training and test phases. During the training phase, the participants performed 240 trials divided into eight blocks (30 trials per block).
During the test phase, the participants performed 120 trials divided into four blocks (30 trials per block). (F) Quantification of the movement
direction. The black square represents a bin. The black circles represent cursor points in a trajectory. The green arrow indicates a vector within
the same bin. The red arrow indicates a vector in the adjacent bin.
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applied to the proximal and distal joints and were thus directly

relevant to the cursor movements (task-relevant). Conversely, the

left/right inputs from the right and left joysticks, srx and slx, were

irrelevant to the cursor movements (task-irrelevant). Only the

position of the tip of the two-link arm was visible to the

participants, with the links and joints not visible, ensuring that

the participants did not explicitly realize how the cursor was moving.
2.3 Experimental procedure

The experimental task was to manipulate the cursor quickly

from its starting position to the target. The starting position had

a diameter of 10 mm and was located 15 mm above the center of

the workspace (the proximal joint of the virtual two-link arm

was located at the center). The target position was 68 mm above

the starting position. This study consisted of two phases: the

training and test phase.

In the training phase, participants were divided into two groups:

small target condition (16 participants) and wide target condition

(16 participants). These two conditions differed in target shapes

(Figure 1C). In the small target condition, the target shape was a

small circle with a diameter of 10 mm, whereas in the wide target

condition, the target had an arched and wide shape with a

curvature radius of 68 mm, width of 79 mm, and center angle of
Frontiers in Sports and Active Living 03
60°. In the small target condition, the target position was only

above the starting position (0° direction in the test phase; see

below) throughout the training phase. The experimental

procedures were identical, except for the target shape. After

stopping at the starting position for 1 s, the target appeared and

the participants were allowed to manipulate the cursor. When the

cursor contacted the target, the target color changed from black to

blue, and feedback on the movement duration was provided. And

at that moment, the cursor automatically returned to the starting

position. Therefore, participants could shoot the cursor, and were

not required to stop the cursor on the target. This sequence

constituted one trial and was repeated. The participants were

instructed to reach the target as quickly as possible. In the wide

condition, although the target was wide, no specific instructions

were provided regarding where to aim. A total of 240 trials were

completed and divided into 8 blocks (30 trials per block) during

the training phase (Figure 1E).

The test phase was completed after the training phase. The task

involved manipulating the cursor toward a target selected pseudo-

randomly from 1 of 5 directions: −60°, −30°, 0° (above the starting
position), 30°, 60° (Figure 1D). If the movement duration was less

than 2.3 s, the trial was considered successful. Feedback on success

or failure was provided based on the color of the target (green for

success and red for failure). The movement duration and the 2.3-

second criteria were not provided to participants. The
frontiersin.org
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participants were instructed to aim for as many successful trials as

possible. A total of 120 trials were completed and divided into 4

blocks (30 trials per block) during the test phase (Figure 1E).

Each target position was presented in six trials per block.

The experimental task was performed using a custom

LabVIEW program (National Instruments Corp., Austin, TX,

USA). Data, including the time sequence of the joystick input,

cursor position, joint angle, and angular velocity of the two-link

arm, were acquired at a sampling rate of 100 Hz.
2.4 Data analysis

All data were analyzed using MATLAB R2023a (MathWorks,

Inc., Natick, MA, USA) and R version 4.2.2 (RStudio, Inc.,

Boston, MA, USA). The experiment involved 32 participants;

however, data from one participant in the wide-target condition

during the training phase were lost. Therefore, the training phase

was analyzed using data from 31 participants.

To quantify task performance during the training phase, the

movement duration was calculated as the time elapsed between

the initiation of the task (when the target appeared) and

termination (when the cursor contacted the target). Tortuosity, a

measure of path straightness, was calculated as the total path

length divided by the distance between the start and end

positions of the cursor movement (26). A tortuosity value closer

to 1 indicates a straight cursor trajectory.

The spatial exploration during the training phase as the directional

variability of the cursor in the workspace was quantified (26). The

following analysis was conducted on the cursor trajectory data for

each block during the training phase. First, the workspace was

divided into 39 × 39 bins, each measuring 50 × 50 mm. The

coordinates of the cursor points for each trajectory were assigned to

the corresponding bin. The cursor position at time t was defined as

pt(x,y), where x and y represented bin numbers ranging from 1 to 39.

