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Background: Evidence shows relaxation techniques reactivate the parasympathetic
nervous system (PNS) following physiological stressors such as exercise. As such,
these techniques may be useful following exercise training of high intensity
sports, like collegiate football.
Purpose: To evaluate the impact of mindfulness and rest activities on PNS
reactivation following training sessions, in a sample of Division-I collegiate, male
football athletes.
Methods: This study employed a cross-sectional, pre-post experimental design
among 38 football athletes. Following three training sessions, each separated by
one week, athletes were exposed to three groups: mindfulness, rest, and no-
intervention. Athletes in the mindfulness group laid supine in a darkened room,
while performing 15 min of guided breathing and body scans. The rest group
remained seated in a lighted room, performing 15 min of restful activities (e.g.,
talking). The no-intervention group was instructed to perform usual post-training
activities (e.g., showering). Heart rate (HR), respiration rate (RR) and two HR
variability (HRV) indices were measured via an armband monitor (Warfighter
Monitor, Tiger Tech Solutions, Inc, Miami, FL) equipped with electrocardiographic
and photoplethysmography capabilities. HRV indices included standard deviation
of the N-N intervals (SDNN) and root mean square of successive RR interval
differences (rMSSD). Within and between-group differences were determined via
analysis of variance (ANOVA) and corrected for multiple comparisons familywise
error.
Results: Statistically significant reductions in HR and RR were observed across all
groups: −81.6, −66.4, −40.9 bpm and −31.7, −26.9, and −19.0 breaths⋅min−1,
respectively. The mindfulness and rest groups exhibited a larger within-group
reduction in HR and RR compared to the no-intervention group, p < 0.0000.
Additionally, the mindfulness group showed a larger reduction in HR and RR
compared to the rest group, p < 0.05. Post-intervention HR and RRs were
significantly lower in the mindfulness group relative to the no-intervention
group (77.0 vs. 120.1 bpm, respectively). Similar results were observed for RR
(15.0 vs. 23.6 breaths⋅min−1, respectively) and HRV indices (SDNN: 46.9 vs.
33.1 ms and rMSSD: 17.9 vs. 13.8 ms, respectively) Athletes in the rest group
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showed significantly lower post-intervention HR (−30.2 bpm, 89.9 vs. 120.1 bpm,
respectively), RR (−4.3 breaths⋅min−1, 19.3 vs. 23.6 breaths⋅min−1, respectively)
and significantly higher HRV (SDNN: 42.9 vs. 33.1 ms and rMSSD: 16.7 vs.
13.8 ms, respectively) compared to their no-intervention counterparts.
Conclusions: Our findings suggest that athletes engaging in either 15-minute
guided mindfulness or rest activities (e.g., sitting) post training, may facilitate PNS
reactivation. Implementing these strategies may accelerate recovery, improving
performance. Longitudinal, randomized controlled trials among diverse sports
are encouraged.

KEYWORDS

parasympathetic reactivation, autonomic nervous system, elite athletes, exercise training,
American football, collegiate
Introduction

Exercise training activates the sympathetic nervous system

(SNS) in direct proportion to intensity and duration (1). The

SNS facilitates exercise performance through physiological

responses like increases in skeletal muscle blood flow, blood

pressure, cardiac output, heart rate, stroke volume, and

respiration (2, 3). Post exercise, the SNS continues its

dominance, supporting physiological recovery processes like

replenishing myoglobin O2 stores, resynthesizing

phosphocreatine, degrading hormones, increased glyconeogenesis

from lactate accumulation, and removal of CO2 (4, 5).

Eventually, the parasympathetic nervous system (PNS)

reactivates, regaining homeostatic control (6). It is, in this state,

an athlete, when provided sufficient time, may fully recover,

progressively adapt, and subsequently, enhance their sport

performance (7). Delays in reactivating the PNS, however, may

prolong recovery as the sustained catabolic state inhibits

processes such as full repletion of energy stores and repair of

musculoskeletal damage (8–11). Thus, athletes may benefit from

utilizing methods that reactivate the PNS immediately following

training sessions, especially sessions of high volume and/or

include high intensity exercise.

