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Since swimming performance depends on both physical conditioning and
technical proficiency, training zones should be built based on physiology and
biomechanics inputs to dispose of structured and effective training programs.
This paper presents a zone-based swimming training, supported by the
oxygen uptake (V̇O2) kinetics at low, moderate, heavy, severe and extreme
intensities concurrently with lactate and heart rate values. Since technique is
vital for efficiently moving through the water, upper limbs frequency and
length should also be targeted during the workouts. The index of coordination
was also added to our proposal since upper limbs synchronization is a key
technical factor. To better establish and characterize a wide range of
swimming intensities, the training methods and corresponding contents that
better fit each training zone will be suggested. It will be shown that when
under/at the anaerobic threshold (at low-to-moderate intensities), swimmers
are at homeostasis and can maintain stable internal and external load
indicators. However, above that boundary (at heavy and severe intensities), the
physiological stable state is no longer observed and the anaerobic metabolism
starts contributing significantly, with a technical degradation being more
evident when performing near/at the V̇O2max intensity. Then, when performing
above aerobic power, on typical anaerobic intensities, V̇O2 kinetics presents a
very evident fast rise, ending abruptly due to exhaustion caused by muscle
acidosis. This overall knowledge allows advancing toward more objective
training programs and highlights the importance of systematic training control
and swimmers’ evaluation and advice.
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1 Introduction

Swimming is a sport where participants attempt to cover a specific distance in the

shortest possible time and, due to its characteristics, has a strong influence from both

physiological and biomechanical variables (1). Since competitive swimming races last

from ∼20 s to 15 min (the 50 and 1,500 m events, respectively), it becomes evident that

swimmers’ exertions rely on well-developed aerobic and anaerobic energy pathways

(2–6). Thus, the importance of monitoring the training process to increase the available

quantity and quality of information is unquestionable (7–10). The aerobic and

anaerobic energy sources have been traditionally evaluated using _VO2 and blood lactate

concentrations [La−], and heart rate (HR) has been a complementary indicator mainly

used in practical settings where expensive instruments and complex procedures are
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challenging. The assessment of the ATP-CP contribution in

swimming has not been a priority because the phosphagen stores

have a small capacity, present low relevance in most of the

competitive events (11) and muscular biopsy is an invasive

procedure very hard to be conducted (12–14).

Swimming technique is also a critical performance determinant

(15–18), as displayed in the well-known biophysical expression that

exhibit that the maximum velocity attained in a particular context

equals the product of the energy input by the ratio between the

propulsive efficiency of the biomechanical system and the

hydrodynamic drag opposed to the swimmer displacement

(19, 20). Swimming can be seen as a thermodynamical process,

where energy is processed in each instant of time until a

mechanical work is performed with a given energy efficiency

(17, 21). However, since the human body has a very low

propelling efficiency, slight technical changes positively

contributes to performance (8, 11, 22). As swimming technique

evaluation is complex, researchers have been assessing stroke

frequency (SF) and length (SL), and stroke index (SI), for a long

time to observe if a measurable change in _VO2, [La
−] or HR

may well reflect technical variability (23, 24). More recently,

measuring the lag time between propulsive phases of upper limbs

(the Index of Coordination—IdC) became popular for

characterizing the coordination patterns during swimming (25).

In the current perspective, we present a zone-based swimming

training supported by the _VO2 behaviour at low, moderate,

heavy, severe and extreme intensities, concurrently with [La−]and

HR values. Also, SF, SL and IdC will be described for each zone

due to their biomechanical relevance.
2 Establishment of training zones
based on relevant swimming
determinants

The establishment of accurate training zones for increasing

performance in individual, cyclic and continuous sports like

swimming has been conducted for many years and it seems

evident that the training process should reflect the demands of

the races (1, 2, 22). For that purpose, swimmers’ monitoring has

become more frequent, growing in importance with the

appearance of portable _VO2 apparatus, [La−] analysers, HR

monitors and waterproof cameras (10, 11, 26). However, only a

single value of one (or more) variable(s) has been used to define

a training zone or characterize a swimming event. In addition,

studies usually present _VO2, [La
−] or HR maximal values and

the mean SF and SL scores in a single bout or incremental

protocols, not considering their behaviour along the entire

exercise duration. This could be due to the difficulties in

assessing internal and external load variables while swimming in

standard pools and to the low number of available swimming

flumes. Furthermore, even if the general kinematical variables are

more easily obtainable by counting the number of cycles per lap

or using a chronofrequencemeter, the digitalization of anatomical

body parts is more rigorous but very time-demanding, leading to
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the analysis of only one swimming cycle in a single lap as

representative of the entire exercise [e.g., (17)].

