AUTHOR=Sperlich Billy , Düking Peter , Leppich Robert , Holmberg Hans-Christer TITLE=Strengths, weaknesses, opportunities, and threats associated with the application of artificial intelligence in connection with sport research, coaching, and optimization of athletic performance: a brief SWOT analysis JOURNAL=Frontiers in Sports and Active Living VOLUME=5 YEAR=2023 URL=https://www.frontiersin.org/journals/sports-and-active-living/articles/10.3389/fspor.2023.1258562 DOI=10.3389/fspor.2023.1258562 ISSN=2624-9367 ABSTRACT=
Here, we performed a non-systematic analysis of the strength, weaknesses, opportunities, and threats (SWOT) associated with the application of artificial intelligence to sports research, coaching and optimization of athletic performance. The strength of AI with regards to applied sports research, coaching and athletic performance involve the automation of time-consuming tasks, processing and analysis of large amounts of data, and recognition of complex patterns and relationships. However, it is also essential to be aware of the weaknesses associated with the integration of AI into this field. For instance, it is imperative that the data employed to train the AI system be both diverse and complete, in addition to as unbiased as possible with respect to factors such as the gender, level of performance, and experience of an athlete. Other challenges include e.g., limited adaptability to novel situations and the cost and other resources required. Opportunities include the possibility to monitor athletes both long-term and in real-time, the potential discovery of novel indicators of performance, and prediction of risk for future injury. Leveraging these opportunities can transform athletic development and the practice of sports science in general. Threats include over-dependence on technology, less involvement of human expertise, risks with respect to data privacy, breaching of the integrity and manipulation of data, and resistance to adopting such new technology. Understanding and addressing these SWOT factors is essential for maximizing the benefits of AI while mitigating its risks, thereby paving the way for its successful integration into sport science research, coaching, and optimization of athletic performance.