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How do differences in Achilles’
tendon moment arm lengths
affect muscle-tendon dynamics
and energy cost during running?
Eric C. Bennett, Esthevan Machado and Jared R. Fletcher*

Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada

Introduction: The relationship between the Achilles tendon moment arm length
(ATMA) and the energy cost of running (Erun) has been disputed. Some studies
suggest a short ATMA reduces Erun while others claim a long ATMA reduces Erun. For
a given ankle joint moment, a short ATMA permits a higher tendon strain energy
storage, whereas a long ATMA reduces muscle fascicle force and muscle energy
cost but shortening velocity is increased, elevating the metabolic cost. These are all
conflicting mechanisms to reduce Erun, since AT energy storage comes at a
metabolic cost. Neither of these proposedmechanisms have been examined together.
Methods: We measured ATMA using the tendon travel method in 17 males and 3
females (24± 3 years, 75± 11 kg, 177 ± 7 cm). They ran on a motorized treadmill for
10 min at 2.5 m · s−1 while Erun was measured. AT strain energy storage, muscle
lengths, velocities and muscle energy cost were calculated during time-normalized
stance from force and ultrasound data. A short (SHORT n=11, ATMA=29.5±
2.0 mm) and long (LONG, n=9, ATMA=36.6±2.5 mm) ATMA group was considered
based on a bimodal distribution of measured ATMA.

Results:Mean Erun was 4.9±0.4 J · kg−1 ·m−1. The relationship between ATMA and Erun
was not significant (r2 =0.13, p=0.12). Maximum AT force during stance was
significantly lower in LONG (5,819± 1,202 N) compared to SHORT (6,990±920 N,
p=0.028). Neither AT stretch nor AT strain energy storage was different between
groups (mean difference: 0.3± 1 J · step−1, p=0.84). Fascicle force was significantly
higher in SHORT (508±93 N) compared to LONG (468±84 N. p=0.02). Fascicle
lengths and velocities were similar between groups (p >0.72). Muscle energy cost
was significantly lower in LONG (0.028±0.08 J · kg · step−1) compared to SHORT
(0.045±0.14 J · kg · step−1 p=0.004). There was a significant negative relationship
between ATMA and total muscle energy cost relative to body mass across the stance
phase (r=−0.699, p <0.001).
Discussion: Together these results suggest that a LONG ATMA serves to potentially
reduce Erun by reducing the muscle energy cost of the plantarflexors during stance.
The relative importance of AT energy storage and return in reducing Erun should be
re-considered.

KEYWORDS

strain energy storage, energy cost, running economy, ultrasound, metabolic cost of force

production

Introduction

The role of the long Achilles tendon in reducing the metabolic cost of locomotion is

well-established (1–5). During locomotion, the triceps surae muscles produce longitudinal

forces that are transferred through the Achilles tendon, producing a joint moment. The

required muscle force to achieve a given joint moment is dependent on the moment arm
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2023.1125095&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fspor.2023.1125095
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspor.2023.1125095/full
https://www.frontiersin.org/articles/10.3389/fspor.2023.1125095/full
https://www.frontiersin.org/articles/10.3389/fspor.2023.1125095/full
https://www.frontiersin.org/articles/10.3389/fspor.2023.1125095/full
https://www.frontiersin.org/journals/sports-and-active-living
https://doi.org/10.3389/fspor.2023.1125095
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Bennett et al. 10.3389/fspor.2023.1125095
length. The Achilles tendon moment arm (ATMA) can be defined

as the perpendicular distance from the centre of rotation of the

ankle joint to the line of action on the Achilles tendon (6).

Generating muscle forces during stance comes at a metabolic

cost, typically considered to be proportional to the rate and

magnitude of muscle force generation (7). Thus, generating low

forces at a low shortening velocity should come at a low

metabolic cost compared to higher muscle forces and/or higher

shortening velocities. As velocity increases, recruitment must

increase to maintain the required force (8–10), and it is

acknowledged that force, not power is the determining factor for

muscle activation during running. For a given force requirement,

the level of activation and therefore the energy cost, can be

minimized if the muscle can operate at a slower shortening

velocity (9, 10).

With regards then to the ATMA, for a given joint moment, a

longer ATMA should reduce muscle forces and thus metabolic

cost. Whereas for a given joint angular rotation, a short ATMA

would result in a lower shortening velocity, also reducing

metabolic cost. Considering these potential mechanisms, it is

perhaps no surprise that the relationship between ATMA and the

energy cost of running (Erun) has been contentious. Some studies

have shown that a short ATMA is associated with a lower oxygen

cost during running (14, 15). The proposed mechanisms for the

lower oxygen cost of running are presumed to be two-fold. First,

for a given plantarflexion moment, a short ATMA allows for a

greater elastic strain energy storage and return from the AT

which are recovered as kinetic energy during the stance phase

(14). The AT stores elastic strain energy as it stretches, and

releases a large portion of this mechanical energy as it recoils; a

shorter ATMA is related to a larger AT strain energy storage and

return (16), which further supports previous findings suggesting

a short ATMA is associated with a low Erun (14, 15). Additionally,

a short ATMA allows for a lower muscle fascicle shortening and

lower shortening velocity for a given joint rotation during stance,

which in turn reduces metabolic cost of activating a greater

volume of muscle (17–19) and muscle energy cost because of the

muscle’s force-velocity relationship (9).