The detailed behaviour changes of relevant physiological and

biomechanical variables with the swimming intensity variation

would allow a more accurate definition of the training zones.
_VO2 assessment in swimming has been implemented regularly

only since the 1970s due to previous methodological difficulties

(e.g., the incapacity to follow the swimmer along the pool, the

difficulty in transporting equipment and the added drag imposed

by the respiratory snorkel (27). With the development of _VO2

assessment portable and automated systems at the beginning of

the current century, it became possible to obtain real-time values

during swimming, not only during the recovery phase after

exercise (26, 28, 29). Even if the specific _VO2 dynamics at the

low, moderate, heavy, severe and extreme intensity domains have

been mainly centred on running and cycling in laboratory

settings (2, 30, 31), some studies conducted a breath-by-breath

analysis of well-trained swimmers performing in competition-like

conditions. As displayed in Figure 1, at low and moderate

swimming intensities, _VO2 is characterized by a fast rise (after a

non-expressive cardiodynamic phase) that will be prolonged until

a steady-state is achieved (9, 32, 33). Since exercise is conducted

at paces below or at the anaerobic threshold (AnT), the aerobic

energy system supports (almost all) the energy requirements

(13), the [La−] are low and the effort can be maintained for

30 min or longer (33, 34), with swimmers communicating a very

light/light and moderate perception of effort (35–37).

When the swimming intensity exceeds the physiological steady

state and the swimmer cannot maintain body homeostasis, _VO2

fast component speeds up and the _VO2 plateau is no longer

observed (32, 33, 38). This is a poorly known training zone that

corresponds to the heavy intensity domain, displaying power

outputs above the AnT and starting to cause a significant

accumulation of [La−] over time (34, 39, 40). Here, a notable
_VO2 slow component leads to an elevated _VO2 response (27, 32,

41) and exercise is expressed as hard to accomplish (28, 35). The

appearance of this phenomenon, superimposed upon the _VO2

fast component, is due to the progressive recruitment and

activation of fast twitch glycolic fibres (38, 42, 43), but this needs

to be further studied particularly in swimming. The limit

separating the heavy from the severe intensity domains is poorly

defined in swimming, but the critical power is suggested for

other cyclic sports [e.g., (44, 45)]. This has been debated since,

by definition, critical power represents the exercise intensity that

can be sustained without fatigue, with exhaustion occurring after

30–60 min of exercise (46).

In the severe intensity domain, the exercise intensity is

significantly higher than at the AnT, and neither _VO2 nor [La−]

can be stabilized (32, 40, 47), showing a pronounced magnitude

compared with heavy intensity efforts (30, 32, 48). During

constant pace exercises at this intensity, after an exuberant _VO2

fast component caused by the body’s need for oxygen as the

exercise proceeds, it continues moderately to increase until the

point of exhaustion (11, 30, 45). In fact, the _VO2 slow

component has been commonly reported for heavy (28, 38, 43)

but mainly for severe swimming intensities (14, 41, 49) where its
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FIGURE 1

Diagram of the oxygen uptake kinetics at different intensities, with the anaerobic threshold (AnT) and the maximum oxygen uptake ( _VO2max) being
identified. Values were obtained in front crawl swimming.
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magnitude can exceed 1 L.min−1 and represent ≥25% of the total
_VO2 increase above the pre-exercise baseline (50). At this

exercise intensity domain, _VO2max is reached, reason why it

corresponds to the aerobic power training zone (7), which is

perceived as a very hard effort (35, 51). So, similarly to the AnT,

the _VO2max is also a critical factor for establishing boundaries

between intensity domains.