Substantial evidence shows that relaxation techniques such as

mindfulness, progressive relaxation, autogenic training, and deep

breathing positively influence the PNS (12, 13). Individuals

implementing these techniques following various physiological

stressors elicited reductions in heart rate (HR), respiration rates

(RR), and increases in HR variability (HRV), indicating PNS

reactivation (13). HR, RR, and HRV are indicators of the

interplay between the PNS and SNS (i.e., sympathovagal

balance). During parasympathetic dominance, acetylcholine

released from cardiac nerve fibers slows the sinoatrial (SA) node,

reducing HR. The controlled and slower inspirations and

expirations observed in this state contribute in optimizing

pulmonary gas exchange, venous return, and stroke volume (14,

15). Many studies previously demonstrated that deep and slowly

controlled breathing, a primary component to relaxation

techniques, regains PNS activation through these physiological

mechanisms (16). Specifically, the activity of the efferent cardiac

nerves fibers is at its peak throughout each prolonged expiration,
02
progressively slowing HR and increasing HRV (12). During the

lengthened inspiration, the expanding lung volume and

intrathoracic pressure increases alveolar ventilation and

perfusion, allowing for optimal loading and unloading of oxygen

and carbon dioxide, respectfully, in addition enhanced cardiac

blood flow (17, 18).

In the sports realm, current research shows that the anxiolytic

effects of relaxation techniques are a powerful tool for elite athletes

to use in reducing psychophysiological stressors that often precede

competition (19). Athletes often experience high state anxiety, self-

doubt, decreased confidence, and exhibit heightened activity of the

SNS, all of which may negatively affect sport performance (19–21).

Studies show that athletes implementing specific relaxation

techniques like auditory and visual imagery, self-hypnosis, deep

breathing, and progressive relaxation report reduced anxiety,

positive self-image, increased self-efficacy and improved

performance (22–24). Interestingly, however, previous studies

showed that relaxation exercises following training sessions

equivocally affected HR and HRV (25–27). Some factors

potentially explaining these inconsistencies could be that studies

relied on participants self-administering the intervention outside

of training, resulting in self-reported compliance and its’ overall

effects on feelings of relaxation, stress, anxiety, and perceived

performance (25, 27). As such, among athletes, the effects of

relaxation techniques on physiological markers of PNS

reactivation like HR, RR and HRV are less clear. Moreover, a

dearth of literature exists on using relaxation techniques

following acute bout of exercise training among athletes

competing in high-intensity team sports like American football

(28) and the effects on PNS reactivation.

Utilizing relaxation techniques following training sessions may

greatly benefit collegiate football athletes for several reasons.

Football athletes train with high frequency (5–6 sessions per

week), longer duration (2–4 h) and at high intensities (29, 30).

Consequently, these athletes may experience prolonged, elevated

SNS activity, potentially delaying recovery (26). To our

knowledge, no previous studies examined the influence of a brief

relaxation intervention following an acute bout of training on

PNS reactivation in collegiate, male football athletes. Therefore,

the purpose of this study was to determine the effects of two, 15-

minute relaxation exercises, mindfulness, or rest, on post-exercise
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TABLE 1 Demographic Characteristics of the Sample of Division-I
Collegiate Football Athletes.

Total
(n = 38)

Mindfulness
(n = 35)

Rest
(n = 36)

No-
intervention

Renaghan et al. 10.3389/fspor.2023.1267631
HR, RR and HRV. We hypothesized that the athletes engaging in

either mindfulness or rest techniques would elicit lower and

larger reductions post-exercise HR and RR and higher increases

in HRV compared to their no-intervention counterparts.