What has not yet been considered in these proposed

explanations for the energetic benefits of a short ATMA is that

elastic strain energy storage does not come without a metabolic

cost itself (20, 21). Indeed, the additional elastic strain energy

storage associated with a short ATMA is a result of higher muscle

forces for a given joint moment required to stretch the Achilles

tendon. Generating these higher muscle forces comes at a higher

muscle energy cost (7, 22, 23). To support this notion, we

recently demonstrated that the muscle energy cost was

considerably higher than the mechanical energy stored and

returned from the Achilles tendon during running (20),

suggesting the role that the Achilles tendon plays in reducing

metabolic cost may be different than previously thought. More

recently, Schroeder and Kuo (21) suggested that active positive

muscle mechanical work must be performed to restore dissipative

energy losses during each stride, associated with the loss of the

body’s centre of mass momentum when the leg collides with

the ground, as well as hysteresis energy losses. We propose that
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the AT serves to reduce metabolic cost by decoupling the length

change of muscle fascicles from the entire muscle-tendon unit,

thereby reducing the metabolic cost associated with producing

additional amounts of positive and/or negative work during the

stance phase of running (21, 24–26).

In contrast, a long ATMA has also been associated with a

reduced Erun (27). The proposed mechanism suggests that a

longer ATMA allows for lower muscle forces to produce a given

joint moment. The lower muscle forces reduce the muscle

metabolic cost and should translate into a reduced Erun.

However, fascicle shortening and shortening velocity is increased

for a given joint rotation during stance, which may increase the

muscle metabolic cost and the Erun because a higher active

muscle volume will be required as a result of the force-velocity

relationship (9). However, runners with a long ATMA were found

to have less ankle joint rotation during stance (27), contributing

to a lower triceps surae shortening velocity, and reduced active

muscle volume (28), contributing to their lower Erun associated

with a longer ATMA.

Studies have also been conducted on Kenyan runners, a

population of runners known for their exceptional running

economy (15, 29, 30). Previous studies have investigated the role

of the muscle-tendon unit and foot architecture in these runners

as a potential explanation for their phenomenal running

economy (31–33). For example, Kunimasa et al. (31) showed that

Kenyan runners have longer ATMA compared to their Japanese

counterparts, as well as a lower foot lever ratio, the ratio of the

ground reaction force lever arm (often assumed from the forefoot

length) to the ATMA which appears to have persisted since birth

(32), providing biomechanical and metabolic benefits since a

young age (29, 34). It is important also to consider the foot lever

ratio. Potential differences in foot lever ratio, may also be a

potentially confounding factor in the relationship between Erun
and ATMA, since a lower foot lever ratio reduces the required

plantarflexion joint moment produced by the muscles during the

stance phase. This potentially confounding factor has often been

ignored in previously-reported Erun vs. ATMA relationships

(6, 14, 15). Could this ATMA debate be settled simply because

those runners with short ATMA also have short forefoot lengths?

Taken together, the present literature suggests Erun can be

reduced by two independent, and contrary mechanisms: reducing

metabolic cost by storing and returning a greater amount of

mechanical energy in the Achilles tendon or reducing the

metabolic cost of contraction as a result of the muscle(s)’ force-

length-velocity relationships. The debate may be settled if muscle

energy cost and strain energy storage/return was measured

during submaximal running in a cohort of runners whose

ATMA’s differed. To date, these mechanisms have not been

measured simultaneously to explain the potential role of the

ATMA to reducing Erun.

The measurement of muscle fascicle and Achilles tendon

length change and velocity of the triceps surae is easily

performed during running (35–39). From these measurements,

combined with an estimate of muscle-tendon forces using inverse

dynamics (40), AT energy storage and return can be quantified

and the muscle energy cost of contraction during stance can be
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calculated (20). The main determinant of whole-body Erun is the

generation and maintenance of muscular force, to support and

accelerate the body (7), which is influenced by the ATMA. The

level of muscle activation (and therefore muscle volume)

necessary to generate this force is dictated by the muscle’s force-

length-velocity relationship (41–43). A logical mechanism for a

reduced Erun with either short or long ATMA should be

demonstrated by potential differences in the muscle’s length and

velocity during stance relative to the muscle’s force-length and

force-velocity potentials (43).

Therefore, the primary purpose of this study was to quantify AT

energy storage and return and the muscle metabolic cost during

submaximal running in runners who possessed a range of ATMA.

A secondary purpose was to explain running energetics from a

force-length-velocity relationship perspective and if differences in

ATMA affect these fundamental skeletal muscle properties during

running. Together, these results may offer insight into differences

in muscle-tendon dynamics across ATMA lengths.
Methods

Participant characteristics

20 healthy, recreationally active participants (17 males, 3

females, 24 ± 3 years, 75 ± 11 kg, 177 ± 7 cm) completed the

experimental protocol. The participants were recreationally-

trained runners. The inclusion criteria were that the participants

were between 18 and 50 years old, could achieve a steady-state in

oxygen uptake (V̇O2) during a 10-min run at the required speed

of 2.5 m · s−1, and had no lower leg injuries within the last 6

months. We aimed to recruit a diverse group of participants to

have a wide range of both Erun and ATMA. The participants gave

their informed written consent to participate in the experimental

protocol which was approved by the Mount Royal University

Human Research Ethics Board (HREB ID #102674).
Experimental protocol

The participants visited the lab on a single occasion. Each

participant’s ATMA was estimated using the tendon excursion

method, accounting for passive forces (44). The participants laid

prone on a dynamometer (Biodex Medical Systems Inc., Shirley,

NY, USA) with their right knee fully extended. The shank and

unshod right foot were affixed to the dynamometer using Velcro

straps, with the ankle at 90°. Ankle angle was defined as the

angle of the foot relative to the long axis of the shank. Briefly,

the ankle was passively rotated at 0.1745 rad · s−1 through the

participant’s voluntary range of motion. A 12.5 MHz linear array

B-mode ultrasound probe (65 mm, LV8-4L65S-3, MicrUS EXT-

1H, Telemed, Vilnius, Lithuania) was used to visualize the

medial gastrocnemius (MG) myotendinous junction (MTJ).

