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Introduction: The peak height reached in a countermovement jump is a well
established performance parameter. Its estimate is often entrusted to force platforms
or body-worn inertial sensors. To date, smartphones may possibly be used as an
alternative for estimating jump height, since they natively embed inertial sensors.
Methods: For this purpose, 43 participants performed 4 countermovement jumps (172
in total) on two force platforms (gold standard). While jumping, participants held a
smartphone in their hands, whose inertial sensor measures were recorded. After peak
height was computed for both instrumentations, twenty-nine features were
extracted, related to jump biomechanics and to signal time-frequency characteristics,
as potential descriptors of soft tissues or involuntary arm swing artifacts. A training
set (129 jumps – 75%) was created by randomly selecting elements from the initial
dataset, the remaining ones being assigned to the test set (43 jumps – 25%). On the
training set only, a Lasso regularization was applied to reduce the number of
features, avoiding possible multicollinearity. A multi-layer perceptron with one hidden
layer was trained for estimating the jump height from the reduced feature set.
Hyperparameters optimization was performed on the multi-layer perceptron using a
grid search approach with 5-fold cross validation. The best model was chosen
according to the minimum negative mean absolute error.
Results: The multi-layer perceptron greatly improved the accuracy (4 cm) and precision
(4 cm) of the estimates on the test set with respect to the raw smartphone measures
estimates (18 and 16 cm, respectively). Permutation feature importance was performed
on the trained model in order to establish the influence that each feature had on the
outcome. The peak acceleration and the braking phase duration resulted the most
influential features in the final model. Despite not being accurate enough, the height
computed through raw smartphonemeasureswas still among themost influential features.
Discussion: The study, implementing a smartphone-based method for jump height
estimates, paves the way to method release to a broader audience, pursuing a
democratization attempt.
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Introduction

The human lower-body neuromuscular ability of generating power, its neuromuscular

capacity, readiness, and fatigue can be identified through a vertical jump test (1,2). One of the

most commonly used tests for such an analysis is the countermovement jump (CMJ) (1,3).

The choice of the CMJ test is supported by its easy familiarization. Furthermore, the CMJ

allows the extraction of a plethora of information about the ability of an individual to execute

a stretch-shortening cycle (1,3,4). Such a mechanism, occurring at the muscle-tendon level,

consists of an eccentric contraction followed by a concentric one of the same muscle group.
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FIGURE 1

Example of vertical acceleration during CMJ, measured at different
positions and instrumentations. Legend: Force Platform gold standard
(continuous line, FP); IMU at L3-L5 vertebrae (dotted line, IMU-L5); IMU
attached close to the sternum (dashed line, IMU-ST); IMU placed within
the hands (gray continuous line, IMU-HA) resembling the configuration
used in the study; the square markers identify the actual take-off and
landing instants on the FP signal. IMU signals were low-pass filtered
(Butterworth, 6th order, fc ¼ 10 Hz). It is possible to appreciate the wide
variability of the key time instants (take-off and landing) depending on
the sensor position. The depicted data were acquired through Vicon
Nexus software using Vicon Blue-Trident IMUs (Vicon, Oxford, United
Kingdom; sampling frequency: 1,000 sample/s; full scale range:
accelerometer¼+16 g, gyroscope¼+2,000 deg/s).
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The elastic enhancement produced throughout the eccentric phase

allows to augment the force produced during the concentric one

(4). Among the many possible performance parameters

biomechanically linked with the jump (5), the most widely

analyzed for the CMJ is the reached peak height (1,6).

As a common practice for such an evaluation, force platforms

(FPs) and motion capture systems represent the gold standard

equipment to estimate the jumper center of mass (CoM) kinematics.

The former exploits the ground reaction force (7), whereas the latter

directly tracks the CoM displacement (8). Nonetheless, they are

generally costly and cumbersome, with limited portability in an

outdoor environment, eventually constraining measures to laboratory

settings only. In the last few years, inertial measurement units

(IMUs) proved to be a valuable alternative to FPs for jump height

estimate (9–13). An IMU is composed of two triaxial sensors,

namely an accelerometer and a gyroscope, measuring the net force

acting on the sensors and their rate of change in angular velocity,

respectively (14). The CoM behavior during a jump can be reliably

tracked (15) using IMU-measured vertical acceleration by means of

an appropriate sensor attachment and position (16), typically a belt

worn at pelvis level, and mathematical manipulation (11). The rapid

rise and the consequent cost reduction of smartphone devices (SP),

which natively embed IMUs, suggests that such an analysis may be

accomplished using them. Indeed, SPs are devices within everyone’s

reach, which can be thought to be an even more low-cost alternative

if compared to commercially available IMUs systems (17).