A vector from pt(x,y) to ptþ1
(x,y) was calculated for every time point and

assigned to the bin corresponding to the vector starting point,

considering cursor movements within the same bin and adjacent

bins (Figure 1F). This process was repeated each time the cursor

passed through a bin across all the trajectories in each block. Bins

with fewer than three vectors were excluded from analysis. The

mean vector angle and angular standard deviation were calculated

by circular statistics to measure the average and variability of the

movement direction for each bin. Movement direction variability

(MV) was determined as the weighted average of the angular

standard deviations across all bins, with weights corresponding to

the number of vectors per bin. This analysis was applied to

trajectory data from all blocks during the training phase. In

addition, the reach direction was computed as the angle of the

vector from the start to the final reach positions in each trial. Reach

direction variability (RV) was calculated by circular statistics as the

standard deviation of the reach directions across trials in each block.

These two variability indices, MV and RV, were compared between

different training conditions.

In this task, the participants were required to explore the joystick

movement in task-relevant rather than task-irrelevant directions.
Frontiers in Sports and Active Living 04
Therefore, the task-irrelevant variability of the joystick input

position was estimated as the index of the control space exploration

during the training phase. For each block, the 4-dimensional

average vector of the joystick input position for all trials,
�s ¼ [�srx, �sry, �slx, �sly]

T, was calculated. Task irrelevant variability,

Tirr, was calculated as the mean squared distance between the

average task-irrelevant components of �s (i.e., [�srx, �slx]
T) and task-

irrelevant inputs ([srx, slx]
T), according to the equation:

Tirr ¼ 1
T

XT
t¼1

{(srx,t � �srx)
2 þ (slx,t � �slx)

2}

where T represents the number of data points in all the trials in one

block. Low task-irrelevant variability indicates that the joystick was

controlled in task-relevant directions.

In test trials, success or failure was judged based on the

movement duration, with trials having a movement duration less

than 2.3 s regarded as successful. To quantify task performance

during the test phase and compare training conditions, the

success rate was calculated for each block during the test phase.

Furthermore, we quantified movement corrections of the cursor

trajectories by measuring the number of speed peaks (nSP) and

the direction error after the first movement correction (cDE) in

each test trial (27). To estimate the nSP, the peaks of the cursor

velocity were first determined with MATLAB function findpeaks.

Since the function might detect even small peaks in cursor speed,

the argument “MinPeakProminence” was set to 5% of the

maximum speed for each trial. Subsequently, we defined the nSP

as the number of peaks divided by the movement duration in

each trial. The cDE was calculated as the absolute angle between

the direction from the cursor position at the first velocity peak to

the target position and the direction from the cursor position at

the first velocity peak to the cursor position at the second

velocity peak. In some trials, the nSP was either 0 or 1. If the

nSP was 0, the trial was excluded from the analysis. If the nSP

was 1, the cDE was computed as the absolute angle between the

direction from the cursor position at the first velocity peak to the

target position and the direction from the cursor position at

the first velocity peak to the cursor reach position.
2.5 Statistics

To evaluate the differences in the learning and exploration

process between training conditions, a generalized linear mixed-

effect model analysis was performed. The dependent variables

were movement duration, tortuosity, MV, RV, and task-

irrelevant variability. The independent variables were block and

training conditions. All models included “participant” as the

random intercept effect. The dependent variables can only be

non-negative values. Thus, the probability distribution was set

to a gamma distribution, and a log-link function was used. The

equation for this model is as follows:

log(y) � block þ condition þ block ∙ condition

y � Gamma
frontiersin.org
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If a significant interaction was found, Welch’s t-test was

performed on the difference in mean between training

conditions in the same block.

A two-tailed permutation test was then performed to test for

differences in success rates between the small and wide target

conditions. Furthermore, a 95% confidence interval of the mean

difference between the conditions was obtained using the

bootstrap method.

To evaluate the difference between training conditions in the

performance of the corrective movements in the first block of

test trials. Linear mixed-effect model analysis was performed.

