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Muscle specific declines in oxygen
saturation during acute
ambulation with hands-free and
conventional mobility devices
Adam P. Bradley, Alexis S. Roehl, Joseph Smith, Ryan McGrath and
Kyle J. Hackney*

Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, United
States

Disuse is associated with reduced muscle oxygen saturation (SmO2). Improving
oxygen delivery to tissues is important for healing, preventing muscle atrophy,
and reducing the risk of deep vein thrombosis. Mobility devices are used during
disuse periods to ambulate and protect the injured limb. This study examined
SmO2 in walking and ambulation with various mobility devices. Thirty-eight
participants randomly completed four, ten-minute trials which included: (1)
walking, (2) medical kneeling scooter (MKS), (3) hands-free crutch (HFC), and (4)
axillary crutch (AC). During each trial, near infrared spectroscopy sensors were
placed on the vastus lateralis (VL), biceps femoris (BF), and lateral gastrocnemius
(LG) of the right limb. Compared to walking, all mobility devices showed a
decline in SmO2 in the VL of ∼10% (mean ± SD; 75% ± 12%–65%± 17%, P < 0.05).
In the BF, SmO2 declined ∼9% in AC compared to walking (76% ± 12%–67%±
17%, P= 0.025). In the LG, SmO2 declined in AC (64%± 16%) compared to MKS
(70%± 15%, P= 0.005). There were no differences in LG SmO2 compared to
walking (69%± 13%) in MKS (P > 0.05) or HFC (65% ± 15%, P > 0.05). In young,
healthy volunteers, the use of mobility devices altered muscle oxygenation in
several muscles. AC reduced muscle oxygenation in the VL, BF, and LG; while
MKS and HFC maintained BF and LG muscle oxygenation at a level consistent
with ambulatory walking.
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1. Introduction

Millions of Americans annually experience lower body injury requiring a period of

musculoskeletal unloading (1). These individuals face a multitude of physical

consequences including muscular atrophy (2), strength loss (3), and risk of deep vein

thrombosis (DVT) (4). Several different ambulation devices have been developed to assist

individuals during periods of musculoskeletal unloading including traditional axillary

crutches (AC) (5) and medical kneeling scooters (MKS) (6). In addition, a hands-free

crutch (HFC) was recently developed as an orthopedic aid, which closely replicates the

gait of normal walking while still unloading the ankle and foot (7). Previous research has

investigated the effects of HFC on muscle activity. For instance, Dewar et al. showed

increased levels of muscle activity in the rectus femoris (RF), gluteus maximus, and lateral

gastrocnemius (LG) in HFC compared to AC (8). In an companion investigation, RF,

gluteus maximus, and LG peak muscle activity were elevated in HFC compared to MKS (9).
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Muscle activity, measured by surface electromyography (sEMG),

is linearly related to local muscle oxygen saturation (SmO2) with

dynamic exercise and increasing load (10, 11). Oxygen delivery

and uptake to the muscle via blood flow in injured muscle and

bone is particularly important for multiple basic cellular processes

that are important for healing (12, 13). For example, oxygen is

required for aerobic metabolism in the mitochondria of skeletal

muscle to generate adenosine triphosphate (ATP) (14) and the

activity of many enzymes, which are involved in healing (e.g., lack

of cycloxygenase-2 activity impairs bone repair) (15). A reduction

in tissue oxygen also interferes with the process of collagen

synthesis, and oxygen is an important signaling molecule, which

regulates the expression of several angiogenic genes (16). The ATP

derived through oxidative phosphorylation is also critical for

muscle protein synthesis (17).

The SmO2 can be measured non-invasively using near-infrared

spectroscopy (NIRS), which utilizes light wavelengths absorbed by

oxygenated and deoxygenated hemoglobin in arterioles, capillaries,

and venules (18). NIRS is significantly correlated (r = 0.75) to

transcutaneous O2 measurements (19) whereby high SmO2 indicates

an aerobic state and low SmO2 indicates anaerobic metabolism (20).

Recently, it was reported that there was a large (22%) decline in

SmO2 during walking in patients with peripheral artery disease,

which is indicative of impaired microcirculation (21). The risk of

DVT is elevated where impaired vascular function is present, and

specifically during immobilization it has been associated with NIRS-

derived values including deoxygenated hemoglobin (22). For

instance, it was recently shown that prolonged sitting causes

decreases in SmO2 (23). Despite prior evidence of increased risk of

DVT during immobilization as measured in NIRS-derived values, it

is currently unknown how mobility devices affect lower body muscle

oxygenation. The purpose of this research was to measure SmO2

during ambulatory walking and conduct comparisons to three

orthopedic mobility devices: HFC, MKS, and AC.
2. Method

This study recruited healthy individuals aged 18–45 years.