Smartphones would allow democratizing the access to vertical jump

tests to every user owning one, especially if performed with no

additional equipment (e.g., a belt or pocket holding, etc).

Nevertheless, such embedded sensors were not developed for

biomechanical analysis, and they do not necessarily present some

required specifications, such as high sampling frequency or

appropriate full scale range (17).

Smartphone IMUs have already been used to characterize jump

activity: to detect it among other activities (18), to find possible

correlations between jump mat variables and kinematic features in

both CMJ and SJ (19), and to analyze drop jumps (20,21).

Estimating jump height using SP-embedded IMU direct measures

has not been attempted, to the best of our knowledge, aside from

preliminary investigations forerunner of the current one (22,23). SP-

focused studies were all based on video camera-based approaches

(24,25). Among the alternatives available on the market, the most

commonly used SP application is MyJump, whose reliability has

been tested in several studies (26–32). Nonetheless, it uses a method

relying on specific assumptions about the symmetry of the task

execution, and it computes jump height using flight time, entailing

the identification of take-off and landing instants of time.

Developing jump height estimates through an SP-embedded IMUs,

besides coping with low performance embedded sensors, requires

framing the role of three factors and possibly compensate for their

negative consequences: signal-processing procedures, sensor position,

and presence of signal artifacts due to soft tissues (17,33).

Vertical jump height can be computed using three main signal-

processing procedures: take-off velocity method (TOV), flight time

method (FT), and direct tracking of CoM trajectory using motion

capture systems (34). When using IMU data, only TOV and FT can

be used. Evidence shows that TOV outperforms FT in terms of both
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biomechanical accuracy (35–38) and reliability (1,7,36,37). Indeed,

FT involves the identification of two instants of time (take-off and

landing), whether TOV requires only one (take-off). Moreover, FT is

dependent on the hypothesis that the peak height is reached at

exactly half the flight-time: this is not the case if the jumper

naturally folds their legs, thus extending the flight-time, leading to a

height overestimation (35–38). In the context of a self-evaluation

with no external supervision, this issue could be critical. As regards

experimental errors, estimating velocity from IMUs through

numerical integration is usually affected by sensor errors. However,

since CMJ entails a short integration interval (≃1.5 s from the

movement onset to the take-off instant - (5)), this error can be

considered negligible (12,39,40). Hypothesizing errors due to velocity

estimation comparable or lower than those due to time events

identification, preference is given to the TOV method, rather than

the TF, since it: (i) involves the identification of a single time

instant; (ii) is not affected by the jumper postural configuration.

The impact on jump height estimation accuracy of sensor position

depends on several factors: first, measuring the acceleration at a single

point close to the ideal CoM location (L3-L5 vertebrae) neglects the

CoM displacement associated with the relative movements of body

masses (41) (Figure 1). Second, if the sensing element is far from

this point, e.g. attached to the sternum, the acceleration shape

recorded during a jump is further different (Figure 1) (15).

Nevertheless, the cumbersome nature of SPs makes their placement

in proximity to the ideal human CoM position unsuitable. Holding

the SP within the hands constitutes an ecological alternative, but

may further increase this discrepancy. Achieving comparable results

to the ones obtained through belt-worn IMUs (mean difference
frontiersin.org
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≃5 cm - (10)) calls for developing ad hoc methods that compensate for

the above-mentioned discrepancies.