Ultrasound images were recorded at 39 Hz. The displacement of

the MTJ was tracked from 85° to 95°, using ImageJ (v.2.3.0/1.53s,

NIH, Baltimore MD USA). AT moment arm was calculated as
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the ratio of MTJ displacement (in mm) to ankle joint rotation

(in radians). The bias and limits of agreement compared to the

caliper method for the tendon travel method, previously reported

by Fletcher and MacIntosh (44) are 0.1 and 1.5 mm, respectively.

The intraclass correlation coefficient for test-retest reliability has

previously been reported to be r = 0.88 (44).

Since the inter-individual variation in body height was large,

and a significant relationship was seen between ATMA and body

height (see results), ATMA was normalized to body height as

described previously by Scholz et al. (14) and we present both

absolute and height-normalized ATMA where appropriate.

Following this, participants ran at a speed of 2.5 m · s−1 on a

motorized treadmill (Woodway Pro, Woodway USA, Waukeshka,

WA) for 10 min. During the run, expired V̇O2 and V̇CO2 were

measured to quantify Erun using a metabolic cart (Quark CPET,

Cosmed, Rome, Italy) according to Fletcher et al. (45) and

expressed an energy cost (J · kg−1 · m−1) as it is a more sensitive

and reliable assessment of running economy compared to the

measurement of steady-state V̇O2 alone (46–48). Prior to each

testing session, the metabolic cart was calibrated using room air

and a gas mixture of known composition (5% CO2% and 16%

O2). The flow sensor was calibrated manually with a 3l syringe.

Muscle-fascicle dynamics were calculated from ultrasonography

and inverse dynamics during the last minute of the 10-min run,

and the middle 10 consecutive steps were identified and used for

further analyses. Expired gases were collected for the entire

duration of the run. All participants achieved a steady-state V̇O2

(defined as a change of <200 ml/min for any 15s period during

the last 2 min of the run. The average V̇O2 and V̇CO2 over the

last 3 min were used to calculate Erun.

Erun (J · kg−1 · m−1) was calculated from the average V̇O2 and

V̇CO2 over the final 3 min of the run from the metabolic

equation presented by Peronnet and Massicotte (49), which

expresses the rate of energy expenditure in kJ · s−1. We then

expressed this rate of energy expenditure as a relative energy cost

per unit distance (J · kg−1 · m−1):

Erun(J � kg�1 �m�1) ¼ 16:89 _VO2 þ 4:84 _VCO2xBM
�1x s�1 � 1000

where V̇O2 and V̇CO2 is in L · s−1, BM is body mass (in kg), s is

speed (in m · s−1) and 1,000 J · kJ−1
Muscle fascicle length change

The MG muscle fascicle of the right leg was imaged using a

second 12.5 MHz linear array B-mode ultrasound probe (60 mm,

LV8-5N60-A2, ArtUs EXT-1H, Telemed, Vilnius, Lithuania) at a

sampling frequency of 70 Hz. The MG muscle was chosen over

other triceps surae muscles because Lai et al. (37) showed that

MG muscle fascicle length changes during the stance phase of

running were the largest of the triceps surae muscles.

The MG fascicle lengths and MTJ shortening/elongation were

measured manually using ImageJ from the respective ultrasound

images during the stance phase. Fascicle and AT length change,
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velocity, work and power were calculated at each 5% of stance for

the entire stance phase and averaged over 10 consecutive stance

phases. To correct for AT shortening and lengthening as a result

of changes in ankle joint angle, ankle angle was measured using

a high-speed video camera (Ziqian, N5 1080p Webcam, 50 Hz).

Ankle angle was measured at each instance during stance using

Tracker (v. 6.0.8, Open Source Physics, Compadre.org/osp). AT

length change due to ankle joint rotation (in mm) during the

stance phase was calculated from the ankle joint change (in

radians) and the measured AT moment arm length (in mm), a

derivation of the equation to calculate AT moment arm from the

tendon excursion method (44, 50). Instantaneous tendon length

was estimated by subtracting the measured MG fascicle length,

taking the effect of muscle pennation angle into account (51).
Kinematics and kinetics

Vertical ground reaction forces of the right foot were measured

using a commercially available instrumented insole (Loadsol,

Novel.de, St Paul MN USA), collected at 100 Hz during the last

minute of the run. These insoles have been shown to be reliable

and valid compared to inverse dynamics, at a significantly

reduced cost. Specifically, Hullfish and Baxter (40) showed peak

plantarflexion moment to be on average 5.4% higher using the

insoles compared to inverse dynamics using marker-based

motion capture and a force-measuring treadmill; however, the

95% CI for the difference between the two measurements

included 0% difference. Data were saved to a smart device (iPad

mini-4, Apple Inc. Cupertino CA) for subsequently analyzed

according to Hullfish and Baxter (40).