Participants were asked to complete three sessions on separate

days: (1) informed consent/fitting, (2) ambulation device practice,

and (3) muscle oxygenation testing during ambulation. In session

one, following written informed consent, participants completed

a Physical Activity Readiness Questionnaire, DVT screening

questionnaire, and additional study-specific questionnaire (24).

Exclusion criteria were pregnancy, lower limb pain, recent injury,

inability to self-ambulate unassisted, body mass >124.7 kg, or

height outside the range of 152.4 cm–193 cm. No individuals

were excluded after screening. Participants were then fit to each

device according to manufacturer specifications and settings were

recorded for the practice and testing sessions. A total of 40

participants were recruited (mage = 24.3 ± 5.1 years, mBMI = 25.7 ±

3.6 kg/m2). Sample size was estimated above previous studies on

similar ambulatory conditions (25, 26). Retrospective analysis

determined the sample size of 38 participants was >80% power

for VL, BF, and LG SmO2 at an alpha level of 0.05. All protocols
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were approved by the North Dakota State University Institutional

Review Board (#IRB0003736) and each subject provided written

informed consent.

The four different ambulation conditions evaluated for changes

in muscle oxygenation in this investigation were: (1) walking, (2)

medical kneeling scooter (MKS) (Elenker, Chino, CA), (3)

hands-free crutch (HFC) (iWalkFree Inc., Long Beach, CA), and

(4) axillary crutches (AC) (Personal Care Products, Larchmont,

NY). Therefore, in session two, each ambulation condition

(except regular walking) was practiced to assure proficiency.

Proficiency was determined by the following criteria: five-minutes

of safe ambulation without stopping; successful turn navigation;

self-expressed comfort and ambulation confidence.

In order to test the changes in muscle oxygenation during

ambulation, a randomized, within-subject, cross-over experimental

design was utilized to compare lower-limb SmO2 effects between

four different ambulation conditions (walking, HFC, MKS, AC).

Participants arrived at the lab the day of testing after refraining

from exercise for 24-hours and caffeine for 12-hours. A

stadiometer (Seca 213; Chino, CA) and digital scale (Denver

Instrument DA-150; Arvada, CO) were utilized to measure height

and body mass. NIRS units (Moxy Monitor, Fortiori Design LLC,

Hutchinson, MN) were placed on three muscles of the right leg,

which acted as the disuse limb for mobility device comparisons.

The sensors were placed on the vastus lateralis (VL), biceps

femoris (BF), and lateral head LG as previously described (27).

These muscle were selected given the role in the stance and swing

phase as of gait cycle (28) and as well as the unique positions of

these muscles with mobility devices (5, 29, 30). All participants

then completed a 10-minute trial of the first ambulation condition

around a 30.5 m (100 ft) rectangular walkway. Given the difficulty

of determining a velocity or cadence that all mobility devices

(HFC, MKS, and AC) and regular walking could be completed at,

participants were instructed to complete the ambulation course at

a self-selected but safe pace for each trial. A five-minute rest

period occurred between each trial. The procedures were repeated

until all four ambulation conditions were completed in a random

order. Additional details of the research design including data

quantifying oxygen consumption and hemodynamics are reported

elsewhere (31, 32). Following testing, data was exported from the

NIRS units and averaged per 10 min. Oxygenated and

deoxygenated hemoglobin values were determined by multiplying

SmO2 by total hemoglobin (Hb) and subtracting oxygenated

hemoglobin from total Hb, respectively (27).
2.1. Statistical analysis

Statistical analyses were completed using SPSS version 28.0

(IBM; Armonk, NY). Descriptive characteristics were presented

as mean ± SD. Tukey’s method was utilized to detect and remove

outliers in NIRS data. Two participants had NIRS data that were

determined to be outliers and were removed from the data set

(N = 38). Analysis of variance (ANOVA) with repeated measures

were used to determine muscle oxygenation differences between

ambulation conditions. An alpha level of 0.05 was used to
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determine significance. When statistical significance was generated,