Soft tissue artifacts, considered the most detrimental factor in

human movement analysis (33), are of no second importance also for

IMU measures (42,43). This is particularly true for high intensity

movements, which presumably enhance wobbling due to the inertial

whiplash of the soft tissues and of the attached sensor, depending on

the sensor fixing (14,16). Although wobbling has been claimed as a

secondary artifact cause, being accounted for a relatively small part of

the total mean power (on average, 13% for 3m/s running (44)), it

can still be assumed to have an important role in disrupting the

consistent estimate of both take-off and landing time instants

(Figure 1), further reinforcing the choice of using TOV as

preferential approach. Moreover, the disruptive effects brought to the

signal waveform are potentially overlapped to the motor task in the

frequency domain (44). As a promising alternative to characterize

such effects, the use of modal analysis in the form of variational

mode decomposition (VMD) could be beneficial. VMD is a

numerical method able at discriminating a selected number of

intrinsic mode functions, each centered around a specific central

frequency (45). Such a technique could help in highlighting the

oscillatory time-frequency traits of the analyzed signals, discriminating

contributions attributable to different wobbling elements.

This study aims to estimate jump height using SP-embedded IMU

measures. To cope with given uncertainties related to low performance

sensors, sensor position, and soft tissues artifacts, jump height is

predicted on the basis of selected information extracted from these

measures. Features must be chosen as appropriate for the context

they are describing: those biomechanically linked with the jump (5)

would be reasonable candidates for obtaining a valid estimate; but it

is also essential to embed features that can be predictive, and thus

possibly compensate for, the wobbling oscillations mentioned above.

This is in line with recent trends having data science emerging as a

discipline capable of supporting findings related to sports-related

issues through the use of automated methods (46–48).

A feature set was selected to estimate jump height through

supervised learning. Gold standard height obtained via FP data and

TOV method was used as reference outcome. Possible multicollinearity

between the selected features was eventually tackled by using Lasso

regularization. Considering only the reduced feature set, a machine

learning approach was alternatively investigated training a multilayer

perceptron neural network (MLP) through hyperparameters tuning

performed via grid search. The influence that each feature exerted over

the outcome was also evaluated using the permutation feature

importance technique (PFI) (49).
FIGURE 2

The experimental setup utilized for acquiring data from the SP device
using the app Phyphox (remotely controlled via PC).
Materials and methods

Experimental setup

Forty-three healthy sports science students were recruited (27M,

16F; mean+ SD: age ¼ 25:9+ 3:7 years; stature ¼ 171+ 10 cm;

mass ¼ 67:5+ 10:9 kg). All participants signed an informed consent

prior to the experimental session. Only physically active individuals

were included, whereas individuals which underwent either lower

limb surgery or injury in the six months prior to the experimental
Frontiers in Sports and Active Living 03
session were excluded from the study. The study was approved by the

Internal Review Board of the University of Rome “Foro Italico” (No.

CAR 94/2021). Participants held an SP in their hands (Figure 2)

(Xiaomi Redmi 9T, Beijing Xiaomi Technology Company Limited,

Beijing, China; sampling frequency¼ 128 samples/s; full scale range:

accelerometer ¼ +8 g; gyroscope ¼ +360 deg/s). All SP-IMU data

were collected using the app Phyphox (50), which was controlled

remotely through the laboratory PC. Calibration tests were performed

before each experimental session. These operations are essential to re-

align the vertical acceleration signal with the world reference frame

through sensor fusion algorithm, detailed in the “Data processing”

section. Afterwards, each participant was instructed on how to

properly perform one round of the experimental task according to

the recommendations in (1). Then, they performed 4 CMJs onto two

FPs (AMTI, Watertown, Massachusetts, USA; sampling frequency ¼
1,000 samples/s; size ¼ 40� 40 cm), one under each foot. Jumps

were executed with the elbows at waist height, to limit arm swing

inertial effects and to comfortably hold the SP with the hands

(Figure 2). Each CMJ was visually inspected to verify if compliant

with the prescribed recommendations and, if not, it was excluded.

The task was executed over two FPs since: (i) a single one was too

small (40� 40 cm) for consistently recording a complete CMJ (static,

loading, and landing); (ii) with two FPs the jumper attention was

focused on task execution, rather than on landing on the FP. Each

jump consisted of: (i) a static phase of a few seconds with the

participant being in orthostatic position; (ii) a vocal command

signaling the jump initiation; (iii) a second static phase as in (i).
Data processing

The SP-IMU offset and cross-axis sensitivity were computed and

corrected according to Bergamini et al. (51) before each experimental
frontiersin.org

https://doi.org/10.3389/fspor.2023.1112739
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Mascia et al. 10.3389/fspor.2023.1112739
session. Vertical acceleration measures were aligned to the world

reference to allow for a consistent gravity removal (11). Only the

vertical component of the acceleration, aSP, was considered for

further computations.