The dependent variable was any one of nSP and cDE. The

independent variables were target and training conditions. This

model included “participant” as the random intercept effect. The

equation for the model is as follows:

y � target þ condition

y � Normal

Statistical models were constructed to predict success rates during

the test phase. We performed a mixed-effects logistic regression

analysis. The dependent variable was a dummy (0 = failure,

1 = success). The independent variables were block, target,

task-irrelevant variability in the last block of the training phase
FIGURE 2

Raw cursor trajectories in blocks 1 and 8, movement duration and tortuosity
with black lines for two representative participants from small and wide ta
represented the same participant. The targets for each group are indicat
denotes the wide target. (B,C) Movement duration (B) and tortuosity (C) a
bars indicate the mean ± standard error across participants. The red and b
When creating figures, data exceeding the 95th percentile (movement dura
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and MV calculated from all trajectory data during the training

phase. This model included “participant” as the random intercept

effect. The equation for this model is as follows:

logit(y) � block þ target þ task irrelevant variability þ MV

y � Bernoulli

In all statistical analyses, a p-value of less than 0.05 was considered

statistically significant.
3 Results

3.1 Cursor trajectories during the learning
process

Participants performed a de novo visuomotor learning task.

Figure 2A shows representative cursor trajectories in block1 and

block8 during the training phase for each group. During block1

in both conditions, the cursor trajectories deviated significantly

from the straight path to the target. However, during block8, the

deviation of the cursor was smaller than that of block1. As the

trials progressed, the movement duration decreased, indicating

that the participants learned to move the cursor faster during the
during the training phase. (A) The trajectories of the cursor are illustrated
rget groups, respectively. Trajectories for both block 1 and block 8 are
ed differently: a red circle represents the small target, and a blue bar
cross trials. Thick lines indicate the mean across participants. The error
lue lines represent the small and wide target conditions, respectively.
tion: 11.185 s; tortuosity: 4.447) were excluded.
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training phase (Figure 2B). Significant main effects were observed

in training condition [p < 0.01, 95% CI = (−0.69, −0.20); wide—
small], block [p < 0.01, 95% CI = (−0.18, −0.14)] and the

interaction between condition and block [p < 0.01, 95%

CI = (0.024, 0.084)]. Post hoc t test shows that there are

significant differences between training condition in block1

(p = 0.022) and block2 (p < 0.01). Figure 2C shows the change in

tortuosity during the training phase. Participants in both

conditions gradually became able to reach the target more

directly, whereas tortuosity tended to be higher in the small

target condition during the early training phase. Significant main

effects were observed in training condition [p < 0.01, 95%

CI = (−0.72, −0.22); wide – small], block [p < 0.01, 95%

CI = (−0.16, −0.12)] and the interaction between condition and

block [p < 0.01, 95% CI = (0.032, 0.092)]. Post hoc t test shows

that there are significant differences between training condition

in block2 (p = 0.023). These results indicate that during the early

training phase, the movement duration and tortuosity tended to

be higher in the small target condition than in the wide target

condition, and little difference was observed between the training

conditions during the last training phase. In summary, the

participants in both conditions learned to move the cursor to the

target quickly and directly.
FIGURE 3

Movement direction variability and reach direction variability. (A) Mean and st
the training phase. The direction of the arrow and color of the bin represent t
The bin size represents the number of times the cursor passes through the
represents the mean across all bins weighted by the number of visits to each
across participants. Error bars indicate mean ± standard error across part
conditions, respectively.
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3.2 Difference in the exploration process
between small and wide target conditions

To compare exploration during the learning process between

training conditions, two variability indices were quantified:

movement direction variability and reach direction variability.

The mean ± SD movement angle in each bin of the cursor

movement space is shown in Figure 3A. It is apparent that the

angular standard deviation of the bins near the target was

higher in the small target condition than in the wide target

condition. Figure 3B illustrates the distribution of the angular

standard deviation for all bins in block1 and block8. This result

revealed that the mean distribution decreased as the blocks

progressed. The quantitative results throughout all blocks are

presented in Figure 3C. Throughout training, MV gradually

decreased under both training conditions (Figure 3C).

