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The Fidget Factor and the obesity
paradox. How small movements
have big impact
James A. Levine*

Fondation Ipsen, Fondation de France, Paris, France

The hypothesis is that the Fidget Factor is the innate neurological pulse that
propels humans and other species to move to support their health. Fidgets,
previously thought to be spontaneous, are neurologically regulated and highly
ordered (non-random). Modern societies being chair-based overwhelm Fidget
Factor pulses and consequently inflict chair-based living for transportation,
labor, and leisure. Despite impulses firing through the nervous system, people sit
because environmental design overwhelms the biology. Urbanization and chair-
based societies were designed after the industrial revolution to promote
productivity; however, the consequence has been opposite. Crushing the
natural urge to move—the Fidget Factor—is a public health calamity. Excess
sitting is associated with a myriad of detrimental health consequences and
impairs productivity. Fidgeting may reduce all-cause mortality associated with
excessive sitting. The Fidget Factor offers hope; data demonstrate that
workplaces and schools can be designed to promote activity and free people’s
Fidget Factors. Evidence shows that people are happier, healthier, wealthier, and
more successful if their Fidget Factors are freed.
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Introduction

The hypothesis is that the Fidget Factor is an innate and healthful drive for human

beings to move. It has long been assumed that the small movements people make are

spontaneous and random. The hypothesis addressed in this paper is that these small

movements, called fidgets, are neurologically regulated, programmed, and highly ordered.

Fidgets trigger body and limb movements and locomotion. While in agricultural times

this drive was unfettered, in postindustrial modern environments, chair-based cues are

pervasive and suppress people’s innate drives to move. Because of suppressed Fidget

Factors, people sit excessively. Excess sitting is associated with physical and mental illness

and premature death. Solutions exist to reverse sedentariness and allow people’s natural

Fidget Factors to propagate healthful movement.
Fidget

Meriam-Webster (1) defines the verb “to fidget” as “to move or act nervously or

restlessly” and the noun “fidget” as a “nervous movement.” Fidgets characterize the

spectrum of species that range from nematodes to humans. Common to all

understandings of fidgets is that they are nervous in origin.
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Neurological regulation of the Fidget
Factor

The Fidget Factor is under neurological regulation and

integrated in the human energy regulation cycle (2–13).

According to one example, Orexin A is a neuropeptide that is

produced in caudal hypothalamic regions and projects

throughout the neuraxis where it enhances arousal and

stimulates the Fidget Factor (4). Orexin is one of several

mediators of the Fidget Factor. When orexin is injected into the

paraventricular nucleus in rats, it precipitates fidgets in a dose-

dependent fashion (14). Paraventricular nucleus injections of an

orexin receptor antagonist are associated with decreases in Fidget

Factor responses (14). In transgenic mice where orexin-

containing neurons are ablated, the phenotype includes inactivity

and late-onset obesity, despite the transgenics eating less than

non-transgenic littermates (15). Orexin A also stimulates the

Fidget Factor codependently with feeding behavior (16) when

injected into the lateral hypothalamus. Orexin impacts several

hypothalamic nuclei to regulate fidgeting.

Orexin is not the only central mediator of the Fidget Factor;

other neuromodulators include cholecystokinin, agouti-related

protein, corticotropin-releasing factor, neuromedin U,

neuropeptide Y, leptin, the serotonergic system, and ghrelin (12,

13, 17, 18). Several brain loci are involved as well; nucleus

accumbens, for example, is considered the neural interface

between motivation and movement and controls fidget-like

movements (19). Movement is important in multiple facets of

life such as feeding, foraging, and fleeing, and so, it is not
FIGURE 1

Multiple inclinometers and accelerometers integrated into underwear. Reprod
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surprising that the Fidget Factor represents the neurological end

product of several central control centers and circuits.

It is not only mammals that have Fidget Factors. Molecular

studies in zebrafish show that orexin mediates swimming activity

and energy balance (20); worms fidget too (21). The Fidget

Factor is ubiquitous in zoology and under intricate neurological

control (22).
Are fidgets random?