Sidak post-hoc tests were used to evaluate differences between the

four ambulation conditions. Partial eta squared (pη2) effect size

estimations also included for interpretation as pη2 0.2–0.12 is

considered a small effect, 0.13–0.25 is a medium effect, and

>0.26 is a large effect (33). Pearson correlations were also

calculated for deoxygenated hemoglobin to determine

associations among upper and lower body muscular for each

mobility device and walking.
3. Results

3.1. Muscle oxygenation

In the VL, there were significant differences over the 10-minute

trial in SmO2 between ambulatory and mobility device conditions

(P < 0.001, pη2 = 0.18, Figure 1). Post-hoc testing determined that

when compared to walking (75% ± 13%), SmO2 declined in MKS

(64% ± 18%, P = 0.002), AC (67% ± 18%, P = 0.047), and HFC

(65% ± 16%, P = 0.03). In the BF, there were also significant

differences over the 10-minute trial in SmO2 between ambulatory

and mobility device conditions (P = 0.10, pη2 = 0.10, Figure 2).

Post-hoc testing determined that when compared to walking

(76% ± 12%), SmO2 declined only in AC (67% ± 17%, P = 0.025).

There were no significant changes in BF SmO2 with HFC (72%

± 15%) or MKS (72% ± 15%), P > 0.05). In the LG, there were

significant differences in SmO2 between the mobility conditions

(P = 0.011, pη2 = 0.09, Figure 3). Post-hoc testing determined that

SmO2 declined in AC (64% ± 16%) but only when compared to

MKS (70% ± 15%, P = 0.005). There were no differences in LG

SmO2 when compared to walking (69% ± 13%, P > 0.05) or when

compared to HFC (65% ± 15%, P > 0.05).
FIGURE 1

(A) Muscle oxygen saturation (SmO2) in the vastus lateralis (VL) during
regular walking (WALK), medical kneeling scooter (MKS), hands-free
crutch (HFC), and axial crutch (AC) over time. (B) Average changes in
SmO2 for each condition. Mean ± SD. *P < 0.05.
3.2. Oxygenated hemoglobin

In the VL, there were significant differences over the 10-minute

trial in oxygenated hemoglobin (P < 0.001, pη2= 0.18, Table 1).

Post-hoc testing determined that when compared to walking,

oxygenated hemoglobin declined in MKS (P = 0.002) and HFC (P

= 0.001), but not AC (P = 0.051). In the BF, there were significant

differences over the 10-minute trial in oxygenated hemoglobin (P

= 0.012, pη2= 0.10, Table 1). Post-hoc testing determined that

compared to walking, there was a significant decline in oxygenated

hemoglobin in AC (P = 0.036). In the LG, there were significant

differences over the 10-minute trial in oxygenated hemoglobin (P

= 0.009, pη2= 0.10, Table 1). AC had significantly less oxygenated

hemoglobin when compared to MKS (P = 0.002).
3.3. Deoxygenated hemoglobin

In the VL, there were significant differences over the 10-minute

trial in deoxygenated hemoglobin (P < 0.001, pη2 = 0.17, Table 1).

Post-hoc testing determined that when compared to walking,
Frontiers in Sports and Active Living 03
deoxygenated hemoglobin increased in MKS (P = 0.001), HFC

(P = 0.03), and AC (P = 0.003). In the BF, there were significant

differences over the 10-minute trial in deoxygenated hemoglobin

(P = 0.005, pη2 = 0.11, Table 1). Post-hoc testing determined that

compared to walking, there was a significant increase in

deoxygenated hemoglobin in AC (P = 0.015). In the LG, there

were significant differences over the 10-minute trial in

deoxygenated hemoglobin (P = 0.005, pη2 = 0.11, Table 1). AC

had significantly greater deoxygenated hemoglobin when

compared to MKS (P = 0.002).

During walking, VL deoxygenated hemoglobin was significantly

correlated with BF (r = 0.456, P = .004) and LG (r = .515, P < 0.001)

deoxygenated hemoglobin. BF deoxygenated hemoglobin was

also significantly correlated with LG deoxygenated hemoglobin

(r = 0.602, P < 0.001). During HFC, VL deoxygenated hemoglobin

was significantly correlated with BF (r = 0.619, P < 0.001) and LG
frontiersin.org
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FIGURE 3

(A) Muscle oxygen saturation (SmO2) in the lateral gastrocnemius (LG)
during regular walking (WALK), medical kneeling scooter (MKS),
hands-free crutch (HFC), and axial crutch (AC). (B) Average changes in
SmO2 for each condition. Mean ± SD. *P < 0.05.

