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This study tested the performance of OpenPose on footage collected by two
cameras at 200 Hz from a real-life competitive setting by comparing it with
manually analyzed data in SIMI motion. The same take-off recording from the
men’s Long Jump finals at the 2017 World Athletics Championships was used
for both approaches (markerless and manual) to reconstruct the 3D
coordinates from each of the camera’s 2D coordinates. Joint angle and Centre
of Mass (COM) variables during the final step and take-off phase of the jump
were determined. Coefficients of Multiple Determinations (CMD) for joint angle
waveforms showed large variation between athletes with the knee angle values
typically being higher (take-off leg: 0.727 ± 0.242; swing leg: 0.729 ± 0.190)
than those for hip (take-off leg: 0.388 ± 0.193; swing leg: 0.370 ± 0.227) and
ankle angle (take-off leg: 0.247 ± 0.172; swing leg: 0.155 ± 0.228). COM data
also showed considerable variation between athletes and parameters, with
position (0.600± 0.322) and projection angle (0.658 ± 0.273) waveforms
generally showing better agreement than COM velocity (0.217 ± 0.241).
Agreement for discrete data was generally poor with high random error for
joint kinematics and COM parameters at take-off and an average ICC across
variables of 0.17. The poor agreement statistics and a range of unrealistic
values returned by the pose estimation underline that OpenPose is not suitable
for in-competition performance analysis in events such as the long jump,
something that manual analysis still achieves with high levels of accuracy
and reliability.
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1 Introduction

Motion analysis is a common tool in sports biomechanics with expensive marker-

based systems recognised as the gold standard technology when accuracy and speed of

data processing are required. Marker-based technologies are often limited to laboratory

conditions and require a comprehensive process of marker attachment. On the other

hand, manual analysis of digital video images collected with visible light systems

remains the most popular method for studying motion in competitive settings. This is

because of inherently uncontrollable factors in the competition environment (weather,

lighting, reflections, etc.), as well as the fact that marker-based systems cannot be used

in such situations. Whilst digital cinematography does not necessarily require the
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attachment of markers to the object of interest (e.g., human body),

it relies on a manual process of identifying key landmarks from

each frame of the recording sequence, something that makes the

whole process extremely time-consuming and prone to digitizing

errors. Manual analysis requires an operator to digitize each key

body landmark independently in each frame of a video capture,

which is often at high frame rates (>100 Hz), and across two-or-

more cameras for three-dimensional (3D) data. In cases where

the full body needs to be analyzed, this means several key points

[e.g., the commonly-used de Leva model (1) uses 17 points to

compute centre of mass variables], something that further adds

to the processing time. Furthermore, manual analysis is subject

to human error, especially when joint centers such as the hip

and shoulders are difficult to “visualize” and can often be

occluded by other segments or even other athletes.

Notwithstanding the above challenges, manual analyses from

competitive sport settings adhering to rigorous protocols have

been providing the scientific and coaching communities with

accurate and reliable kinematics and other performance metrics

over the past few decades (2–7).

Recent developments in artificial intelligence (AI) have resulted

in the proliferation of markerless methods, which have

demonstrated reasonable accuracy in the study of human gait

and various other movements (8–10). However, to date,

markerless methods have mainly been applied in laboratory

conditions, as they are often validated against optoelectronic

motion analysis systems (9, 11–15). Whilst there are promising

developments in sport-related markerless technologies, these still

require the development of activity-specific models and multi-

camera arrangements, which is difficult to achieve in competitive

environments or diverse coaching settings (11, 12, 16, 17). This

is also the case for open-source pose estimation algorithms,

which, despite not being able to accurately track unusual body

poses, are considered reasonably appropriate for single plane

movements or coaching applications (10, 13, 18). For instance, in

some cases, the combination of OpenPose with multiple

synchronised video cameras has shown a mean accuracy of

30 mm or less for slow and relatively dynamic movements when

compared against multiple camera optoelectronic systems (9).

Whilst this level of accuracy could be acceptable for some

applications, it still relies on a controlled environment and a

large number of cameras. However, in other cases when only two

cameras recording lower resolution images (smartphones) and

the OpenCap (19) platform were used, the average RMSE

across nine lower body angles was 5° with an average peak error

of 10° (14).