Significant main effects were observed in training condition

[p < 0.01, 95% CI = (−0.66, −0.097); wide – small] and block

[p < 0.01, 95% CI = (−0.16, −0.11)]; the MV in the small target

condition was higher than that in the wide target condition. The

interaction between condition and block was not significant

[p = 0.17, 95% CI = (−0.01, 0.06)]. Figure 3D shows the RV

during the training phase. The RV in the wide target condition
andard deviation of the movement direction across all trajectories during
he mean and standard deviation of the movement direction, respectively.
bin. (B) Histogram of the standard deviations of all bins. The dashed line
bin. (C,D) MV (C) and RV (D) across blocks. Thick lines indicate the mean
icipants. The red and blue lines represent the small and wide target
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FIGURE 4

Raw success trajectories and success rate during the test phase. (A)
Cursor trajectories of all successful trials during the test phase for
two representative participants selected from small and wide
target conditions, respectively. The black lines indicate cursor
trajectories. (B) Boxplot of success rate in the first block of the test
phase. The circular dots indicate the success rate of each participant.
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was higher than that in the small target condition during the

training phase (Figure 3D). The main effect of training

condition [p < 0.01, 95% CI = (1.65, 2.01); wide – small]

and interaction between condition and block [p < 0.01, 95%

CI = (−0.074, −0.02)] were significant. However, the main effect

of the block [p = 0.082, 95% CI = (−0.035, 0.002)] was not

significant. Post hoc t test shows that there are significant

differences between training condition in all blocks (p < 0.01 for

all blocks). In summary, although the RV was higher in the

wide target condition, the MV was higher in the small target

condition. These results indicated that exploration during

the learning process differed between the small and wide

target conditions.
FIGURE 5

Corrective movements during the test phase. (A,B) Bar graph of the numbe
of the test phase. The red and blue bars represent the small and wide ta
across participants.
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3.3 Generalization of de novo learning

After training, the participants performed the test task.

Figure 4A shows the raw success trajectories of representative

participants. The success rate was calculated as an index of the

extent to which the participants could manipulate the cursor.

The success rates in the first block of the test phase were

compared between the two training conditions. Although there

was weak trend that the small target condition had a higher

success rate [95% bootstrap CI = (−0.16, 0.05); wide – small], no

significant difference was observed between training conditions

(permutation p-value = 0.351). Notably, large individual

differences were observed in the success rate, regardless of the

training condition (Figure 4B).
3.4 Corrective movements for untrained
targets

We quantified the corrective movements of cursor trajectories

during the test phase. In Figure 5A, the nSP was compared

between the small and wide target conditions at each target. It

appears that the small target condition exhibited higher nSP for

all targets. A marginally significant effect was observed in

training condition [p = 0.082, 95% CI = (−0.23, 0.01); wide –

small], demonstrating that the small target group performed

more corrective movements aiming to the test targets.

Additionally, a main effect of target was significant [p < 0.01,

95% CI = (−0.056, 0.049), (−0.048, 0.056), (−0.15, −0.046) and

(−0.17, −0.067); −60°, −30°, 30° and 60° relative to 0°,

respectively], indicating that the targets on the right side shows

fewer nSP. Figure 5B shows the cDE calculated in both the small

and wide target conditions at each target. The small target group

seems to have lower cDE for all targets. We observed a

marginally significant effect in the training condition [p = 0.08,
r of speed peaks (A) and corrected direction error (B) in the first block
rget conditions, respectively. Error bars indicate mean ± standard error
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95% CI = (−0.59, 15.4); wide – small], suggesting that the small

target group exhibited better movement correction towards the

test targets. A main effect of target was significant [p < 0.01, 95%

CI = (28, 41), (9.2, 22), (−6.0, 6.8) and (3.9, 17); −60°, −30°, 30°
and 60° relative to 0°, respectively], indicating that the cDE

increased as the target direction was away from the 0° direction.