FIGURE 2

(A) Muscle oxygen saturation (SmO2) in the biceps femoris (BF) during
regular walking (WALK), medical kneeling scooter (MKS), hands-free
crutch (HFC), and axial crutch (AC) over time. (B) Average changes in
SmO2 for each condition. Mean ± SD. *P < 0.05.

TABLE 1 Vastus lateralis (VL), biceps femoris (BF), and lateral
gastrocnemius (LG) oxygenated (OxHb), deoxygenated (De-OxHb), and
total hemoglobin (HB).

WALK MKS HFC AC

VL
OxHb 9.12 ± 1.46 7.77 ± 2.03a 7.87 ± 1.83a 8.13 ± 2.06

De-OxHb 2.91 ± 1.49 4.25 ± 2.20a 4.20 ± 1.93a 3.97 ± 2.15a

Total Hb 12.02 ± 0.41 12.02 ± 0.52 12.07 ± 0.50 12.15 ± 0.43a

BF
OxHb 9.14 ± 1.48 8.62 ± 1.75 8.65 ± 1.77 8.10 ± 1.94a

De-OxHb 2.83 ± 1.45 3.40 ± 1.84 3.41 ± 1.88 3.96 ± 2.05a

a
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(r = 0.513, P < 0.001) deoxygenated hemoglobin. BF deoxygenated

hemoglobin was also significantly correlated with LG

deoxygenated hemoglobin (r = 0.392, P = 0.015). During MKS, VL

deoxygenated hemoglobin was significantly correlated with BF

(r = 0.494, P = 0.002) and LG (r = 0.532, P < 0.001) deoxygenated

hemoglobin. BF deoxygenated hemoglobin was also significantly

correlated with LG deoxygenated hemoglobin (r = 0.396,

P = 0.015). During AC, VL deoxygenated hemoglobin was

significantly correlated with BF (r = 0.563, P < 0.001) and LG

(r = 0.719, P < 0.001) deoxygenated hemoglobin. BF deoxygenated

hemoglobin was also significantly correlated with LG

deoxygenated hemoglobin (r = 0.606, P < 0.001).

Total Hb 11.90 ± 0.42 12.00 ± 0.42 12.01 ± 0.41 12.04 ± 0.34

LG
OxHb 8.33 ± 1.51 8.67 ± 1.59 7.96 ± 1.57 7.74 ± 1.82b

De-OxHb 3.71 ± 1.66 3.49 ± 1.84 4.22 ± 1.83 4.47 ± 2.04b

Total Hb 12.03 ± 0.50 12.17 ± 0.48a 12.18 ± 0.49a 12.21 ± 0.46a

N= 38.
aSignificantly different vs. WALK.
bSignificantly different MKS; Mean ± SD; P < 0.05.
3.4. Total hemoglobin

In the VL, there were significant differences over the 10-minute

trial in total hemoglobin (P < 0.045, pη2= 0.70, Table 1). Post-hoc

testing determined that when compared to walking, total
Frontiers in Sports and Active Living 04 frontiersin.org

https://doi.org/10.3389/fspor.2023.1210880
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Bradley et al. 10.3389/fspor.2023.1210880
hemoglobin increased in AC (P = 0.016). In the BF, there were

significant differences over the 10-minute trial in total hemoglobin

(P < 0.001, pη2= 0.15, Table 1). Post-hoc testing determined that

compared to walking, there was a significant increase in total

hemoglobin in AC (P < 0.001). In the LG, there were significant

differences over the 10-minute trial in total hemoglobin

(P = <0.001 pη2= 0.31, Table 1). Post-hoc testing determined that

compared to walking, there were increases in total hemoglobin in

AC (P < 0.001), HFC (P < 0.001), and MKS (P < 0.001).
4. Discussion

The purpose of this study was to measure lower extremity

SmO2 in walking compared to ambulation with common

mobility devices. The primary findings of this acute disuse

simulation were that we observed muscle and mobility

device-related: (1) declines in muscle oxygenation, (2) elevations

in de-oxygenated hemoglobin, and (3) increases in total

hemoglobin. These acute alterations were evident in as little as

10 min of mobility device use when compared to walking. The

results of this study may have implications for increased healing,

reduced muscle loss, and mitigation of the DVT.