Plantarflexion moment during the stance phase was calculated

according to Hullfish and Baxter (40). The force insole has three

force sensing zones, which we treated as discrete one-

dimensional force plates, assuming the measured ground reaction

forces were orthogonally directed and in the middle of each

force-sensing zone. The geometric centres of pressure of each

force-sensing zone were measured using digital calipers

(Mastercraft Tool Co, Earth City, MO) to the nearest 0.02 mm.

the reported accuracy of the calipers. The moment arms of each

zones were then calculated by subtracting the distance between

the posterior sensor and the ankle joint. We then calculated

sagittal plane plantar flexion moment as the sum of the products

of each zone moment arm and the applied load (40). AT force

was calculated from the calculated plantarflexion moment

divided by the measured ATMA. MG force was estimated based

on the relative physiological cross-sectional area of all ankle

plantarflexors (0.1746, 52) divided by the cosine of the measured

pennation angle of the MG muscle fascicle. The foot lever ratio

was determined as the length of the forefoot, divided by the

ATMA length (31). Mechanical work performed by the MG and

AT, respectively, was calculated as the integral of fascicle (or

tendon) force and length change over the entire stance phase.

Positive fascicle work was considered fascicle shortening. AT

positive work, a measure of AT strain energy storage, was

calculated by integrating the AT force over the measured AT
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elongation, omitting elongations below the length at heelstrike, in

order to quantify AT energy storage/return during the stance

phase alone (39).
Electromyography

Three wireless electromyography (EMG) sensors (Delsys

Trigno, Natick Massachusetts, USA) were placed on the

participants’ right lower leg, using double-sided stickers, along

the presumed fascicle angle according to SENIAM guidelines

(53). The sensors have four 1 mm x 5 mm parallel bars

(contacts), of 99.9% silver with a fixed inter-electrode distance of

10 mm. These sensors were located on the lateral gastrocnemius

(LG), soleus (SOL), and tibialis anterior (TA). EMG signals were

collected at 2,048 Hz during the last 2 min of each trial. To

reduce noise and signal artifact, the signal was filtered through a

5th order Butterworth filter (high and low pass filter of 20 and

500 Hz, respectively). EMG amplitude was calculated as the root

mean square (RMS) of the raw, filtered EMG signal. This RMS

was interpreted as the level of muscle activation during stance: a

combination of motor unit recruitment and rate coding.
Muscle energy cost

In order to compare the metabolic energy cost required to store

elastic strain energy within the AT, the MG energy cost was

calculated over the entire stance phase according to Fletcher and

MacIntosh (20), which has been described in detail elsewhere

(20, 54, 55). In brief, the metabolic cost of the MG during the

stance phase was determined from the estimated number of in-

parallel crossbridges that were needed to generate the measured

MG force, the amount of crossbridge cycles to accommodate MG

fascicle shortening and the amount of half-sarcomeres in series

from the measured MG fascicle length. The estimated number of

in-parallel crossbridges was derived from the MG force divided

by the estimated force per crossbridge. The force per crossbridge

decreases with increasing shortening velocity from a crossbridge

force of 3 pN under near-isometric conditions (53) to 0 pN at

maximal shortening velocity based on the linear sarcomere force-

velocity relationship (57). Sarcomere shortening velocity (V ) was

calculated from the instantaneously measured fascicle shortening

velocity throughout the stance phase and scaled to maximal

shortening velocity (Vmax). We assumed a maximal fascicle

shortening velocity of 10.6 fascicle lengths · s−1 which was

calculated from the assumed maximal shortening velocities of

Type I and Type II fibers of 4.4 fascicle lengths · s−1and 16.8

fascicle lengths · s−1 at physiological temperatures (38) and

assuming the MG consisted of 50% Type I fibres (58). We

expressed total muscle energy cost across the entire stance phase

relative to body mass since Erun is determined primarily by the

energy needed for muscle contraction of sufficient average force

to support body weight for the full stride duration (7). Therefore,

average muscle force and thus muscle energy cost is related to

the average vertical force (Fz) during stance, as dictated by body
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mass and running speed and the Fz moment arm and the moment

arm of the Achilles tendon (59, 60).
Force-length-velocity relationships

The muscle fascicle operating range on the force-velocity

relationship (61), scaled to activation (8), was estimated from the

measured fascicle shortening velocity (v) relative to maximal

shortening velocity (Vmax of 10.6 Lf · s−1). The measured muscle

fascicle force (P) was scaled to the maximal isometric force (Po),

the latter of which was measured during a maximal isometric

voluntary contraction at 90° ankle angle, which is considered the

short-side of the plateau region of the MG’s force-length

relationship (62). The operating range of the muscle fascicles on

the force-length relationship was assessed from the calculated

fascicle force relative to maximum (P/Po) and the estimated

sarcomere length during stance. Estimated sarcomere length was

calculated assuming a sarcomere length of 2.6 µm at the short

side of the plateau region of the sarcomere force-length

relationship (63). Sarcomere lengths during stance (L) were then

estimated from the measured fascicle length change relative to

the fascicle length measured during the maximal isometric

contraction. This fascicle length was considered maximal optimal

length (Lo) of 2.6 µm. Thus, sarcomere lengths during stance (L)

could be calculated as the relative change in fascicle length at Lo
to the measured fascicle length during stance since length change

must be accommodated from changes in sarcomere lengths.