In summary, the small target group demonstrated more and

better movement correction aiming towards the test targets.
3.5 Task-irrelevant control space variability
related to generalization of de novo
learning

Large individual differences in success rates in the test trials

were examined. To investigate the factors causing individual

differences, the learning process in a joystick control space was

analyzed. Figure 6A shows the joystick inputs during the first

and last blocks of the training phase. In the first block, the

input was broadly distributed in both task-relevant and task-

irrelevant directions. However, in the last block, the inputs

converged in the task-relevant space. Figure 6B shows that the

task-irrelevant variability decreased under both training

conditions. A significant main effect was observed in block

[p < 0.01, 95% CI = (−0.20, −0.11)]. The main effect of training

condition [p = 0.38, 95% CI = (−0.73, 0.28); wide – small] and

interaction between condition and block were not significant

[p = 0.72, 95% CI = (−0.076, 0.053)]. Although the task-irrelevant

variability decreased, it varied among individuals in the last

block (Figure 6C). A mixed-effects logistic regression model

analysis shows the significant effect of the task-irrelevant

variability on success rate [p = 0.011, 95% CI = (−0.61, −0.079)],
indicating that participants with high task-irrelevant variability at

the end of the training phase tended to have a low success rate in

the test phase (Figure 6D). On the other hand, no significant
FIGURE 6

Variability in joystick input. (A) Representative joystick inputs in blocks 1 and
Task-irrelevant variability across blocks. Thick lines indicate the mean across
The red and blue lines represent the small and wide target conditions, resp
training phase. Circular dots indicate the task-irrelevant variability of each p
block of the training phase and the success rate in the first block of the
conditions, respectively.
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effect of MV was observed [p = 0.50, 95% CI = (−2.6, 5.3)]. The
main effect of block [p < 0.01, 95% CI = (0.30, 0.46)] and target

was also significant [p < 0.01, 95% CI = (−5.4, −4.2), (−2.5, −2.0),
(−0.24, −0.23) and (−1.5, −1.04); −60°, −30°, 30° and 60° relative

to 0°, respectively], indicating that the success rate increased as the

block progressed, and it decreased as the target direction was away

from the 0° direction.
4 Discussion

This study aimed to clarify how the exploration process in de

novo learning affects the generalization of newly acquired skills.

To manipulate the exploration process, de novo learning tasks

were conducted in two groups: one group controlled the cursor

to hit a small target, while the other aimed at a wider target. The

results revealed that participants in both groups learned to move

the cursor to the target quickly and directly (Figures 3A,B),

whereas the exploration process varied between the groups

(Figures 4C,D). However, no significant differences were

observed in the success rates of the test blocks as a generalization

measure between the groups. Remarkably, we found large

individual differences in success rates (Figure 4B). A statistical

model explaining this individual difference indicates that

participants with high task-irrelevant variability at the end of the

training phase tended to have low success rates in the test phase.

During the test phase, more than half of the participants in the

small target condition achieved a success rate above 0.2 (Figure 4B),

indicating that they could succeed in directions they had not

trained to during the training phase, that is, directions other

than 0°. This result suggests that generalization occurs during de

novo learning. However, a notable observation was the large

individual difference in success rate, implying that the extent of

generalization varies, even with the practice of aiming at an

identical target.
8 during the training phase. The black dots represent joystick inputs. (B):
participants. Error bars indicate mean ± standard error across participants.
ectively. (C) Box plot of task-irrelevant variability in the last block of the
articipant. (D) Relationship between task-irrelevant variability in the last
test phase. The red and blue dots represent the small and wide target
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Our study focused primarily on how the generalization of