(n = 33)

Mean
(SD)

Mean (SD) Mean
(SD)

Mean (SD)

Age (years) 19.9 (1.4) 19.9 (1.4) 19.9 (1.4) 19.9 (1.4)

Anthropometrics
Weight (kg) 105.7 (22.3) 106.0 (22.1) 105.6 (21.9) 102.8 (19.7)

Height (cm) 189.1 (7.0) 189.4 (6.9) 189.3 (7.1) 188.4 (7.0)

BMI (kg/m2) 29.3 (4.7) 29.4 (4.7) 29.3 (4.6) 28.8 (4.3)

% Obese 29.0 28.6 27.8 25.9

Race/Ethnicity (%)
NH White 15.8 17.1 16.7 12.9

NH Black 68.4 65.7 66.7 67.7

NH Other 132. 14.3 13.9 16.1

Hispanic 2.6 2.9 2.8 3.2

Resting ANS Activity
Pre-Training
HR (bpm)

63.0 (7.2) 61.3 (6.3) 61.4 (8.1)

Pre-Training
rMSSD (ms)

48.3 (0.4) 51.1 (0.6) 50.3 (0.7)

Pre-Training 80.7 (1.6) 84.2 (2.1) 82.7 (2.4)
Materials and methods

Study design

This study employed a repeated-measures, non-randomized

within-group experimental design. The participants were not

randomized due to (1) the rigid structure of the training

sessions requiring an efficient approach and (2) the within-

group study design allowed for participants to serve as their

own control reducing the individual variability for between-

group comparisons. Thirty-eight male, collegiate football

athletes were agreed to participate in each of the three

interventions (mindfulness, rest, or no-intervention), following

routine exercise training sessions. HR, RR and HRV were

measured prior to and throughout both the training session and

15-minute intervention.
SDNN (ms)

NH, non-Hispanic; SD, standard deviation; BMI, body mass index; ANS, autonomic

nervous system; HR, heart rate; rMSSD, root mean square of the standard deviation

of N-N intervals; SDNN, standard deviation of N-N intervals; RR, respiratory rate.

Subjects

The study sample consisted of 38 collegiate football players

recruited from one Division-I university located in the

southeastern US. The prospective participants were recruited

from a pre-selected group of athletes the coaches identified as

“starters”, which were athletes that competed in nearly every

regulation game and for most of its duration. On average, the

total sample of athletes were 19.9 ± 1.4 years of age and ranged

between 18.0 and 23.0 years. Twenty-nine percent of the athletes

were classified as obese, according to body mass index values and

most of the athletes were non-Hispanic black (68.4%).

Importantly, no statistically significant differences in

demographic characteristics were observed between the

intervention groups (see Table 1). Prior to any measurements,

the athletes were informed of the benefits and risks of the study

and voluntarily consented to the study. All study protocols

followed the ethical principles defined in the declaration of

Helsinki and were approved by the University of Miami’s

Institutional Review Board (IRB #20191223).
Exercise training session

For the current study, one weekly exercise training session was

selected per week across a 3-week period, occurring during their

preseason summer football camp. Each session occurred on a

Monday, separated by one week, lasted between 140 and

150 min and consisted of high intensity exercise. The process

for selecting training sessions ensured the pre-intervention

exposures were similar in both duration and intensity. All

athletes were exposed to the same exercises including strength-
Frontiers in Sports and Active Living 03
& power-focused resistance exercises, short-distance sprint

intervals, aerobic training, and agility training (31–33). The

average post-exercise HR and RR prior to the interventional

trial were 158.6, 156.3, 161.3 bpm and 46.7, 46.7 and 42.6

breaths⋅min−1 for the mindfulness, rest, and no-intervention,

respectively, indicating athletes were engaged in high intensity

exercise (34, 35).
Relaxation interventions

Each Monday, a different intervention was conducted

immediately following an exercise training and lasted 15 min.

On the 1st, 2nd and 3rd Mondays, the no-intervention,

mindfulness, and resting interventions were administered,

respectively. Each training day consisted of three training

groups: 7:00 am, 9:00 am and 11:00 am. Each group consisted

of a different set of athletes; however, the training exposure and

post-training intervention were the same (see Figure 1).