It is essential to assess how well markerless models work in

actual competition settings or outside of the laboratory. Would

similar findings be observed when operating in a real-world

setting with a limited number of cameras? This question needs

exploring if markerless technologies are to become a credible,

easy-to-use and cost-effective motion analysis for out-of-the lab

applications. In this study we used a two-camera OpenPose

markerless approach to examine 3D kinematics during the take-

off of the men’s Long Jump final from the 2017 World

Championships and compared the results to manual analysis. As
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this was an initial attempt to test the performance of an open-

source markerless method in a real-life competitive setting, we

opted for an athletic movement that is highly dynamic yet

performed primarily along a single plane of movement and

governed by the same global constraints for all performers.
2 Materials and methods

2.1 Research approval

Data were collected as part of the 2017 World Athletics

Championships Biomechanics Research Project, which took place

at the London Stadium, United Kingdom. Use of the data for

this study was approved by World Athletics (formerly the IAAF),

who own and control the data, and locally by the institutional

research ethics committee. Participants in this study provided

written consent to take part. The study was conducted in

accordance with the Declaration of Helsinki.
2.2 Data collection

Long Jump data were collected from the 12 finalists in the

men’s Long Jump competition at the 2017 World Athletics

Championships (20). The jumps were recorded using two Sony

PXW-FS5 high-speed video cameras (frame rate: 200 Hz, shutter

speed: 1/1,750 s; ISO: 2,500; FHD: 1,920 × 1,080 pixels), which

were used to capture the movement of the athletes as they

approached and reached the take-off board. Cameras were placed

approximately 25 m from the take-off board with the acute angle

between the two optical axes at approximately 60°. Camera

calibration was conducted before and after the competition using

a rigid cuboid frame (3.044 m3) which was placed strategically

around the take-off board and approach area. Each athlete’s best

jump (determined as their furthest legal jump) was used for

further processing. As such, one file per athlete was analyzed.

2.2.1 Manual tracking
Manual digitizing was conducted by a single, experienced

operator in SIMI Motion (version 9.2.2, Simi Reality Motion

Systems GmbH, Germany) to obtain kinematic data during the

final step and take-off phase of the jump (from penultimate

touchdown before the board to leaving the take-off board). Ten

frames before and after this phase were also digitized to provide

padding for subsequent filtering. An event synchronisation

technique using a series of key events (touchdowns and toe-offs)

was used to synchronize the two-dimensional (2D) coordinates

from each camera. This was conducted by identifying initial

contact with the take-off board in both cameras, and then

moving forwards until toe-off. If the same frame of toe-off was

identified in both cameras, this process was repeated for the

penultimate ground contact. If all four key events were detected

at the same frame in both cameras, they were deemed to be

synchronized. In each file, the left and right shoulder, hip, knee,

ankle, and metatarso-phalangeal joint centers were digitized
frontiersin.org
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frame-by-frame. Upon completion, adjustments were made using

the points-over-frame method (21) to ensure consistency. The

manual digitizing was carried out by an experienced operator

(>1,000 h of digitizing) who used anatomical criteria alongside

the software’s features (e.g., zoom function) to identify the

required body landmarks. This methodological approach has

previously been shown to display high reliability in competition-

based athletics settings (7, 22, 23). Reliability of the digitizing

process was estimated by repeating the digitizing process with an

intervening period of 48 h. The results showed a Root Mean

Square Error (RMSE) across the three joint angles of 0.5° with an

Intraclass Correlation Coefficient (ICC) of 0.99, an RMSE for the

height of Centre of Mass (COM) of 0.01 m with an ICC of 0.95,

and an RMSE for COM velocity of 0.01 m/s with an ICC of 0.99.

A Direct Linear Transformation algorithm (DLT) (24) was used

to reconstruct the 3D coordinates from each camera’s 2D x- and

y-coordinates. The accuracy of the 3D reconstruction, measured

as a percentage of the number of pixels in the image, was <1%

each camera. In addition, a “central hip” marker was computed

using the midpoint of the left and right hip joint centers (23),

and used as a proxy of COM. Variable calculation was conducted

in MATLAB (v2019b, MathWorks, Inc., MA), where hip, knee,

and ankle joints were defined as the angle between the vectors of

neighboring segments (e.g., the hip angle was defined as the

angle between the shoulder-hip and hip-knee vectors on that side

of the body). Manually digitized data were filtered using a 15 Hz

low-pass, recursive, second-order Butterworth filter. The take-off

leg was defined as the leg that contacts the take-off board, whilst

the swing leg was the leg that does not contact the take-off board.