Oxygen delivery plays a crucial role in wound and fracture healing

by generating ATP via aerobic metabolism and stimulating the activity

of critical enzymes for repair (12, 13). The current investigated

reports, when compared to normal walking, all mobility devices

tested showed an average decline in SmO2 in the VL of ∼−10%.
We also report that in AC only ambulation there were declines in

SmO2 in the BF (−9%) when compared to walking and LG (−6%)
when compared to MKS. There are two physiological mechanisms

that could explain why there was an acute decline in muscle

oxygenation when using mobility devices. First, an inverse linear

relationship has previously been demonstrated between dynamic

muscle activation and SmO2 with demanding exercise (10, 11).

Greater dynamic muscle activation and aerobic energy metabolism

can subsequently decrease in SmO2, as local oxygen delivery and

uptake is below the capabilities of aerobic metabolism in the muscle

(34). A secondary mechanism for reduced SmO2 when using the

mobility devices is that with muscle inactivity SmO2 can also

decline below resting levels given reduced blood flow and lack of

oxygen delivery to the muscle (23). Therefore, the purported

declines in SmO2 in current investigation with mobility device use

may be explained either by very high local muscle energy

requirements or reduced blood flow and oxygen delivery.

In our investigation, we cannot definitely distinguish which

mechanism is driving the reported acute declines in muscle

oxygenation. In a companion paper, we have shown the total body

oxygen consumption (VO2) was higher (∼35%) when using the

mobility devices when compared to walking (31). However, total

body VO2 represents the summation of aerobic energy metabolism

of all contracting skeletal muscles and other physiological systems

during movement (35). Therefore, contributions from additional

upper extremity dynamic muscle activation during AC, increased

activity of dynamic bilateral leg muscles during MKS propulsion,

or dynamic hip flexor activation in lifting the HFC can drive
Frontiers in Sports and Active Living 05
increases in total VO2. Further, if even considering the additional

dynamic muscle activity and aerobic energy metabolism of other

physiological systems in the previous study, VO2 values ranged

from 15 to 20 ml/kg/min using the mobility devices compared to

13 ml/kg/min with regular walking (31). Crum et al. showed that

aerobic power with dynamic exercise needed to reach a VO2

threshold of 36 ml/kg/min before SmO2 started to decline given

dynamic muscle activation and accelerated aerobic energy

metabolism (34). In addition, Vasquez-Bonilla et al. suggest SmO2

values may need to decline below 26% before anaerobic

metabolism becomes the predominant energy system (36). Thus,

we speculate the local muscle oxygenation saturation declines with

mobility device use in the present study were a result of reduced

local blood flow and oxygen delivery during the 10-minute disuse

simulation given the greatest decline in SmO2 with the mobility

devices use was ∼10%.
The VL in particular showed a mean decline of 10% when using

all mobility devices when compared to walking. Given the VL is

primarily a knee extensor, the isometric/stabilization demands

placed on VL when ambulating with a fixed knee angle like in

HFC and MKS differ from the dynamic demands of unassisted

walking. Higher isometric knee extensor activation has been

demonstrated at longer muscle lengths, such as the 90° knee angle

in HFC and MKS (37). Although muscle activity is higher during

isometric activation, ATP splitting and subsequence oxygen

utilization to resynthesize ATP is lower in isometric muscle

actions compared to dynamic activation given reduced cross-

bridge cycling in the muscle (e.g., Fenn Effect) (38). Further, when

muscles are stretched such as with VL during mobility device use,

ATP splitting is further reduced even lower than with isometric

muscle actions (39). A previous investigation into muscle

activation with walking and HFC have shown similar patterns of

muscle activation in the VL (40). However, these muscle activation

pattern similarities may not have been influential enough to elicit

similar SmO2 responses to walking in this investigation with any

of the mobility devices tested. Declines in SmO2 in BF and LG

when ambulating with AC only also suggest a trend towards an

anaerobic local muscle environment given total musculoskeletal

unloading from ground reaction forces in the suspended limb.

Given that BF and LG function as knee flexors, lower limb SmO2

decreases may also be explained via isometric knee flexion

demands (40). We speculate that SmO2 declined because none of

the muscles evaluated in the present study (VL, BF, LG) were

contracting through a full range of motion as with regular

walking. This reduces ATP splitting in muscle cross-bridge cycling

and subsequent adenosine diphosphate build up which triggers

additional oxygen uptake into the muscle (38).