In particular, gyroscope static bias was extrapolated from a 60 s

static trial with the SP still on a flat surface, hence removed from

each successive jump measure. For what concerns the

accelerometer, three ad hoc 60 seconds acquisitions were

performed; each consisted in aligning one of the three

accelerometer axes with the gravity vector direction (51).

A comparable vertical acceleration measure, aFP, was obtained

from FP data. First, participant mass (m) was computed averaging

the first second of the first static phase and dividing it by g

(g ¼ 9:81 m/s2). Consequently, the whole ground reaction force

was divided by m, hence g was subtracted to obtain aFP.

Peak jump height was computed through the TOV method for

both instruments (hSP and hFP, respectively). For both data sets,

vertical velocity, v, was computed through numerical integration of

the corresponding acceleration from the CMJ onset (t0) to the

take-off (tTO). More specifically: t0 was computed as the time

sample occurring 30 ms prior the first one deviating by 8 times the

static phase standard deviation, following a similar approach as in

Owen et al. (52); tTO was chosen to be the first time sample such

that a � �g. All data were processed and analyzed using GNU

Octave (53).
FIGURE 3

Visual depiction of the selected features, for a representative jump.
Acceleration-related features are shown in the top panel, while power-
related ones in the bottom panel. The vertical dotted lines in the top
panel represent jump-phases transitions (1): the weighting phase lasts
from the beginning to t0 (jump onset); the unweighting phase lasts from
t0 to tUB; the braking phase lasts from tUB to tBP; the propulsion phase
lasts from tBP to tTO . Notice that tUB and tv,min coincide. For the sake of
clarity, only the former was depicted. Feature i cannot be represented
as its numerical value was derived from further computations. The
meaning of each feature is detailed in Table 1.
Feature selection

A total of M ¼ 26 features were extracted, as detailed in section

“Model creation and evaluation”. All the listed features are depicted

in Figures 3, 4 and detailed in Table 1. All of them were extracted

from aSP, including the raw estimate of the height, hSP. Nineteen

jump-related variables (features from A to s) were inspired by

Dowling and Vamos (5); three of them (u, W, and z), enlarging

the description of power related variables were presented in Mascia

and Camomilla (22); finally, the last three features are the central

frequencies obtained processing aSP via VMD (45), subdividing the

signal into three intrinsic mode functions, each having a frequency

spectrum centered around each of them. In particular, the high-

and mid-central frequencies (f1 and f2) were assumed to be

associated with the inertial effects due to wobbling masses, whereas

the low-central frequency (f3) was thought to be associated with

the jump itself (Figure 4).
FIGURE 4

Intrinsic mode functions (IMFs) resulting from the application of the VMD
algorithm on a representative CMJ. The black, dashed line represents the
high frequency IMF1; the gray continuous line represents the middle
frequency IMF2; the black continuous line represents the low frequency
IMF3. In this specific case: f1 ¼ 6:06Hz; f2 ¼ 3:49Hz; f3 ¼ 0:55 Hz.
Model creation and evaluation

The final dataset was composed by 172 jumps, each associated

with the corresponding 26 features computed from aSP, and the

peak height computed from aFP, hFP, considered as the dependent

variable. Once data was arranged for all the jumps, the dataset was

separated in two. More specifically, 75% of the jumps

(129 examples) was used for creating the training set, whereas the

remaining 25% (43 examples) was used as test set (54,55).

The elements belonging to each of the two subsets were

randomly selected.
Frontiers in Sports and Active Living 04 frontiersin.org
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TABLE 1 Detailed explanation of each of the analyzed features.