2.2.2 Automatic tracking
Automatic tracking was carried out using OpenPose, an open-

source method used for the detection of human body parts (25, 26),

with the 25-keypoint model. Each camera view was analyzed

separately. When tracking with OpenPose, additional people are

often observed (e.g., competition judges or other athletes in the

background) and the algorithm is not able to identify specific

individuals consistently. To ensure that the intended athlete was

selected, a semi-automated program was written in MATLAB to

allow the selection of the target individual when necessary. The

2D coordinates predicted by OpenPose were firstly filtered using

a median filter to gap-fill any missing frames, then smoothed

with a 15 Hz low-pass filter, before being cropped to the same

phase of the jump as the manually digitized data. The same DLT

was also performed as for the manually digitized data, and joint

angles were computed in the same way. The keypoint between

the hips was used in the same way as the computed central hip

marker described above, which was used as a proxy for COM.
2.3 Statistics

All statistical analyses were conducted in MATLAB and SPSS

(version 28, IBM, NY). Agreement between methods for time-

series joint angle and COM data was assessed with a coefficient

of multiple determination (CMD) using the in-built MATLAB
Frontiers in Sports and Active Living 03
function “fitlm”, as used previously to display reliability of

kinematic data (27). CMD quantifies the waveform similarity

between two curves, with values ranging between zero (highly

dissimilar waveforms) and one (highly similar waveforms).

Therefore, although they account for similarity in curve shape,

they do not consider the amplitude of the waveform.

Comparisons between the two techniques for discrete (zero-

dimensional) data, such as joint range of motion, joint angle

minima and maxima, and COM take-off characteristics, was

performed as follows: Limits of Agreement (LOA) incorporating

Bias and Random Error were constructed to assess agreement

between the two methods; RMSE was used to provide a level of

accuracy for the OpenPose method; Intraclass correlation

coefficients (ICC3,1) were calculated to provide a measure of

relative reproducibility between the two techniques. CMD and

ICC3,1 values were interpreted as: 0.00–0.50 = “poor”; 0.50–

0.75 = “moderate”; 0.75–0.90 = “good”; and 0.90–1.00 = “excellent”

based on the guidelines of Koo and Li (28) for ICC interpretation.
3 Results

CMD values for joint angle waveforms for the whole sequence

showed large variation between athletes and between joints

(Figure 1, Supplementary Material), with the knee angle CMD

values typically being higher (take-off leg: 0.727 ± 0.242; swing

leg: 0.729 ± 0.190) than those for hip angle (take-off leg: 0.388 ±

0.193; swing leg: 0.370 ± 0.227) and ankle angle (take-off leg:

0.247 ± 0.172; swing leg: 0.155 ± 0.228). Agreement between

analysis techniques across all joint angles varied from moderate

agreement for some athletes (e.g., Athlete 9: 0.516 ± 0.354) to

poor for others (e.g., Athlete 2: 0.208 ± 0.122). CMD values for

COM data also showed considerable variation between athletes

and parameters (Figure 2, Supplementary Material), with COM

position (0.600 ± 0.322) and projection angle (0.658 ± 0.273)

waveforms generally showing better agreement than COM

velocity (0.217 ± 0.241). Agreement between analysis techniques

across COM parameters varied from moderate agreement for

some athletes (e.g., Athlete 9: 0.710 ± 0.147) to poor for others

(e.g., Athlete 2: 0.191 ± 0.167). Results concerning agreement

between methods for discrete parameters are presented in

Table 1. Agreement was generally poor with high random error

for joint kinematics (ROM, minimum and maximum angles) and

COM parameters at take-off (Table 1).
4 Discussion

The aim of this study was to test the performance of an open-

source markerless method on footage collected from a real-life

competitive setting. We compared OpenPose with manually

analyzed video data as this remains the best available method for

obtaining 3D kinematics in a real competition setting where

marker-based techniques are not realistic. The results regarding

the suitability of OpenPose to track accurately and reliably a

vigorous yet uncomplicated athletic movement were
frontiersin.org
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FIGURE 1