It has long been assumed that fidgets are spontaneous and

random. To examine movements in free-living people, underwear

was designed that included multiple sensors embedded in upper

and lower undergarments (23); the underwear (Figure 1),

thereby, captured all free-living body postures and body

movements over 13 axes of motion every half second. The

underwear sensing system was used to examine 10,362 free-living

walking events and day-time and nighttime postures and

movements in 21 people (24). Free-living walking comprised

many (−47) short-duration (<15 min), low-velocity (−1 mph)

walking bouts. Importantly, there was remarkable within-person

consistency for the subvariables of free-living daily activity such

as the number of walks a person takes per day, free-living

walking velocity, and overall walking time (r2 values ranged

0.6–0.8). This suggests that free-living movement is not random

and therefore regulated.

Using modern mathematics, human fidgeting can be analyzed

for entropy, which is a measure of randomness (25–30). ApEn
uced from Levine et al. (23).
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determinations of entropy confirm that fidget-like human

movements are non-random in infants (27, 29), young adults

(25), adults, and in the aged (28, 31). When the orderliness of

human movement is disrupted (e.g., jumping back in response to

a fast-moving car), a person’s physiological disorderliness with

respect to movement rapidly self-corrects (32). There is the

fitness effect too; the more physically conditioned a person the

more orderly their fidgets (33). Human fidgets are highly

ordered. The programed orderliness of human movement can be

pathologically disrupted by illnesses such as in Parkinson’s

disease (34, 35) or by direct manipulation, for example, by

asking women to walk in heels vs. flat shoes (30).

Mechanistically, the rhythmicity of the Fidget Factor is

mechanistically linked to the Clock gene, which is central to

circadian timing; homozygous Clock mutant mice exhibit

temporally disrupted activity patterns (36). The Fidget Factor is,

therefore, organized and mechanistically encoded most likely via

central modulators. Human movements are neither random nor

spontaneous; as George Gershwin wrote, “I got rhythm”

(Treasure Girl 1928). People have more rhythm than they realize.

The Fidget Factor is an outward manifestation of an inner

rhythm to move.

Noting the above and the relevance of fidgets in multiple

species and across several genera, we can better define “a fidget”

in a biological context. The initial definition of a fidget discussed

above was “a nervous movement.” A fidget might be better

defined as “a neurologically programmed rhythmic movement of

a body part.” Under normal functioning, a fidget might be the

spark that predicates a larger orchestrated movement whereby a

foot flinch fidget begets a leg extension and precipitates a walk.

Under pathological conditions, such as mutation of the HTT
FIGURE 2

The effect of fidgeting in different postures on human energy expenditure. D
weight: 76 ± 21 kg) (38).
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gene, a fidget might extend into the choreoathetoid movements

that characterize Huntington’s Chorea (37).

There are little fidgets (e.g., the tap of a finger) and big fidgets

(e.g., the crossing of legs). Both fidgets have numerically different

effects on human physiology (Figure 2).
Physiological relevance of the Fidget
Factor

The Fidget Factor is centrally regulated and ordered,

however, if it is not physiologically meaningful, its significance is

less. The impact of the Fidget Factor on human physiology was

examined in 16 lean volunteers (23). The subjects ate all their

meals at a research center for 10 weeks; all meals were

chemically analyzed for caloric content. For the first 2 weeks,

each person was fed to establish the calorie intake necessary for

weight maintenance to determine how many calories each

volunteer required for achieving a steady state. Thereafter, each

volunteer was overfed by 1,000 additional kcal per day, i.e., if a

subject ate 2,700 kcal/day to maintain a steady state, this was

increased to 3,700 kcal/day. In this fashion, each volunteer

received an excess 56,000 kcal over 8 weeks.

There was a 7-fold variation in people’s susceptibilities to

weight gain (Figure 3). Some individuals were remarkably

resistant to fat gain with overfeeding because they activated their

Fidget Factors; the energy expended through non-exercise

movement (39, 40). Increased non-exercise movements with

overfeeding expended up to 700 kcal/day above usual energy

expenditure. A statistically significant negative correlation

(Figure 3) between fat gain and non-exercise movements
ata (mean ± SD) are taken from 24 subjects (17 women and 7 men; body
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FIGURE 3

Activation of the Fidget Factor, non-exercise activity thermogenesis (NEAT) in 16 individuals overfed by 1,000 kcal/day for 8 weeks. Body fat was
measured using validated dual x-ray absorptiometry (23).
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suggested a mechanistic link, a proposition supported by animal

data (41). The Fidget Factor is central in energy homeostasis.