The number of half-sarcomeres in series was determined as the

ratio of the measured fascicle length (in µm) to sarcomere length,

assuming an optimal sarcomere length at maximal activation of

2.6 µm (63). Thus, this method allowed us to convert the

measured fascicle lengths (in mm) to estimated sarcomere

lengths (in µm). The number of crossbridge cycles during stance

was determined from the measured MG fascicle length change

during stance. We assumed that for each crossbridge cycle the

filaments move 10 nm (64). We worked under the assumption

that for each crossbridge cycle, one adenosine triphosphate

(ATP) was consumed (65), and for each mol of ATP, 48 kJ of

energy was released per mol ATP consumed (66).
Statistics

Values are presented as mean ± standard deviation unless

otherwise indicated. We classified individuals having “SHORT”

(n = 11, 29.5 ± 1.9 mm) or “LONG” (n = 9, 36.6 ± 2.5 mm) ATMA

based on a bimodal distribution of ATMA. Statistical analysis was

performed using JASP (Version 0.16.2.0). Shapiro-Wilk tests were

performed to test for normality and Levene’s tested for equality

of variance of all dependent variables. Student Independent

samples t-tests were utilized to determine differences between

ATMA, Erun, stance time and foot lever ratio between groups.

Two-way repeated measures analysis of variance (ANOVA) for

unequal sample sizes between groups (with Type III sum of

squares to adjust for unequal sample sizes) was used to test
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effects of group on the dependent variables. A two-way repeated-

measures ANOVA was used to test for differences in MG muscle

energy cost at every 5% interval across the stance phase, with %

stance as the repeated measures factor and group as the between

subject factor. Similarly, three-way repeated measures ANOVAs

for unequal sample sizes between groups (with adjusted Type III

sum of squares) were also performed to test for differences in

force-length (force × length × group) and force-velocity (force ×

velocity × group) relations between groups. Tukey’s post-hoc tests

were used to detect significant differences between groups during

stance based on dependent variables when there was no

significant interaction but a significant simple main effect of

group. The effect sizes were determined using Cohen’s d, with

small, medium, and large sizes being d≥ 0.2, d≥ 0.5, d≥ 0.8,

respectively. The a priori level of significance was set at p < 0.05.
Results

ATMA for all participants was 32.7 ± 4.2 mm. ATMA was 29.5 ±

1.9 mm in SHORT (n = 11) and 36.6 ± 2.5 mm for LONG (n = 9,

p < 0.001). Height and weight were significantly greater in LONG

(181.4 ± 3.5 cm, 81.8 ± 8.5 kg) compared to short (173.8 ± 7.3 cm,

70.2 ± 10.9 kg, p = 0.011 and p = 0.019, respectively). ATMA length

was also significantly positively correlated with both height

(r2 = 0.228, p = 0.048) and weight (r2 = 0.214, p = 0.04). Height-

normalized ATMA was also significantly greater in LONG

(0.020 ± 0.002) compared to SHORT (0.017 ± 0.001, p = 0.0002).

The mean Erun for all participants was 4.89 ± 0.39 J · kg−1 · m−1.

There was no significant relationship between ATMA and Erun
(r2 = 0.129, p = 0.120, Figure 1A). There was also no significant

group difference in Erun (LONG 4.78 ± 0.32 vs. SHORT

4.98 ± 0.43 J · kg−1 · m−1, p = 0.265); however, a medium effect

size for Erun was seen (d = 0.53). When ATMA was normalized to

height, a negative relationship between ATMA and Erun was

demonstrated; however, this relationship was not significant

(r2 = 0.184, p = 0.056, Figure 1B).

Neither stance time (LONG 0.347 ± 0.044 ms vs. SHORT

0.346 ± 0.025 ms, p = 0.985), ankle joint excursion (49 ± 4° for

LONG, 50 ± 5° for SHORT, p = 0.506) plantarflexion moment

(207 ± 35 Nm for LONG, 204 ± 30 Nm for SHORT, p = 0.979) or

average ground reaction force lever arm (132 ± 23 mm for

LONG, 145 ± 9 mm for SHORT, p = 0.159) was significantly

different between groups. Foot lever ratio was lower in LONG

(3.6 ± 0.6) compared to SHORT (5.0 ± 0.3, p < 0.0001). Foot lever

ratio was negatively correlated with ATMA (r2 = 0.572, p < 0.001,)

with LONG having a smaller foot lever ratio (Figure 2).

AT stretch and recoil is shown in Figure 3. For both groups,

the AT was stretched until 55% of stance, and then recoiled until

toe-off (ie. 100% of stance). Maximum AT stretch during stance

was not different between groups (10.3 ± 7.2 mm for LONG,

14.0 ± 6.7 mm for SHORT, p = 0.264). There was no significant

group x stance interaction for AT stretch or recoil (p = 0.968)

nor a significant main effect of group (p = 0.169).

AT force measured during stance is shown in Figure 4. A

significant group × stance interaction was found for AT force
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FIGURE 2

The relationship between foot lever ratio and ATMA. Grey circles
represent the SHORT ATMA group, while black squares represent the
LONG ATMA group. Across all participants, a longer ATMA was
associated with a lower foot lever ratio.

FIGURE 1

The relationship between the energy cost of running (Erun) and ATMA (A)
and the relationship between Erun and height normalized ATMA (B). Grey
circles represent the SHORT ATMA group, while black squares represent
the LONG ATMA group.

FIGURE 3

Time-normalized AT displacement over the stance phase of running
relative to the AT length measured at heelstrike. Values are presented
as mean ± SD. Grey circles represent the SHORT ATMA group, while
black squares represent the LONG ATMA group.