Joint angle waveforms (from penultimate touchdown before the board to leaving the take-off board) for four example athletes. Black lines represent
the take-off leg and red lines represent swing leg, whilst solid lines represent data obtained with manual analysis and dashed lines represent data
obtained with OpenPose. CMD values above each subplot show waveform similarity between methods for take-off leg (black numbers) and swing
leg (red numbers). Data for the other eight athletes can be found in the Supplementary Material.
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disappointing. This is demonstrated via both the discrete and

continuous data generated by OpenPose with movement pattern

curves vastly dissimilar to the criterion method, which as

expected compared very well with past laboratory and field

studies (4, 29, 30). The application of OpenPose yielded a

spectrum of movement patterns so variable between and within

athletes that it is impossible to identify a single variable or

characteristic where OpenPose could be considered as a

promising alternative to manual analysis. Even variables

appearing to approximate graphically at times the manual data

(e.g., left knee angle, COM spatial parameters) produced poor

agreement statistics for discrete data against manual digitizing

with total errors of such a large scale that prohibit any credible

performance estimation. For instance, the random error for the

range of motion for the swing leg’s knee joint was 32.29°, an

enormous variability for this type of measurement, something

that consequently generated very large limits of agreement even
Frontiers in Sports and Active Living 04
with a bias of 0.02°. The impact of the lack of agreement

between methods becomes more noticeable when popular and

well-established take-off variables are used for the comparison.

For example, the LOA for the COM take-off angle between the

two methods were recorded as −34.63–9.76°. Considering for

example that a minor increase in the take-off angle by 2° (from

20° to 22°) for a jump with a take-off velocity of 9.5 m/s and

take-off height of 1.2 m increases the COM range from 8.27 m to

8.60 m, it becomes clear that such huge limits of agreement do

not allow a valid quantification of the movement via the

OpenPose tracking. Unsurprisingly, only two out of the 21 ICCs

exceeded 0.75 with most of them exhibiting values around zero

which alongside some negative ICCs demonstrates the absolute

lack of correlation between the two methods and the extreme

within-group variability for the OpenPose method. Overall, the

quantities generated by OpenPose apart from diverging from

those obtained by the manual analysis, reached unrealistic values
frontiersin.org
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FIGURE 2

Position, progression angle, and velocity waveforms of the proxy COMmarkers (from penultimate touchdown before the board to leaving the take-off
board) for four example athletes. Solid lines represent data obtained with manual analysis and dashed lines represent data obtained with OpenPose.
CMD values above each subplot show waveform similarity between methods. Data for the other eight athletes can be found in the Supplementary
Material.
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(e.g., extreme COM velocities) which do not theoretically or

practically correspond to the movement performed. These

inaccuracies likely stem mainly from errors in pose estimation.

OpenPose occasionally mistracks a body part, and even if this

may happen for one key point, it can be sufficient to cause such

large errors. We made no attempt to filter these out prior to

running the DLT, since we wanted to test how well the method

would work without human intervention in a difficult test setting

where the cameras were positioned far from the motion.

OpenPose was selected in this study as one of the most popular

open-source, ready-to-use, detection tools based on deep learning

pose estimation with the acknowledgement that it was not

designed to perform detailed biomechanical analyses. OpenPose

is based on pre-determined landmarks (not exactly the same as

the ones used in the manual analysis) and has been trained by
Frontiers in Sports and Active Living 05
non-experts, and whilst it draws information from an extensive

library of labelled training images (26), these images are unlikely

to reflect the intricacies of the long jump movement. Allowing

the researcher to train their own models with self-selected

landmarks and custom datasets (e.g., DeepLabCut) could be a

potential advancement, however such techniques still present

significant limitations and they do not necessarily perform better

when compared to OpenPose for basic two-dimensional

movements and 3D joint locations (10, 13, 18, 31, 32).