ID Feature Measure
unit

Description

hSP Jump height m Height computed via TOV from aSP

A Unweighting phase duration s [t0, tUB]

b Minimum acceleration m/s2 a(ta,min)

C Time from minimum to maximum acceleration s [ta,min, ta,max]

D Main positive impulse time s Time duration of positive acceleration from tUB to the last positive sample prior tTO

e Maximum acceleration m/s2 a(ta,max)

F Time from acceleration positive peak to take-off s [ta,max, tTO]

G Ground contact duration s [t0, tTO]

H Time from minimum acceleration to the end of
breaking phase

s [ta,min, tBP]

i Maximum positive slope of acceleration m/s3 max (da(t)=dt), t [ [ta,min, ta,max]

k Acceleration at the end of the braking phase m/s2 a(tBP)

J Time from negative peak velocity to the end of
breaking phase

s [tv,min, tBP]

l Negative peak power W/kg P(tP,min)

M Positive power duration s Self-explanatory

n Positive peak power W/kg P(tP,max)

O Time distance between positive peak power and
take-off

s [tP,max, tTO]

p Mean slope between acceleration peaks au p ¼ (e� b)=C

q Shape factor au Ratio between the area under the curve from tUB to the last positive sample prior tTO (lasting D) and
the one of a rectangle of sides D and e

r Impulse ratio au r ¼ b=e

s Minimum negative velocity m/s v(tv,min)

u Mean concentric power W/kg Average value of P(t), t [ [tBP, tTO]

W Power peaks delta time s [tP,min, tP,max]

z Mean eccentric power W/kg Average value of P(t), t [ [t0, tBP]

f1 High central frequency Hz Highest VMD central frequency, associated with wobbling tissues and noise

f2 Middle central frequency Hz Middle VMD central frequency, associated with wobbling tissues

f3 Low central frequency Hz Lowest VMD central frequency, associated with the jump proper

Capital letters are for timings, small letters for the other parameters. Legend: au = arbitrary units; t0,= jump onset time; tUB , unbraking-braking phase transition time; tBP ,

braking-propulsion phase transition time; tTO , take-off time; ta,min , minimum acceleration time; ta,max , maximum acceleration time; tv,min , minimum velocity time; tP,min,=

minimum power time; tP,max , maximum power time.

Mascia et al. 10.3389/fspor.2023.1112739
Before training, each feature of the training set was normalized

via z-score (55). The mean values and the standard deviations of

each feature distribution were stored, so that they could be

successively used for normalizing the test set features, accordingly.

In order to avoid possible multicollinearity between features, a feature

reduction approach was performed on the training set using Lasso

regularization (56). The regularization strength was set by selecting a

value of a ¼ 0:1. The features that were excluded from such a

shrinkage were not used for developing the machine learning algorithm.

A multilayer perceptron neural network (MLP) with one

hidden layer was then used as machine learning architecture. A

grid search with 5-fold cross validation was used for tuning the
Frontiers in Sports and Active Living 05
model hyperparameters (55,57). In particular, three

hyperparameters were tuned: the activation function, the solver

algorithm, and the number of neurons composing the hidden

layer. The complete list of all the candidate hyperparameters

for the grid search are presented in Table 2. The best and final

model was chosen as the one with the combination of

hyperparameters ensuring the best negative mean absolute

error (58).

The height computed through the MLP was denoted as hMLP, and

compared also to the height directly estimated using the SP, hSP.

To obtain a quantitative description of the influence that each

feature had on the outcome, a permutation feature importance
frontiersin.org
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TABLE 2 List of possible choices for each hyperparameter during the grid
search.

Hyperparameter Choices

Activation function Identity, logistic, tanh, ReLU

Solver algorithm lbfgs, sgd, adam

No. neurons in hidden layer 1–16

Legend: tanh, hyperbolic tangent; ReLU, rectified linear unit; lbfgs, limited-memory

Broyden-Fletcher-Goldfarb-Shanno algorithm; sgd, stochastic gradient descent.
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analysis (PFI) was performed on the trained model (49). Lets

consider the model f̂ , the feature matrix X with j as feature index,

the target hFP, and the error L[hFP, f̂ (X)]. In this study, the mean

squared error (MSE) was selected as model error, since it enhances

the prominence of feature importances being quadratic. Each

permutation was performed on the training set only, meaning that

each feature importance FI j here presented belong to that set.

Moreover, PFI was accomplished by splitting such a set in half,

according to the recommendations proposed in Fisher et al. (59).

The PFI algorithm follows:
1. Estimate the original model error: e0 ¼ L[hFP, f̂ (X)].

2. 8 feature j [ {1, . . . , M}:
TABLE 3 Scores of the grid search with cross validation for the best model.
Notice that such results are related to the training set only.