Indicators of deoxygenated hemoglobin is associated with

increased risk of DVT (22). In brief, increases in deoxygenated

hemoglobin were the reverse of the declines in SmO2. For

example, in the VL, deoxygenated hemoglobin increased in MKS,

HFC, and AC when compared to walking. In the BF, there was a

significant increase in deoxygenated hemoglobin in AC only vs.

walking and in the LG, AC had significantly greater

deoxygenated hemoglobin when compared to MKS only.

Correlations between upper leg musculature (VL, BF) and lower
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extremity muscular (LG) showed positive and significant

associations in walking, HFC, MKS, and AC; however, the largest

correlation occurred in AC between the VL and LG (r = .719).

One attractive hypothesis for the differences observed is

“functional sympatholysis”, whereby, metabolites from local

contracting skeletal muscle interrupts pathways mediating

sympathetic vasoconstriction (41). In a previous experiment,

mild to moderate exercise (handgrip 20%–33% of maximum

effort) maintained muscle oxygenation in exercising muscles, but

led to decreases in oxygenation in resting muscle (42). Thus,

given lower extremity muscles (VL, BF, LG) are active through a

larger range of motion during walking, local metabolites may

have maintained vasodilation and lower levels of deoxygenated

hemoglobin. In contrast, the activity of these muscle may be less

or even at rest with mobility device use, thus, the lack of local

metabolite build-up in arterioles could lead to sympathetic

vasoconstriction; which increased deoxygenated hemoglobin.

Total hemoglobin has been used as a non-invasive indicator of

muscle blood volume changes (43, 44) and there were subtle

changes in total hemoglobin in the disuse simulation. Total

hemoglobin elevations appeared to be the most persistent with AC

as increases were observed in VL and BF when compared to

walking. In the LG, the muscle where volume changes would be

the most expected with mobility device use, there were increases in

total hemoglobin compared to walking in the following order: MKS

(+1.16%), HFC (+1.25%), and AC (+1.50%). These data suggest a

low but significant level of venous blood pooling in the lower

extremity muscles that were unloaded in 10 min of ambulation.

Prolonged AC use has shown elevated calf circumferences

(45), which is another indicator of blood pooling in the

lower extremity. The consequence of blood pooling during

immobilization of more than 48 h is strongly associated with DVT

risk (45). Muscle pump activity is also a critical factor for preventing

stasis (25) as knee positions at 90 degrees flexion are associated with

reduced flow rates (26). However, in a previous investigation, we

reported post-mobility device ambulation popliteal venous blood

flow rates via diagnostic ultrasound (32). All mobility devices had

some level of reduced venous flow; however, only significant

changes were detected in the MKS vs. traditional walking (32).

Given that NIRS data were collected during mobility device

ambulation and blood flow indicators were taken immediately after

ambulation, these data cannot be directly correlated. Further

investigation of blood volume and stasis are warranted with mobility

device use in both acute and chronic conditions.
5. Conclusion

Local muscle oxygenation to the muscles of the lower

extremity is reduced acutely with mobility device ambulation,

and the response is specific to the muscle and mobility

device. All mobility devices showed reduced muscle

oxygenation in the VL. Muscle oxygen saturation levels in

the BF and LG muscles while using the MKS and HFC

devices were similar to those of ambulatory walking. Reduced

muscle oxygenation, increased de-oxygenation, and elevated
Frontiers in Sports and Active Living 06
total hemoglobin during use of AC were recorded in all three

muscles tested. A strength of the investigation was the use of

NIRS during acute mobility device use (19), including novel

HFC applications. This is first investigation to include NIRS

in evaluation of mobility devices use and provides muscle

oxygenation patterns that may be more beneficial for tissue

repair compared to surface EMG. A limitation of the

investigation was that the disuse simulation was performed in

healthy adults in the absence of injury or post-operative

stressors. In support of our acute findings, Rambani et al.

has provided one of the only randomized controlled trials in

this area and reported average hospital stay duration in

patients using HFC were shorter (∼7 days) with greater

musculoskeletal functional assessments compared to crutches

(7). Future large-scale clinical trials in patients with injury

are needed to further illicit if the acute changes in muscle

oxygenation may be altered given inflammatory mediated

disruptions in blood flow.
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