When swimming above the _VO2max intensity, i.e., at the

extreme intensity domain (also known as the anaerobic capacity

training zone), despite the _VO2-related studies conducted in field

conditions are scarce, it was observed that _VO2 kinetics only

present a fast component, rising in a very fast way and ending

abruptly due to exhaustion (29, 41). This domain was the last to

be proposed (52) and accounts for short duration and maximal

intensity efforts at power outputs where exhaustion occurs before
_VO2max is attained (41, 52). Here, there is not enough time to

reach _VO2max, although the _VO2 obtained is of relevant

magnitude for such short exercise durations (6, 29). This

intensity domain is very scarcely studied in swimming, which

does not make sense because the 50 m–200 m events (efforts in-

between ∼20 s and 2 min duration) involve the use of different

metabolic pathways compared to those involved in longer

swimming events (5, 17, 53). [La−] are much more expressive

than in previous intensity domains (41), with values of

∼16 mmol.L−1 at the 100 and 200 m exertions in anaerobically

trained swimmers (53, 54). This expresses the use of the

glycolysis at its maximal rate, with swimmers struggling until the

end of the training set or competitive event with an extremely

hard perceived exertion (35, 36).

HR assessment in swimming has been used to control the

intensity of the training sets by the neck or wrist palpation

during the first seconds of recovery (3). Since the carotid and
Frontiers in Sports and Active Living 03
radial arteries are not easily found, it is hard to count accurately

and some rest periods are very short, swimming HR began to be

frequently assessed using the easy-to-wear and low-cost

telemetric HR monitors. Research-related data shows that HR

remains stable at low and moderate swimming intensities within

the first few min after the onset of exercise, similarly to _VO2 and

[La−] behaviour (39, 55). In prolonged exercise, HR could

progressively rise, particularly if at moderate intensities (34, 39).

HR displays a fast rise at the beginning of heavy swimming

intensities events, followed by a slight increase or progressive

stabilization towards the end of exercise (55, 56). At severe

exertions, after a first fast HR rise in the first min of exercise, a

progressive levelling off seems to occur but with values

significantly higher than in the previous intensity domain

(18, 34, 43). At extreme swimming efforts, HR increases rapidly

(∼90% of the maximum) during the initial stages of the bouts

and climbs progressively toward the maximum as the efforts

proceed (56, 57).

A key consideration when using _VO2, [La
−] and HR data is

that physiological responses should be related to swimming

mechanics (16–18, 58). Since velocity is the product of SF and

SL, researchers have always been interested in its assessment to

observe if a measurable change in physiological stress-related

variables may well reflect technical changes (11, 20). Early

investigations on the topic in competitive swimming

overestimated SL due to the assumption that it equalled the ratio

between velocity and SF, calculating the former based on

distance divided by time [e.g., (23, 24)] not accounting for the

dive start, variations in mid-pool velocity and turning times.

Later, SF and SL were calculated for every 25/50 m race partial in

the clean swimming section using a chronofrequencemeter or

video/computer analysis (59–61). It is well described that both
frontiersin.org
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variables change with intensity, with an increase of SF and a

decrease of SL being particularly evident after the AnT intensity

(8, 40, 61, 62). SF and SL changes in a non-linearly way (61–63),

impacting on how to coordinate contralateral upper limb actions

(64, 65). SI was defined as the product of the average swimming

velocity and SL, and is considered a valid indicator of swimming

efficiency (66). Due to text length constraints this variable will

not be further explored but values are available elsewhere [e.g., (3)].

The upper limbs coordination is a fundamental aspect of

swimmers’ expertise, revealing catch-up, opposition and

superposition distinctive coordination modes (<0, = 0 and >0,

respectively) in front crawl (25). There is an IdC increase with

the intensity rise (18, 65), progressing from catch-up to

opposition and superposition coordination modes (18, 64). This

evolution mirrors swimmers’ adaptive responses to task-specific

constraints, reflecting the intensity at which the task is executed

(65, 67). There is a relationship between the general kinematical

variables and the inter-arm coordination (67, 68), with data

suggesting that energy requirements influence the biomechanical

characteristics at the mentioned intensities (16, 58, 62, 65).

Achieving optimal coordination needs synchronized movements

of both upper and lower limbs to enhance velocities and

efficiency, with the goal of attaining a 1:3 ratio between the

number of upper and lower limb actions, regardless of velocity

(69, 70). Consistency in limb coordination is paramount across

successive cycles to maintain propulsion and body balance

effects, being essential that the lower limb actions occur at the

same relative time in each cycle (ensuring the consistent

production of desired effects). The widely acknowledged optimal

1:3 frequency ratio emphasizes the importance of synchronized

and coordinated actions, and signifies a smooth force-to-time

profile, ultimately minimizing intra-cycle velocity variation (70).