Athletes in the mindfulness group were instructed to lie supine

on the floor in a darkened room and perform mindfulness

exercises including breathing techniques and body scans. A

professional trained in mindfulness guided the athletes

throughout the session. For the rest group athletes were asked

to remain seated in a lighted room and engage in restful

activities such as rehydrating, refueling, conversing with

teammates, etc. The no-intervention group was instructed to

engage in their usual post-training activities (e.g., listening to

music, showering, eating, standing around, horseplay).
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FIGURE 1

Schematic of the intervention implementation.
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Parasympathetic reactivation

HRs, RRs and HRV were objectively measured pre-, during

and post-intervention using armband monitors equipped

with electrocardiographic and photoplethysmography (PPG)

capabilities [Warfighter MonitorTM (WFM), Tiger Tech Solutions,

Miami, FL]. The WFM has been previously validated in diverse

populations (31–33, 36, 37). RR was calculated using an algorithm

which used a low pass filter of the PPG signal. This removes the

frequency components related to pulsatile flow and leaves only low

frequency modulation related to respiration (38). HRV is defined as

the time variation between heartbeats. The metrics used to evaluate

HRV included the standard deviation of NN intervals (SDNN) and

the root mean square of successive RR interval differences (rMSSD),

described in detail elsewhere (39, 40). These metrics were calculated

during a 5-min interval where the athletes were seated nearly

motionless prior to the start of each training session. The anticipated

decline of HRs and RRs and increases in HRV during and

immediate post intervention represented parasympathetic
Frontiers in Sports and Active Living 04
reactivation, defined as the regained dominance of the PNS and

withdrawal of the SNS following the cessation of exercise.
Statistical analysis

Between-group differences in demographic characteristics were

assessed via one-way ANOVA and Pearson’s Chi-Square Test for

continuous and categorical variables, respectively. Within- and

between group differences in pre- and post-intervention HRs,

RRs, rMSSD, and SDNN were assessed via repeated measures

ANOVA and the familywise error consequent to multiple

comparisons was accounted for using Tukey’s Honest Significant

Difference (HSD) test. All assumptions of the ANOVA were

assessed and met. Means and standard deviations were estimated

and the a priori threshold for statistical significance was set at α

= 0.05. Statistical analyses were performed in MATLAB, version

2021b (MathWorks, Natick, MA). Importantly, an a-priori power

analysis was not performed prior to study implementation.
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However, post-hoc power analyses were performed for detecting

within- and between-group differences via repeated measures

analysis of variance (ANOVA) model and showed that our study

had 99.9% power to detect following differences for mindfulness

vs. no-intervention: −46.1 bpm, −12.4 breaths⋅min−1, 14.4 ms for

SDNN and 4.0 ms for rMSSD; mindfulness vs. rest: −18.0 bpm,

−4.3 breaths⋅min−1, 5.7 ms for SDNN and 1.6 ms for rMSSD;

rest vs. no-intervention: −28.0 bpm, −8.1 breaths⋅min−1, 8.4 ms

for SDNN and 2.4 ms for rMSSD.
Results

Table 2 presents the pre-intervention, post-intervention and

change in HR, RR, rMSSD and SDNN across the three groups. At

baseline (pre-intervention and post-exercise training), no

statistically significant between-group differences in either HR, RR,

or HRV metrics were reported. For HR, statistically significant

reductions were observed for the mindfulness, rest, and no-

intervention groups: −81.6, −66.4, and −40.9 bpm, respectively.