FIGURE 4

Time-normalized AT force over the stance phase of running. Values are
presented as mean ± SD. Grey circles represent the SHORT ATMA group,
while black squares represent the LONG ATMA group.
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(p < 0.001); however, a significant main effect of group for AT force

was not seen (p = 0.07). Maximum AT force during stance was

significantly lower in LONG (5,819 ± 1,202 N) compared to

SHORT (6,990 ± 920 N, p = 0.028).

Maximal AT strain energy storage was 16 ± 6 J · step−1 in

LONG and 15 ± 5 J · step−1 in SHORT (mean difference across
Frontiers in Sports and Active Living 06
the stance phase: 0.3 ± 1 J · step−1, p = 0.84). Total strain energy

storage during stance was also not different between groups

(165 ± 24 J · step-1 in SHORT vs. 182 ± 75 J · step-1 in LONG,

p = 0.63). AT strain energy storage was also not significantly

correlated with ATMA (r2 = 0.005, p = 0.781, Figure 5).

There was no significant group x stance interaction for AT

velocity as a function of stance (p = 0.29), nor a significant main

effect of group for AT velocity (p = 0.338). There was also no

significant group x stance interaction nor a main effect of group

for AT power during stance (p = 0.748).

Muscle fascicle shortening during stance is shown in Figure 6.

Muscle fascicles shortened continuously throughout stance

(p < 0.001). There was no significant group x stance interaction

(p = 0.988) nor a significant main effect of group (p = 0.95).

Similarly, no significant group × stance interaction, nor a
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FIGURE 6

Time-normalized fascicle length over the stance phase of running.
Values are presented as mean ± SD. Grey circles represent the SHORT
ATMA group, while black squares represent the LONG ATMA group.

FIGURE 5

The relationship between total AT energy storage and ATMA. Grey circles
represent the SHORT ATMA group, while black squares represent the
LONG ATMA group. No relationship between ATMA and total AT energy
storage was found.

FIGURE 7

EMG amplitude for lateral gastrocnemius (LG) and soleus (SOL) during
the stance phase of running. Values are presented as mean ± SD.
Black bars represent the long ATMA group while the grey bars
represent the short ATMA group.

FIGURE 8

Time-normalized AT force over the stance phase of running. Values are
presented as mean ± SD. Grey circles represent the SHORT ATMA group,
while black squares represent the LONG ATMA group.

Bennett et al. 10.3389/fspor.2023.1125095
significant main effect of group was seen for fascicle shortening

velocity (p > 0.717) nor fascicle work during stance (p > 0.943).

The magnitude of muscle activation, assessed by EMG, was not

different between groups for either LG or SOL (p > 0.562). This is

shown in Figure 7.

We demonstrate a significant group x stance interaction for

fascicle force (p < 0.001 and a significant main effect of group

(p = 0.024); SHORT had significantly higher fascicle forces

during stance than LONG (Figure 8). Post-hoc testing revealed a

significantly lower fascicle force in LONG between 35% and 60%

of stance (p < 0.04). Neither fascicle length change, fascicle

velocity or fascicle work during stance was significantly different

between groups (p > 0.741).

Muscle energy cost relative to body mass was

significantly lower in LONG (0.028 ± 0.08 J · kg−1 · step−1)
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compared to SHORT (0.045 ± 0.14 J · kg−1 · step−1 p = 0.004).

There was a significant negative relationship between ATMA

and total muscle energy cost across the stance phase

relative to body mass across all participants (r2 = 0.49,

p < 0.001), suggesting longer ATMA were associated with a

reduced mass-specific muscle energy cost during stance

(Figure 9).

The estimated in vivo operating range of the MG fascicles

on the force-length and force-velocity relationships are shown

in Figure 10. There was no significant main effect of group

on force at a given sarcomere length (p > 0.17), nor any

significant group differences in the estimated sarcomere

length during stance (p > 0.64). With regards to the force-

velocity relationship, similar forces and shortening velocities

were seen between groups, with the exception of a higher

shortening velocity in LONG during the first 5% of the stance

phase (p = 0.03).
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FIGURE 9

The relationship between MG muscle energy cost during stance and ATMA. Grey circles represent the SHORT ATMA group, while black squares represent
the LONG ATMA group. Across all participants, a longer ATMA was associated with a lower muscle energy cost during stance.
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Discussion

This study set out to contribute to the debated influence of

ATMA on reductions in Erun. This debate stems from several

contrary and unresolved observations: (1) Erun has been shown

to be reduced with both a short ATMA (6, 14, 67) and a long

ATMA (15, 27). Contributing to this initial debate, the results of

our study show that ATMA length of recreationally-trained

runners was not related to Erun; however, we acknowledge a

small sample size may have precluded showing a significant

relationship between ATMA and Erun. If the results presented

here were sufficiently powered, we would observe a significant

negative relationship between ATMA and Erun: A long ATMA

would result in a lower Erun and there are several possibilities

why that may indeed be the case.

The influence of the ATMA on Erun stems from two primary

mechanisms: a short ATMA increases muscle force for a given

joint moment, and a greater energy storage and return of elastic

strain energy during the stance phase and/or for a given joint

rotation, muscle fascicles may shorten less in runners with

shorter ATMA. On the first mechanism, Foster et al. (16) found

that elastic energy storage was negatively correlated with ATMA.