Despite the above limitations the motivation to invest in

markerless motion analysis remains strong, as automated

labelling of images will drastically reduce processing time and the

need for a human operator to undertake such time-consuming

process. However, it is expected that such developments will keep

focusing on fixed laboratory settings or scenes where researchers
frontiersin.org
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TABLE 1 Agreement statistics for discrete data between manual analysis and OpenPose methods.

Bias Random error LOA RMSE ICC (3,1)
ROM TOL hip (°) 15.52 16.26 −0.74–31.78 17.43 0.21

ROM SWL hip (°) 20.89 29.97 −9.08–50.87 25.51 −0.05
ROM TOL knee (°) 15.66 31.41 −15.75–47.07 21.92 0.40

ROM SWL knee (°) 0.02 32.29 −32.28–32.31 15.78 0.78

ROM TOL ankle (°) −15.22 75.51 −90.73–60.29 39.90 −0.31
ROM SWL ankle (°) 9.24 64.76 −55.52–74.00 32.96 0.01

Min TOL hip (°) 2.59 10.10 −7.51–12.68 5.57 −0.13
Min SWL hip (°) −0.23 10.10 −10.32–9.87 4.94 0.27

Min TOL knee (°) −1.09 14.90 −15.99–13.81 7.36 −0.32
Min SWL knee (°) 12.41 13.29 −0.88–25.69 14.00 0.14

Min TOL ankle (°) −0.93 35.45 −36.38–34.51 17.34 −0.01
Min SWL ankle (°) 1.09 17.24 −16.15–18.32 8.49 0.54

Max TOL hip (°) −0.35 14.91 −15.26–14.55 7.29 0.67

Max SWL hip (°) 3.86 26.20 −22.34–30.07 13.37 −0.15
Max TOL knee (°) 1.87 12.25 −10.38–14.12 6.27 0.85

Max SWL knee (°) 10.55 21.96 −11.41–32.50 15.04 0.66

Max TOL ankle (°) −28.60 55.52 −84.12–26.91 39.42 0.06

Max SWL ankle (°) 10.93 65.92 −54.99–76.85 34.00 −0.15
Take-off COM angle (°) −12.44 22.20 −34.63–9.76 16.50 0.00

Take-off COM height (m) 0.02 0.23 −0.22–0.25 0.11 0.19

Take-off COM velocity (m/s) −4.74 2.83 −7.57–−1.91 4.94 0.00

LOA, limits of agreement; RMSE, root mean square error; ICC, intraclass correlation coefficient; ROM, range of motion; TOL, take-off leg; SWL, swing leg; COM, centre of

mass.
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can control spatial conditions. In contrast, for live competitions

and settings beyond the control of the researcher (as in the

current study), there is a long way to go for automated

techniques which use the same pose estimation principles with

OpenPose. This is mainly due to (a) the difficulty to place

cameras in optimal positions, and (b) the level of accuracy

needed for biomechanical outputs either for coaching or research

purposes. Currently, manual analysis techniques based on 3D

videography exhibit a very high degree of accuracy and reliability

when analysing athletics competitions as our continuous research

in the area has demonstrated (7, 22, 23, 33–35). Particularly, our

accuracy measurements have varied between 0.2% and 1% RMSD

for known 3D objects within the recorded space, whilst our

digitising reliability (root-mean-square difference) for COM

displacement remains consistently below 0.01 m, generally less

than 1° for relative and absolute angles, and <0.02 m/s for

segmental velocities. These standards backed by CMD scores of

0.99 for waveform similarity and ICCs approaching 1, have

established the suitability of manual digitising for detailed

biomechanical evaluation of athletic movement. That being said,

these reliability metrics are based on a single operator (digitizer).

One limitation of manual analysis is inter-operator agreement, a

consideration not relevant to automated markerless motion

analysis. However, most research studies which would employ

manual analysis would use only one operator, so does not affect

the overall purpose of this study.

The question that naturally arises is how markerless analysis

can reach similar levels of precision in live out-of-the-lab

settings. Currently and under controlled conditions, markerless

(open-source or commercial) analysis is attaining on average

error differences against multi-camera criterion methods far
Frontiers in Sports and Active Living 06
lower than in the current study for gait and jumping movements

(e.g., ≤11° for joint angles, ≤2 m/s for COM horizontal

velocities) (12–17, 36). Whilst these differences are perhaps

acceptable for a general description of a movement, they are still

considered large when subtle differences in performance are the

focus of an investigation. With the error magnifying when

measurements are conducted out of the laboratory, the additional

challenge for markerless methodologies is to achieve high fidelity

of movement reconstruction both in and out of the laboratory.