Similarly, for RR, significant reductions were found for the

mindfulness, rest, and no-intervention groups: −31.7, −26.9, and
−19.0 breaths⋅min−1, respectively. Moreover, both the mindfulness

and rest groups exhibited a larger reduction in both HR and RR

compared to the no-intervention group, p < 0.0000. Additionally,

the mindfulness group showed a larger reduction in HR and RR

compared to the rest group, p < 0.05. For HRV, statistically

significant increases in rMSSD and SDNN were observed for the

mindfulness, rest, and no-intervention groups: + 8.6, + 7.3, + 4.8 ms

and +27.4, + 22.7 and 14.4 ms, respectively. Like HR and RR

responses, the mindfulness and rest groups exhibited larger

increases in both HRV metrics compared to the no-intervention
TABLE 2 Within-Group differences in heart rate and respiratory rates, by gro

Mindfulness

Mean (SD) % Difference

Pre-intervention
Heart rate (beats⋅min−1)* 158.6 (7.6) –

Respiratory rate (breaths⋅min−1)* 46.7 (3.9) –

SDNN (ms) 19.6 (2.9) –

rMSSD (ms) 9.3 (1.0) –

Post-intervention
Heart rate (beats⋅min−1) 77.0 (12.0) –

Respiratory rate (breaths⋅min−1) 15.0 (4.5) –

SDNN (ms) 46.9 (3.7) –

rMSSD (ms) 17.9 (1.1) –

Change**
Heart rate (beats⋅min−1) −81.6 (10.7)a,b,c 51.5 −
Respiratory rate (breaths⋅min−1) −31.7 (7.4)a,b,c 67.9

SDNN (ms) 27.4 (3.4)a,b,c 58.4

rMSSD (ms) 8.6 (1.1)a,b,c 48.0

asignificant (p < 0.0000) within-group difference.
bsignificant (p < 0.0000) Intervention vs No-Intervention.
csignificant (p < 0.05) Intervention vs Rest.

*no statistically significant differences in pre-intervention HR and RR were observed.

**change in HR and RR was calculated by the difference in post-intervention—pre-in

direction of the change.
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group, p < 0.0000. Also, the mindfulness group showed a larger

increase in HRV compared to the rest group, p < 0.05.

Between-group differences in post-intervention HR, RR and

HRV are illustrated in Figures 2–4, respectively. Both

intervention groups elicited lower HR and RR post-

intervention. Specifically, athletes in the mindfulness group

exhibited a post-intervention HR, 43.1 bpm below the no-

intervention group (77.0 vs. 120.1 bpm, respectively) and

showed a significantly lower respiration rate following the

intervention (15.0 vs. 23.6 breaths⋅min−1, respectively).

Similarly, athletes in the rest group showed significantly lower

post-intervention HR (−30.2 bpm, 89.9 vs. 120.1 bpm,

respectively) and RR (−4.3 breaths⋅min−1, 19.3 vs. 23.6

breaths⋅min−1, respectively) compared athletes in the no-

intervention group. Lastly, athletes using mindfulness following

their training session elicited lower HR (−12.9 bpm, 77.0 vs.

89.9 bpm, respectively) and RRs (−4.2 breaths⋅min−1, 15.0 vs.

19.3 breaths⋅min−1, respectively) compared to athletes using the

rest intervention. For HRV, athletes in the mindfulness group

elicited significantly higher post-intervention rMSSD and

SDNN values compared to the rest (+4.0 ms and +1.2 ms) and

no-intervention (+13.8 ms and + 4.1 ms) groups. Additionally,

athletes in the rest group exhibited significantly higher post-

intervention rMSSD and SDNN values compared to the

athletes in the no-intervention group (+9.8 ms and + 2.9 ms).
Discussion

The purpose of this study was to evaluate the impact of two

relaxation interventions on post-exercise training parasympathetic

reactivation in a sample of Division-I, male football athletes. The
up.