Showing that shorter ATMA were associated with a lower Erun,

Scholz et al. (14) estimated that for a given AT stiffness, a 10%

shorter ATMA would result in an extra mechanical energy storage

of ∼7.4 J · step−1, or an approximate mechanical power savings of

22 W (7.4 J · step−1 × 3 stance phases · s−1). Assuming a

maximum muscle efficiency of 25% (68), a 22 W reduction in

mechanical power would result in a metabolic power savings of
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88 W, or about 8% of the total metabolic energy for someone

running 16 km/hr with a steady-state V̇O2 of 50 ml · kg−1 · min−1.

A closer examination of these data show that for at least a few

participants, their “steady-state” V̇O2 used to determine Erun was

greater than (participant 13) or very near (>90%, participants 10

and 11, respectively) their reported V̇O2max, making it very

unlikely that at least these three participants achieved a steady-

state V̇O2 during the assessment of Erun; their Erun would have

been underestimated due to the (likely substantial) additional

anerobic energy contribution, which would not have been

reflected in the measurement of V̇O2 (69).

The estimates of higher elastic strain energy return with short

ATMA also ignore the additional metabolic cost required to store this

elastic strain energy (20). Indeed, an additional muscle metabolic

cost would be required to generate the ∼500 N per step, as

estimated from Ker (59), associated with a 10% reduction in ATMA

if joint moment was held constant. To confirm this notion, here we

demonstrate that AT forces were indeed ∼20% higher in SHORT

compared to LONG across the stance phase, and significantly greater

during midstance, yet AT strain energy storage was not significantly

different between groups since AT strain during stance was also not

different between groups. It could be expected that if AT force was

higher in SHORT, this would be accompanied by a higher EMG

activity as well. While this has been demonstrated previously in

runners with varying ATMA (27), we were only able to demonstrate

a small (Cohen’s d < 0.25), but non-significant effect of ATMA on the

level of muscle activation during stance.

We have recently argued that the metabolic cost of force

generation (and muscle shortening) is substantially higher than the
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FIGURE 10

Muscle fascicle operating range on the force-length (top) and force-
velocity relationship (bottom), respectively. Values are presented as
mean ± SD. Grey circles represent the SHORT ATMA group, while black
squares represent the LONG ATMA group. The force-velocity
relationship is scaled to level of muscle activation. Aarows show the
higher shortening velocity in LONG during the first 5% of the stance
phase (p= 0.03) compared to SHORT.
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mechanical energy return from the AT during running (20),

emphasized by the fact that highly-trained runners had the lowest

AT strain energy storage/return but also the lowest metabolic cost

of muscle contraction during stance (20). In the present study, we

estimated this muscle energy cost relative to the AT energy

storage/return during the stance phase for the first time in runners

whose ATMA differed. To contribute to the LONG vs. SHORT

ATMA debate: MG muscle energy cost relative to body mass was

significantly lower in LONG compared to SHORT, and a

significant negative relationship existed between ATMA and total

MG muscle energy cost during stance. A lower muscle energy cost

during stance would reduce the whole-body Erun (42, 70).

The second potential mechanism for how a short ATMA might

reduce Erun is based on the measurement of ATMA using the tendon

travel method itself: ATMA is calculated as the ratio of muscle-tendon

length change for a given joint rotation. Ankle joint excursions are

relatively small, and are reduced in runners with low Erun (68, 71). We

did not see a significant difference ankle joint excursion, fascicle

length change or fascicle shortening velocity during the stance phase

between groups, suggesting the impact of ATMA on muscle-tendon

unit length change for a given joint rotation (and subsequent energy

cost of muscle shortening) was negligible.
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The ATMA may also influence the muscle force-length-velocity

relationships, since for a given joint moment, higher AT (and

therefore muscle) forces are required during the stance phase.

From an Erun perspective, higher forces at any given length would

require a higher level of activation and a concomitant increase in

the energy cost associated with ion transport. Similarly, the ATMA

would in theory influence the muscle shortening velocity. For a

given joint displacement, muscle fascicle shortening would be

lower in runners with a short ATMA and the cost of activation

would also be reduced as a result of the muscle’s force-velocity

relationship. This would be countered by the requisite higher

muscle forces for a given joint moment for runners with short

ATMA. These combined effects may explain why we saw small but

significant reduction in muscle energy cost in runners with long

ATMA compared to short ATMA. The energy cost of generating

force is relatively higher than the cost of activation (66, 72, 73),

the former being higher in runners with short ATMA.

When comparing Erun across runners of different

anthropometrics, the notion that short ATMA may be beneficial in

reducing Erun assumes that the vertical ground reaction force

moments generated during stance are similar between runners

whose ATMA differ. This is only true if, during stance, the average

ground reaction force lever arm is consistent across runners of

different ATMA. We confirm the results of others suggesting the

ground reaction force lever arm is different across runners of

different ATMA. The external lever arm is largely affected by the

length of the forefoot (14, 31, 32, 74). Indeed, our results support

the results of Kunimasa et al. (31) who showed that Kenyans had

a smaller foot lever ratio (shorter forefoot and longer ATMA)

compared to Japanese runners. It has been previously suggested

that this foot lever ratio may affect the energy cost of locomotion

(60, 75) so we argue that ATMA is but one of the many factors

influencing the Erun among many anatomical and morphological

properties (76, 77). Taken together, a short forefoot length and a

long ATMA increases the foot lever ratio such that for a given

vertical ground reaction dorsiflexion moment, a lower muscle

force (and subsequently lower muscle metabolic cost) would be

required. In calculating the muscle metabolic cost during the

stance phase from estimates of sarcomere forces and mechanics

(54, 55), we show a lower mass-specific metabolic cost of the

muscle in LONG compared to SHORT, primarily as a result of

lower required muscle forces during the stance phase.
Limitations

Our study is not without several limitations. We acknowledge

that our results may only apply to recreationally-trained runners

at one (relatively slow) running speed of 2.5 m · s−1. Fletcher and

MacIntosh (20) show that both muscle energy cost and AT strain

energy return increase with speed, and we cannot discount that

the relative contribution of AT strain energy may be more

important at higher running speeds than the 2.5 m · s−1 tested

here (16); however, muscle energy cost also increases with

running speed (20), since higher forces need to be generated at a

faster rate, elevating the muscle and whole-body metabolic costs
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(7). Kovács et al. (27) also found that the relationship between