For out-of-the-lab applications, which is the focus of the

current study, it is logical to argue that more cameras from

multiple views would improve the markerless outcomes, however,

this is not always feasible in a competition setting for various

logistical and practical reasons. Increasing camera coverage would

mean either placing more cameras in the stands or broadcasting

platforms around the stadium, which is generally unrealistic due

to the presence of TV crews and spectators. Similarly, adding

cameras in the in-field could be a solution, but is problematic in

any competition setting, especially athletics. These additional

cameras could occlude television coverage, judges’ views, or other

athletes’ performances. Thus, a core element of the current study

was to use footage from only two cameras to compare manual

and markerless analysis methods, as this provides a more

representative comparison for competitive environments, unlike

“validation” studies that use marker-based motion capture

systems to compare with markerless motion capture.

The above logistical restrictions also apply to scenarios where

the goal of markerless motion analysis is only to provide fast

performance feedback to coaches and broadcasters during

training and competitions with acknowledgement that data are

not suitable for high precision biomechanical analysis. Markerless
frontiersin.org
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motion capture has been implemented in a field-based (albeit not

competitive) setting in constrained movements such as baseball

pitching yet with moderate agreement with marker-based systems

[e.g., (37, 38)]. However, this is a setting where cameras can be

placed in optimal locations whereas for competitive multi-

spectator events, cameras are likely to be placed far away from

the capture volume (e.g., in the stands or on broadcasting

platforms), which means the movements must be recorded at

long distances, and usually from suboptimal viewing angles (e.g.,

only one side covered).

A few future directions for automatic tracking during live

competitions can be generated from this study. First, it may be

necessary to identify biomechanical/performance variables that

markerless approaches can provide with reasonable accuracy and

reliability for different sports/events, acknowledging that these

methods may not be able to compute all desired variables. This,

however, necessitates an agreement between scientists and

coaches of the acceptable level of accuracy that is required for

different events and variables. Second, there is a need for sport-

specific trained models (potentially even subject-specific) using

data labelled by anatomical experts, rather than the typical

crowd-sourcing approach used to train most open-access models.

Even with the limitations outlined above, this may already yield

substantial improvements in accuracy. Moreover, methodological

refinements such as using inverse kinematics constrained models

may help to improve tracking accuracy (16). Third, scientists will

need to collaborate with sports event organizers such as

federations, broadcasters, stadium owners, teams etc., in order to

improve the general setup for performing markerless analysis

with cameras. For scientists and practitioners, this, apart from

allowing an optimal of cameras to be deployed, may provide

solutions to issues such as calibrations constraints, occlusions

from judges and TV crews, and poor/variable lighting effects.

Improving the quality and speed of markerless analysis through

set up, hardware and software improvements will make the end

product appealing to industry stakeholders, in particular

broadcasters who could incorporate fast data into their stream.

This will also benefit scientists by drawing necessary funding to

keep developing their applications.
5 Conclusions

This study selected one of the most popular open-source,

ready-to-use, detection algorithms, based on deep learning pose

estimation on pre-determined landmarks, to explore the

feasibility of an off-the-shelf pose estimation algorithm in real

athletics competitions. The results demonstrated emphatically

that OpenPose in its current form is not suitable to track

accurately and reliably a vigorous yet uncomplicated athletic

movement such as long jump. The comparison with manual

digitizing, which was employed as the criterion method,

regarding both continuous and discrete data generated vastly

dissimilar movement pattern curves and poor agreement

statistics, with OpenPose data reaching unrealistic values for key

performance variables which do not theoretically or practically
Frontiers in Sports and Active Living 07
correspond to the movement performed. Whilst markerless

techniques are developing at an extremely fast rate, and it is

expected that more focus will be placed on the out-of-the-lab

applications in the near future, our findings suggest that

OpenPose is not yet as accurate as manual analysis for

obtaining reliable kinematic information about an athlete’s

in-competition performance.
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