newly acquired skills is affected by the exploration process in de

novo learning tasks with small and wide targets. These tasks are

characterized by motor exploration involving corrective

movements and various reaching directions. Indeed, the MV was

consistently higher in the small target condition throughout the

training phase (Figure 3C), suggesting that a diverse range of

corrective responses to the target depends on the state of the

cursor. Conversely, the RV was predominant in the wide target

condition (Figure 3D). It was possible that the RV of the wide

target condition decreased over the course of the training and

became as high as that of the small target condition. However,

the difference in the RV between the small and wide target

conditions was prominent throughout the entire training phase

(Figure 3D). This result suggests that the participants in the wide

target condition exploited the exploration strategy of reaching in

a broader direction rather than finding a reach direction that

they were good at and repeating that movement. A comparison

of the generalizations between these two target conditions

revealed a slight tendency for participants in the small target

condition to achieve higher success rates than those in the wide

target condition (Figure 4). These results can be interpreted from

a motor control perspective. The tasks in this study required

movements lasting over 2 s (Figure 2B) with continuous visual

feedback from the cursor provided during the task. In such

situations, feedback control is crucial for correcting online

movement errors, which depend on sensory information with a

time delay (28). Furthermore, a previous study reported that

skilled learning affects feedback control (29). Specifically, the

small target condition, compared with the wide target condition,

requires the acquisition of more precise online feedback

corrections. The higher MV observed in the small target

condition likely reflects increased opportunities for online

feedback corrections (Figures 3A,C). Furthermore, a greater

number of movement corrections were observed in the cursor

movements with more precise targeting to the test targets in

small target conditions (Figures 5A,B). Therefore, the slight

trend toward stronger generalization in the small target

condition could be attributed to enhanced learning in the

feedback controller.

Previous studies have demonstrated that patterns of

generalization are formed around actual rather than planned

movements (14, 15). Based on these findings, one might expect

that an increase in the variability of the actual movements could

enhance generalization. This perspective offers an additional

interpretation for our observation that participants in the small

target condition achieved slightly higher success rates. The

participants in the small target condition could only reach

the target in the 0° direction. In contrast, the participants in the

wide target condition could reach a broader range of directions

(Figure 3D). Given the difference in the reachable range, one

could predict greater generalization in the wide target condition.

However, contrary to the prediction, there was no significant

difference in generalization; instead, generalization tended to be

larger in the small target condition. A notable result during the

training phase was that participants in the small target condition
Frontiers in Sports and Active Living 09
experienced a more diverse range of movement directions than

those in the wide target condition (Figure 4C). These results

suggest that not only the variability in the reach direction, but

also the variability in the movement direction during the middle

of the actual movement, may have encouraged further

exploration and facilitated generalization.

The relationship between motor variability and the rate of

motor learning has been previously reported (17–20).

Consequently, motor variability is a crucial factor when

considering the individual differences in motor learning. In this

study, we specifically examined the task-irrelevant motor

variability in the joystick control space. Statistical model analysis

revealed that participants exhibiting high task-irrelevant

variability at the end of the training phase tended to have low

success rates in the test phase. The role of task-irrelevant

variability in de novo motor learning was explored in a previous

study using a mathematical model (23). The authors theoretically

proved that eliminating task-irrelevant components through

extensive exploration in entire motor command space facilitated

error corrections during entire learning phase. Our results that

joystick inputs converged in the task-relevant space is consistent

with the previous theory (Figure 6A). Furthermore, this study

demonstrated that the participants with lower task-irrelevant

variability at the end of training exhibited higher success rates in

the test phase (Figure 6D). These findings imply that while task-

irrelevant variability can enhance error corrections during

learning, its reduction in the final training stages is crucial for

better generalization of de novo learning. However, future

research is necessary to further understand how variability in

control space affects the relationship between error correction

and generalization in de novo learning due to differences in

experimental setups between this and previous studies.

Specifically, the previous study used a simulation of a

feedforward motor task, such as shooting task, whereas our study

involved a motor task that required online feedback correction.

In the test phase, participants had more success when the

targets were on the right side than on the left (Figure 4A). This

result can be attributed to the anisotropic nature of the

manipulability ellipsoid in the two-link arm system. In our

experimental setting, the forward diagonal direction to the right

exhibited a higher manipulability from the start position. This

led to differences in success rates among the five test targets.

Future research should focus on exploring the spatial

generalization patterns in de novo learning, potentially using

methodologies that address these constraints.

In conclusion, this study examined the generalization of

de novo visuomotor learning tasks by focusing on the impact of

different target shapes. The results demonstrated that, while

generalization occurred in de novo learning, it was more

closely associated with task-irrelevant variability in the control

space than with the target shapes. These findings underscore

the significance of exploratory behavior within the control

space as a driving force for the generalization of de novo

learning. Such insights could have important implications for

designing more effective learning environments that can

leverage generalization.
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