Rest No intervention

Mean % Difference Mean % Difference

156.3 (27.5) – 161.0 (7.5) –

46.7 (8.7) – 42.6 (4.3) –

20.2 (8.7) – 18.7 (2.9) –

9.4 (2.6) – 9.0 (1.0) –

89.9 (19.7) – 120.1 (19.7) –

19.3 (6.7) – 23.6 (7.5) –

42.9 (5.9) – 33.1 (6.1) –

16.7 (1.7) – 13.8 (1.7) –

66.4 (10.7)a,b 42.5 −40.9 (15.9)a 25.4

−26.9 (7.4)a,b 40.4 −19.0 (7.2)a 44.6

22.7 (5.8)a,b 52.9 14.4 (5.27)a 43.5

7.3 (1.8)a,b 43.7 4.8 (1.6)a 34.8

tervention to show the appropriate.
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FIGURE 2

Differences in post-intervention heart rates between groups. *p < 0.0000; **p < 0.05.
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main findings of this study were (1) both mindfulness and rest

interventions elicited a greater parasympathetic reactivation

compared to the no-intervention group, reflected by lower post-

exercise HRs and RRs and higher HRV, (2) the two intervention

groups showed the greatest within-group reduction in HRs and

RRs and increases in HRV relative to the no-intervention group

and, (3) at a smaller magnitude, the mindfulness group exhibited

a stronger parasympathetic reactivation following exercise

training compared to the rest group.

A novel aspect of this study was the observed parasympathetic

reactivation during a 15-minute relaxation intervention that either
FIGURE 3

Differences in post-intervention respiration rates between groups. *p < 0.000

Frontiers in Sports and Active Living 06
included mindfulness or unguided rest following a routine training

session. Specifically, athletes participating in mindfulness or resting

practices, immediately after training, exhibited lower HRs and RRs

and higher HRV compared to their no-intervention counterparts

that resumed usual post-training activities. Importantly, at the

start of the intervention, these athletes elicited post-exercise HRs

associated with exercise performance at high intensity, which

augments the increase in sympathetic activity, often requiring a

longer period of recovery (5). Remarkably, following the

mindfulness and resting interventions, the post-exercise HRs

(77.0 ± 12.0 bpm and 89.9 ± 19.7 bpm, respectively) and RRs
0; **p < 0.05.
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FIGURE 4

Differences in post-intervention heart rate variability between groups. *p < 0.0000; **p < 0.05.
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(15.0 vs. 19.3 breaths⋅min−1, respectively) exhibited were similar to

values at rest and reached while performing activities of daily living

(41, 42).Conversely, athletes in the no-intervention group, at the end

of the 15-min trial, exhibited significantly higher HRs and RRs

(120.1 ± 19.7 bpm and 23.6 ± 17.5 breaths⋅min−1, respectively) which

are similar to values elicited during moderate intensity exercise (34,

35, 43). This finding contributes to the current literature as most

studies focused on evaluating the effects of mindfulness practices on

pre-competition psychological stressors like performance anxiety (22,

24, 44). Thus, the effects on physiological factors, like

parasympathetic reactivation, were unclear. The observed reactivation

of the PNS following mindfulness or rest post-training possibly

suggests that athletes begin at least one aspect of their physiological

recovery earlier. Consequently, these athletes may experience less

fatigue during post-training activities, improved sleep, and readiness

for subsequent training sessions.

Expectedly, all athletes elicited reductions in HR and RR and

increases in HRV within 15 min following the cessation of

training (45, 46). However, the magnitude of the reductions was

markedly different amongst the groups, with the mindfulness and

rest groups exhibiting the largest decreases in HR and RR

compared to the no-intervention group. Specifically, the

reductions in HRs and RRs among athletes in the mindfulness

and rest groups were 200% and 160% and 168% and 140% larger

relative to the no-intervention group. Similarly, the mindfulness

and resting group exhibited higher increases for SDNN (190%

and 160%) and rMSSD (179% and 150%), respectively, relative to

the no-intervention group. These findings indicates that the

mindfulness and resting techniques implemented post training

were more effective in reactivating the PNS via lowering HR and

RR and increasing HRV. This is further supported by larger

proportion of recovery achieved among the mindfulness and rest

groups relative to the no-intervention group. The post-
Frontiers in Sports and Active Living 07
intervention HR values were considerably closer to their