ATMA and Erun got stronger (longer ATMA result in lower Erun)

with an increase in running speed, so while we cannot speculate

on the impact of faster or slower running speeds on the reported

ATMA vs. Erun, we would anticipate our results to be similar at

faster running speeds: (1) that mechanical strain energy storage

and return is lower than the muscle metabolic cost required to

store that strain energy and (2) ATMA is but one factor

influencing the Erun (favorably or unfavorably).

We also chose to assess plantarflexion moments using a

commercially-available insole, rather than the gold-standard

inverse dynamics approach using marker-based motion capture

while running on a force-plate embedded treadmill. These force

insoles have recently been shown to be reliable and valid by our

colleagues and are a fraction of the cost of inverse dynamics

approaches (40). These authors have previously demonstrated that

peak plantarflexion moment during running was 5.4% higher

using these force insoles compared to the gold-standard; however

the 95% CI for these data contained 0% error, suggesting the

mean difference between methods was not significantly different

(40). Together, we are confident that estimating muscle forces

from joint moments using commercially-available insoles is both

valid and reliable while being relatively low-cost and simple to

implement in and outside of the laboratory.

Despite showing a significant group difference in the estimated

muscle metabolic cost during the stance phase, we are unable to

demonstrate significant group differences in whole-body Erun,

although a moderate effect size (d = 0.53) was found. Based on

this effect size, we would have required a post hoc sample size of

n = 46 participants per group to demonstrate a statistical power

>80%. We deemed this sample size too cost and time prohibitive

and thus have reported the results found in 20 recreationally-

trained runners (n = 9 and n = 11 per group, respectively).

Perhaps with additional participants, we would be able to show a

statistically significant negative relationship between ATMA and

Erun such that longer ATMA can be associated with a lower

whole-body energy cost of running. We also must acknowledge

that the MG is but one of the triceps surae muscles representing

a small proportion of the total triceps surae physiological cross-

sectional area (∼17%, 52) so even large changes in muscle energy

cost may not be reflected in whole-body metabolic cost. Future

research should investigate muscle-specific energy cost of other

muscles (for example those crossing the knee) in runners whose

ATMA differ in order to strengthen our understanding of how

ATMA might influence Erun directly.

Lastly, we must acknowledge that our measurement of the

ATMA was assessed using the tendon travel method, accounting

for passive forces (44) at only one joint angle (i.e., at 90°). ATMA

is believed to change as function of joint angle (78–82), primarily

as a result of calcaneal translation (83). However, when passive

moments are correctly account for using the tendon travel

method (44), or when ATMA is determined from three-

dimensional MR imaging (84), the ATMA appears to remain

constant across ankle angles. Despite these challenges, we did not

see a significant group difference in ankle range of motion

during the stance phase, nor differences in levels of muscle
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activation. If ATMA does change with ankle angle and/or

activation (84, 85), we presume these changes to be similar

between groups. Importantly, previous studies examining the

relationship between ATMA and Erun, where ATMA was also

measured at a single (passive) joint angle, which was the basis

for our comparison of the previously determined ATMA vs. Erun
relationships. While the tendon travel method generally

underestimates ATMA compared to sagittal plane MR imaging

when passive forces are not accounted for (50), all ATMA were

measured by the same investigator, using the same tendon travel

method and ATMA was corrected for passive forces (44). The

ATMA reported here are similar to those previously reported (44,

81). We also specifically compared short ATMA to relatively

longer ATMA across participants, and so absolute ATMA should

not have impacted our results or their interpretations.
Conclusion

The present study aimed to evaluate the relationship between

ATMA and Erun during submaximal running in recreationally

trained runners. We have demonstrated that a longer ATMA

reduces the metabolic cost of triceps surae muscle contraction

during stance. This reduction in muscle metabolic cost may

translate to reductions in whole-body Erun; however, we did not

show a relationship between muscle metabolic cost and whole-body

Erun nor did we test whether reductions in muscle metabolic cost

directly translated to a reductions in Erun on a participant-by-

participant basis, the latter of which would have required systematic

changes to each participant’s ATMA, and/or foot lever ratio, which

was beyond the scope of this cross-sectional investigation.

By measuring muscle and tendon dynamics and energetics

during running, we were able to, quantify the magnitude of AT

energy storage and return and directly compare that with the

estimated muscle metabolic cost during stance. In so doing, we

have strengthened the notion that a low Erun may be

accomplished not from storage and return of elastic energy itself,

but by keeping muscle metabolic cost low. This notion is

emphasized by our present results showing longer ATMA are

associated with a reduced muscle metabolic cost without a

meaningful reduction in AT energy storage and return. These

results also contribute to the direct measurement of potential

explanations for short (or long) ATMA contributing to a low

Erun, which until now have been largely theoretical.
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