Negative MAE (cm) R2

Fold 1 �0.8 0.975

Fold 2 �0.7 0.981

Fold 3 �0.7 0.982

Fold 4 �0.8 0.975

Fold 5 �0.8 0.977

Mean �0.8 0.978
2.1 Generate the feature matrix with the permuted feature X j
perm.

2.2 Estimate the error for the feature matrix with the permuted

jth feature: ej ¼ L[hFP, f̂ (Xj
perm)].

2.3 Compute the feature importance as: FIj ¼ ej=e0.

Statistical analysis

The performances of the criteria used for estimating hSP and

hMLP were evaluated exploiting three metrics: (i) accuracy,

considered as the root mean squared distance (RMSD) between the

estimates and the true values; (ii) bias, computed as the average

difference between the estimates and the true values; (iii) precision,

representing the standard deviation of the differences, i.e., the

dispersion of the error. Metrics (ii) and (iii) were directly

computed from Bland-Altman plot analysis (60). Furthermore, the

mean absolute error (MAE) was computed as an overall

performance metrics for both the models.

Kendall’s Tau test (61) was used for exploring possible

heteroscedasticity of hSP and hMLP estimates (62,63). More

specifically, the test was performed comparing the distribution of

the averages versus the absolute differences of the gold standard

and predicted values, as in Brehm et al. (63). If t , 0:1, data were

considered homoscedastic; conversely, if t � 0:1, data were

considered heteroscedastic.

Paired sample t-test was performed on the test set comparing the

hFP distribution with the hSP and hMLP ones, respectively. Finally, a

linear regression analysis between hFP with hSP and hMLP,

respectively, was performed, so that a calibration between the

systems could also be provided.

All the procedures regarding model creation and its performance

evaluation have been accomplished through the scikit-learn

environment (58).
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Results

A total of 172 jumps were analyzed. Jumps height measured

through the gold standard FP ranged from 10 cm up to 41 cm

(25:6+ 7:4 cm).

From the initial set of 26 features, only 17 were included in the

final model after Lasso regularization. In particular, the features

excluded were the following: A, C, D, k, m, n, o, p, and f2, which

meaning is explained in Table 1.

The grid search procedure analyzed a total number of 192

(4 activation functions � 3 solver algorithms � 16 neurons in

the hidden layer) possible hyperparameter combinations. The

best one (i.e., the one presenting the best negative mean

absolute error among the 5 folds) was found to be the one

having a logistic activation function with an hidden layer

composed of 11 neurons, and its solver being the stochastic

gradient descent algorithm. Among the 5 folds, the selected

combination of hyperparameters presented an average negative

mean absolute error (+SD) ¼ �0:8+ 0:0 cm, with an average

R2 ¼ 0:978. The results obtained for each of the 5 folds are

detailed in Table 3.

Accuracy, computed as RMSD between hFP and the estimates,

improved of 4.5 times using the MLP model instead of SP-derived

estimates. Similarly, using the MLP rather than the SP improved of

4 times the precision (SD of the differences between measure and

estimate) and reduced of 4 times the MAE. The performance

analysis for the analyzed models is detailed in Table 4. Moreover,

Kendall’s tau analysis performed on the average versus the absolute

difference showed that hSP distributions presented

heteroscedasticity (t ¼ 0:38). On the contrary, hMLP distribution

did show homoscedasticity (t ¼ �0:02).

Paired sample t-test analysis showed significant differences

between hFP and hSP, whereas no significant difference was found

between hFP and hMLP. The results of such an analysis are detailed

in Table 5. Finally, the results of the linear regression analysis for

calibrating the two systems are provided in Table 6.

Bland-Altman plots of both SP- and MLP-heights estimated for

the test set are presented in Figure 5, whereas the corresponding

numerical values are reported in Table 7.

Permutation feature importance analysis highlighted the

influence of each variable on the outcome. The five most

influential features were e (maximum acceleration, FI ¼ 9:64),

J (time from negative peak velocity to the end of the braking

phase, FI ¼ 9:02), q (shape factor, FI ¼ 7:63), s (minimum
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TABLE 4 Results of the performance analysis for the analyzed models.