respective baseline values for athletes in the mindfulness and rest

groups, suggesting an accelerated recovery. Specifically, regarding

HR, the mindfulness and rest groups were 78% and 53%

recovered with the former 14 bpm above and latter above

28.6 bpm their baseline HRs. Comparatively, the no-intervention

group appeared only 4.3% recovered with athletes, on average

nearly 60 bpm above their baseline HR. Similar trends were

shown for the HRV indices, however the proportion of recovery

was considerably less: SDNN (40%–58%) and rMSSD (27%–

37%), expectedly. Importantly, the extent of PNS reactivation was

achieved in a small timeframe, only 15 min. The minimum time

commitment required for effective PNS reactivation using these

techniques may reduce the implementation burden making it a

more efficacious and sustainable practice. Research shows that

interventions of increased complexity demanding many resources

and time, are prone to reduced compliance, minimized effects,

and eventual withdrawal (47, 48).

Lastly, this study also observed significant differences in HR,

RR and HRV between the two relaxation techniques. Specifically,

athletes in the mindfulness group exhibited larger within-group

reductions and lower post-intervention HRs and RRs (−81.6 vs.

−66.4 bpm and −31.7 vs. −26.9 breaths⋅min−1, respectively) and

higher SDNN and rMSSD values (+27.4 vs. +22.7 ms and +8.6

vs. +7.3, respectively) compared to the rest group. This finding is

rather intuitive as the athletes in the resting group were exposed

to more stimuli like lights, conversation, eating and drinking (49,

50). Moreover, the athletes were sitting upright resulting in

increased skeletal muscle activation in addition to consuming

foods yielding higher HRs, RRs and lower HRV. Despite the

greater effectiveness of the mindfulness intervention, the rest

group still elicited a significant effect on parasympathetic

reactivation. This is encouraging as the resources (e.g., lighted
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room and seating) are minimal and specialized equipment is not

required (e.g., mindfulness instructor or recording), lowering the

burden of implementation (47, 48). Furthermore, providing a

15-minute resting period following training sessions may offer

athletes an opportunity to bond with team members, positively

influencing team cohesion (26).
Strength and limitations

As with any study, there are strengths and limitations

warranting attention. First, this study focused on evaluating the

effects of two relaxation techniques following a routine football

training session and found large effects on parasympathetic

reactivation. To our knowledge, it is the first of its kind to (1)

evaluate parasympathetic reactivation following acute training

sessions using HR, RR and HRV metrics, (2) include a sample of

collegiate, male football athletes and, (3) demonstrate large

effects with objective measures and minimal participant burden

(e.g., time, resources). These strengths may strongly influence the

efficacy of these relaxation techniques. Some limitations of this

study include lack of randomization. Although the athletes were

not randomized to the three groups, no between-group

differences were observed for demographic characteristics or pre-

intervention measures and the athletes served as their own

controls. This does not assume, however, the groups were equal,

as unmeasured variables may have differed. Additionally, this

study only evaluated the effects following one intervention trial.

Thus, we cannot suppose that these findings, if repeated, would

occur across several trials. Lastly, this study focused on one

aspect of physiological recovery, which is a multifactorial process.
Conclusions

The observations of the current study demonstrate that

implementing brief relaxation techniques like guided mindfulness

and low-key resting period following exercise training elicits a

powerful effect on parasympathetic reactivation. This effect

possibly facilitates an early onset of recovery, which is critical for

athletes chronically exercising at high frequency, volume, and

intensity, like collegiate football players. Importantly, this effect

may reduce the physical, mental, and emotional demands

occurring throughout the remainder of their day, which could

also aid in a faster physiological recovery. Lastly, the brevity and

low burden of this intervention increase its efficacy, especially as

large effects were also observed for the resting group. As such,

coaches may be more willing to implement and sustain these

types of interventions. For future investigations, we strongly

recommend researchers conduct longitudinal studies to evaluate

longer-term effects on parasympathetic reactivation, sports

performance, and other physiological recovery variables.

Additionally, we suggest that forthcoming studies include a larger

and more representative sample of collegiate athletes including

diverse sports and females.
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