Overfeeding can increase energy expenditure via the Fidget

Factor by 700 kcal/day. How is this possible without one going to

a gym? Further overfeeding experiments were conducted but

with subjects wearing multisensor undergarments (Figure 1).

The results (42) showed that people activate their Fidget Factors

by increasing locomotion. This is not achieved by exercise but by

subconsciously and imperceptibly adjusting the mechanics and

energetics of walking.

If overfeeding is important in a person’s susceptibility to fat

gain, is the Fidget Factor important in obesity? To understand

the role of the Fidget Factor in mild obesity, lean and obese

office workers were compared using the multisensor system

shown in Figure 1. The results were dramatic. Lean people have

activated Fidget Factors; they stand and move 2 1/4 h per day

more than people with obesity. This appears to reflect a

biological predisposition, because people who are active at work

are active during their leisure time and people most sedentary at

work are those most sedentary at home (24, 42). All subjects in

these studies lived in obesogenic chair-based environments.

Those with activated Fidget Factors were thin. For others,

pervasive environmental cues to sit overrode the physiological

impulse to move, resulting in obesity.

If the Fidget Factor changes in response to overfeeding and

with obesity, how is it influenced by starvation and weight loss?

Regardless of species, Fidget Factors change with acute starvation
Frontiers in Sports and Active Living 04
in a predictable fashion (7, 20, 43). Initially, starvation increases

Fidget Factor activities, which is ascribable to foraging behavior.

If food remains unavailable, physical activity will then

progressively decline. When chronic caloric restriction results in

weight loss, people’s Fidget Factors reset to a new norm (44–46).

Training and fitness levels also impact Fidget Factors in humans

(47) and in other species (48–51). The Fidget Factor is clearly

central in energy homeostasis.

The Fidget Factor is modulated across the life span (52). In utero

(53), “spontaneous” movements are associated with development

and limb growth (53). A systematic review of 15 studies showed a

significant relationship between the quality of fidgety movements

at 8–20 weeks post term and the infants’ neurodevelopmental

outcome. This association is specific as another systematic review

showed, “the presence of abnormalities in the quality of fidgety

movements at 12 weeks adjusted age is more predictive of adverse

outcomes than abnormal writhing movements” (54). Fidgets in an

infant are important for learning to walk and cognitive

development (55, 56). Children are more fidgety than adults (48,

57), and then, the Fidget Factor declines with aging (58, 59)

which may be important in sarcopenia (60). This pattern of high

activity into adulthood and the decline with ageing is mirrored in

other mammals (61), flies (62), and worms (21).

Fidgeting is not limited to humans. Multiple behaviors in non-

human primates in the wild resemble human fidgeting (63). In

primate experiments, cortical activity regulated cytoskeletal-

associated protein and brain-derived neurotrophic factor
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expressions are strongly correlated with fidgeting activity (64).

Furthermore, in monkey models of human neurological disease,

phenotypes with diminished fidget-like movements mirror the

human condition (65). Fidget-like movements occur across

genera and are moderated over the life span in fish, flies, and

worms (20, 21, 62). Interestingly, worms show a similar

diminishment in “fidgets” (spontaneous movements) over the life

span compared with humans, becoming near motionless just

prior to death.

The Fidget Factor, controlled by multiple neurological loci, has

an important role across the life span of many species that are

central for growth and energy homeostasis.
Environmental impact on the Fidget
Factor

There is an intersect between environment and biology. The

Fidget Factors of some people appear to be insufficient to

override obesogenic chair-based environments; such individuals

sit too much and develop obesity. People whose Fidget Factors

override environmental cues to sit remain mobile, active, and

thin. How quantitatively important are these environmental

drives on the Fidget Factor?

Since the Industrial Revolution, most of the world’s population

has relocated from agricultural communities to urban centers (66–

69). Urbanization was initially meant to support factory

production, but this developed into chair-based offices. To what

extent has this massive demographic shift impacted the Fidget

Factor?