Based on the dynamics of the physiological and biomechanical

variables described in the above-referred literature, the following

paragraphs, and our own knowledge and experience, different

training zones are displayed in Table 1. It is possible to observe

that the AnT (assessed metabolically using [La−] and the _VO2max

(evaluated through ventilatory data) are critical factors for

establishing boundaries between intensity domains. In this field,

SF might serve to delineate the boundary between moderate and

heavy intensity domains when [La−] is inaccessible (8, 40, 65)

and HR combined with the rating of perceived exertion (RPE)

can establish a boundary between heavy and severe intensity

domains (35, 51, 62). When not disposing of ventilatory data,

the 8 mmol.L−1 of [La−] might be used for limiting the upper

boundary of the severe intensity domain since it is an average

value commonly used for characterizing aerobic power

swimming efforts (34, 57).

When the aim is to target a specific intensity domain or

training zone, certain considerations regarding training methods

and contents should be recognized to better structure the

swimming sets. For low and moderate intensities, the most

effective approach is to employ continuous exercise with

extended durations [or extensive interval training with short rests

(66, 71, 72)], emphasizing the importance of maintaining high

technical quality when maintaining a steady pace (14, 15, 22) or
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even with slight changes of intensity [e.g., the fartleck (3, 13)]. The

development of aerobic capacity 1 and 2 are more relevant in early

stages of the season and in younger/less experienced swimmers

(58), aiming to increase the systemic oxidation capacity of

pyruvic acid, lactic acid and lipids (7, 11). The aerobic capacity 1

training zone obtain high percentages of the total training

volume since it is used for warming up and cooling down in

each training session, as well as for promoting recovery between

intense bouts (13, 22, 71). Aerobic capacity 3 implies increasing

the intensity of the training sets, using the intensive interval

training method (3) and, in the competitive period, breaking the

so-called long-distance events in laps by employing the

fractioned race pace training strategy (e.g., 15 × 100 m at 1,500 m

pace with 10 s intervals).

The aerobic power training zone focuses on the traditionally

called medium-distance races like the 400 m (26, 49) and aims to

increase the transport, diffusion and peripheric perfusion of O2,

as well as the mitochondrial capacity (73). The depletion of the

muscle glycogen stores will not allow the training series to go

over 10 min of duration if conducted at _VO2max pace (as it

should). In the competitive period, the 400 m pace can be

trained by making 4 × 100 m (10 s rest) at race pace (or even

faster). Last but not least, the anaerobic power and capacity

zones, as a fundamental focus of attention of competitive

swimming (10, 11, 15), aims to activate the activity of glycolytic

enzymes and reduce their sensitivity to metabolic acidosis by

increasing buffering capacity (7, 71, 74). Since long and slow

distance training can compromise sprint performance (11, 22),

the swimmers’ engagement at extreme exertions needs to be

maximal. Moreover, a wise definition of the rest period duration

is the key to success since central and peripheral fatigue is a

limiting factor of the training series continuity (3, 15). Early in

the program, workouts should propose higher intensities for

swimmers already fatigued and, later on, move on to conduct

training sets in a fresh state to facilitate higher speeds (8, 58).
3 Discussion

In the large spectrum of swimming intensities, the most well-

known and manageable are those supported by the aerobic

energy system, i.e., the low and moderate efforts (typically the 3–

10 km open water events). However, above the AnT, exercise

cannot be maintained for long due to the significative

contribution of the anaerobic metabolism, with fast twitch fibres

being progressively recruited (3, 13). Thus, fatigue will appear

sooner or later when swimming at heavy intensities, with this

being considered a “grey training zone” (where the 800 and

1,500 m races are included). The severe intensity domain is

reached at exertions close to _VO2max paces, with the 400 m

events being accepted as typical efforts. Exertions are very

strenuous at the 50, 100, and 200 m competitive swimming

events that are situated in the extreme intensity domain. Thus,

anaerobic capacities are decisive to perform well and should be

fully developed in addition to aerobic qualities (8, 10, 15). The

evidence reported suggests that the behavior of relevant
Frontiers in Sports and Active Living 05
physiological variables should be well-considered when

establishing training zones but always concurrently with upper

limbs’ general kinematics and coordination (1, 20). In fact, to

succeed well, swimmers should not only focus on physical

conditioning but also on developing technical skills (11, 22, 75).

By combining training intensities, it is possible to optimize

performance better, reduce injury risk and prevent overtraining,

justifying the proposal of a new paradigm concerning the

traditionally used training zones.
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