Movement sensing undergarments (Figure 1) were used to

compare agricultural and urban populations in Jamaica (70). The

agricultural community included field workers, teachers, dancers,

hairdressers, and educators. They were compared with weight-

matched controls working in offices in the capital, Kingston.

Ambulation was 60% greater in agricultural Jamaicans than in

urban dwellers. Agricultural Jamaicans sat 4 h/day less than

Americans with obesity (336 ± 68 min/day vs. 562 ± 78; P <

0.001). This illustrates the amount of excess sitting that resulted

in response to urbanization—4 h more. Genetic vulnerability

may help explain why some people respond more to

environmental cues to sit than others (71). Nonetheless,

environment is a key driver of the Fidget Factor. If people were

liberated from their chairs, they could move for 4 h more every

day (72, 73).

Agricultural workers sit between bouts of physical work and for

leisure (73); the default posture is to work standing and

exothermically and walk for transportation. In modern chair-

based societies, sitting is the default posture and cars are used for

transportation. For many people who live in chair-based

societies, their Fidget Factors are suppressed; if these are released,

people can healthily tolerate 4 h less sitting per day.

In contrast, there is ample empirical evidence from the affective

computing literature that knowledge workers engage in extensive

hand fidgeting during long and intense bouts of cognitive work

(74). Furthermore, when the fidgeting cycle is disrupted during
Frontiers in Sports and Active Living 05
pathological conditions such as Huntington’s Chorea (37), there

is cognitive decline. It is fascinating how the state of anxiety is

linked to fidgeting; in extreme anxiety, under adrenergic drive,

tremulousness and elevated energy expenditure occur in concert

(75). Environments impact biology: fidgetiness is a marker of

heightened anxiety.

In a similar way that environment can impact a person’s

inmate fidgetiness, so does culture (76–79). Cultural group

differences influence a person’s likelihood to fidget; people from

different cultures fidget differently in response to anxiety (77)

and even when deliberately deceiving others (76).

While people have innate neurological drives to fidget and

move, environment and culture can quash these drives, but at

what cost?
Health implications of the Fidget
Factor

Chair-based living and the environmental cues associated with

it override peoples’ natural tendencies to move—their Fidget

factors are suppressed (80). This would not be problematic

except that excessive sitting is harmful to health (81–83). Excess

sitting is associated with metabolic, musculoskeletal problems,

malignancy, and mortality (84–88); examples include

cardiovascular disease, obesity (89), type two diabetes (90),

hyperlipidemia, cardiovascular disease (91), hypertension, lower

back pain (92), carpal tunnel syndrome, venous stasis (93), low

mood, and a greater risk of malignancy (94–99).

Why is excess sitting so harmful? According to one example

(100), healthy volunteers attended a research center and carried

out normal chair-based work and leisure activities. Blood glucose

was monitored continuously throughout the experiment.

Breakfast, lunch, and dinner were provided and meal-related

changes in blood glucose were recorded after each meal. For

these subjects, their meal-associated glucose responses

(incremental glucose area under the curve) were 9.6 mmol/L/

270 min. The same volunteers repeated the same chair-based

protocol with the duplicate meals except that after each meal, the

subjects took a 30-min stroll at 2 km/h. Their meal-associated

glucose responses were halved (4.5 mmol/L/270 min; P = 0.002), a

finding replicated by others (101–103). Noting that meal-

associated glucose responses predict the development of type 2

diabetes (104, 105), this experiment helps explain why chair-

suppressed Fidget Factors are associated with type 2 diabetes (90,

106).

Similar experiments show the harmful effect of sedentariness

on lipid metabolism (88) and that slow walking raises lipoprotein

lipase activity beneficially by approximately 8-fold (107, 108).

Furthermore, sedentariness is associated with proinflammatory

markers, depressed sympathetic activity (109), and elevated

insulin-like growth factors (110), which, in turn, are associated

with malignancy (111). It is interesting to note from Morishima’s

carefully conducted studies of bilateral popliteal artery flow–

mediated dilation that prolonged sitting-induced leg endothelial

dysfunction may be prevented by fidgeting (112).
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TABLE 1 Evidence-based behavioral change techniques that are effective
for improving physical activity in healthy sedentary adults (124).

Physical activity intervention
effectiveness (behavior
change)

Effectiveness at follow-up:
(behavior change
maintenance)

Biofeedback Action planning

Demonstration of the behavior Instruction on how to perform the
behavior long term

Behavior practice/rehearsal Prompts/environmental cues

Graded tasks Behavior practice/rehearsal

Graded tasks

Self-reward
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Anatomic and ergonomic analyses explain why

musculoskeletal problems such as back pain and other

mechanical disorders are linked to excess sitting (113, 114).

Prolonged sitting is associated with spine flexion, low back

disorders, disc stress, and pain (115). Back muscles are activated

when a person stands, and similarly, the trunk muscles represent

a counterbalance (116, 117). The musculoskeletal system is hurt

when a person sits for hours without break.

It is not well understood as to why cognitive skills and mental

health issues, especially depressed mood, are linked to excess sitting

(118), but they are. Multiple prospective studies show that walking

helps in preventing depression (119). An active body begets a

happy mind!

Excess sitting has substantial detrimental health consequences

and is associated with at least 34 different chronic diseases and

conditions (113). The Fidget Factor is a pulsatile neurological

impulse to move. Millions of people are sedentary because their

natural Fidget Factors are suppressed by chair-based environments.

Almost no fidgeting intervention studied exist, epidemiological

data suggest that fidgeting is associated with lower mortality risk

(120). Analyzing data from the UK Women’s Cohort Study,

Hagger-Johnson et al. conclude, “Fidgeting may reduce the risk

of all-cause mortality associated with excessive sitting time” (85).

The health consequences of sedentary living are calamitous,

and people perish prematurely. If people were able to respond

naturally to their innate Fidget Factors and move more, would

they be healthier?
Fidget Factor therapy

Scalable studies have taken place in workplaces and schools and

demonstrate that Fidget Factor–permissive environments can be

designed to reverse sedentariness and enable people to move

(121). Such interventions are not straightforward because chair-

based cues are pervasive at work and during leisure (122).

Consequently, environmental redesign is only one part of the

solution. Behavioral change strategies (123) are critical (Table 1)

to help people reverse sedentariness, move (124), and “liberate”

their Fidget Factors.

Workplaces and schools impose a group dynamic that is

important in supporting individual change. Group behaviors are

well studied in animals (125) but less in humans (126, 127).

Although group behavioral dynamics are not well understood,

workplace productivity is evaluated using group-based criteria

such as a company’s profitability. Similarly, schools are compared

against whole-school performance criteria. Fidget Factor–

permissive environments facilitate a healthier group dynamic,

physically, mentally, and productivity wise.

The economic value of Fidget Factor–permissive environments

has been established. Returns on investments have been measured

in workplace and school interventions and have been found to be

positive (128–131) and associated with improved health behaviors,

decreased absenteeism, and better mental health (132–134).

Importantly, employee wellbeing has become included in a

company’s Environmental, Social, and Governance (ESG)
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metrics, which are the standards socially conscious investors

apply to screen investments. Workplace wellbeing measures are

likely to expand.

Taken en masse, workplace interventions are associated with

improved physical and mental health (135) and improved

employee wellbeing and productivity (86, 136–141). Similarly in

school children, active learning at the expense of chair-based

learning is associated with improved education and health (142–

145). These programs pay for themselves (146, 147) and the costs

reflect the sum of healthcare cost savings, decreased absenteeism,

and improved productivity/education. People are happier, healthier,

wealthier, and more successful if their Fidget Factors are freed.
Discussion

Fidget Factor, the rhythmic impulse to move, is programmed

from deep within the brain stem. These impulses precipitate

movements that range from barely perceptible fidgets to larger

motions. Modern chair-based societies override people’s innate

Fidget Factors; people living in agricultural societies move 4 h a

day more than overweight people in modern offices, suggesting

that people who are not restricted by chairs naturally move

several hours per day more than chair-based urban office

workers (68, 69). Consequently, when people’s Fidget Factors are

suppressed, excess sitting is pervasive, and the physical and

mental health consequences are dire. People die early from

sedentariness. Fidget Factor–permissive environments enable

people to be healthier, happier, smarter, and more productive

(148–151). Solutions exist, but they need to be deployed.
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