Accuracy
(cm)

Bias
(cm)

Precision
(cm)

MAE +
SD (cm)

t

SP 18.0 �7.0 16.0 12:0+ 13:0 0.38

MLP 4.0 �0.0 4.0 3:0+ 3:0 �0.02

The accuracy is computed as the RMSD of hFP and the estimates of each model; the

bias is computed as the average difference of hFP and the estimates of each model;

the precision is computed as the standard deviation of the differences between hFP

and the estimates of each model; MAE is the mean absolute error (+ standard

deviation); t is the Kendall’s tau coefficient of the averages versus the absolute

differences for each model.

TABLE 5 Results of the paired samples t-test analysis performed comparing
hFP with hSP and hMLP, respectively.

t value p value Degrees of
freedom

95% CI (cm)

SP �2.770 0.008� 42 [� 12:2, � 1:8]

MLP 0.711 0.481 42 [� 1:0, 2:0]

Statistically significant differences are indicated with the superscript (�).

Mascia et al. 10.3389/fspor.2023.1112739
negative velocity, FI ¼ 7:56), and hSP (height computed from SP via

TOV, FI ¼ 6:39). A bar chart showing all outcomes of the PFI

analysis for each variable is presented in Figure 6.
TABLE 6 Linear regression analysis performed between hFP with hSP and hMLP, r

Intercept [95% CI] (cm) t value hSP [95% CI] (cm) t v

SP 17.668��� [13.944 21.391] 9.582 0.226��� [0.127 0.326] 4.5

MLP 5.681� [0.873 10.488] 2.386 —

Legend: intercept, hSP , and hMLP are the coefficient of the regression analysis with 95% co

the standard deviation of the regression residuals; r is the correlation coefficient. Signific

FIGURE 5

Bland-Altman analysis for the height estimates obtained directly from the SP w
represents the bias (b) computed as the average difference between the gold
upper confidence intervals (UB and LB, respectively), computed as 1.96 stand
directions. The gray shaded areas indicate the confidence interval for b, UB, an
versus the differences, which equation is indicated in the above portion of the g
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Discussion

In this study, a step towards jump height democratization using a

smartphone through machine learning was proposed. While the SP

alone entails unacceptable errors, the neural network model

proposed here in the form of an MLP, reduced the error to

produce outcomes that could be of use in an in-field setting.

The obtained results are promising considering that the low-cost

of the IMU embedded into the smartphone allowed a feature

extraction capable of predicting height estimates under the

proposed assumptions. Indeed, the errors obtained are comparable

to those typically obtained comparing commercially available IMU

systems with FPs (mean difference ≃5 cm), as revised in Clemente

et al. (10). For what concerns the accuracy, the MLP improved it

bringing the discrepancy from 18 cm down to 4 cm. This

improvement, as expressed in percentage of the true value, equivals

obtaining 15.6% errors. The improvement brought by the MLP

similarly improved precision from an initial value of 14 cm down

to 4 cm, in line with what obtained in literature (10), acceptable

depending on the subsequent application. Moreover, it is possible

to appreciate that the MLP provided virtually no systematic bias.

On the contrary, the average versus difference plot of hSP

(Figure 5) indicates that, on average, the use of TOV method leds

to underestimated jump height values. Finally, an heteroscedastic
espectively.

alue hMLP [95% CI] (cm) t value SEE (cm) r

94 — 6.257 0.583

0.789��� [0.600 0.977] 8.460 4.647 0.797

nfidence intervals and t value; SEE is the standard error of the estimates, computed as

ance level: (�) p , 0:05; (���) p ¼ 0.

ith the TOV method (left) and through the MLP (right). The continuous line
standard and the estimate; the dot-dashed lines represent the lower and
ard deviations of the difference distribution away from the bias, in both
d LB, respectively. The continuous line is the regression line of the average
raph. The R2 value refers to the latter equation.
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FIGURE 6

Barchart representing the outcome of the PFI analysis performed on all the variables selected by the Lasso regularization. Variables meaning is detailed in
Table 1.

TABLE 7 Bland-Altman analysis results for the two compared methods.

Standardized bias Bias [95% CI] (cm) LB [95% CI] (cm) UB [95% CI] (cm)

SP �0.3 �7.0 [� 12:2, � 1:8] �39.5 [� 30:5, � 48:4] 25.5 [34.4, 16.5]

MLP 0.0 0.5 [� 1:0, 2:0] �9.1 [� 11:8, � 6:5] 10.2 [7.5, 12.8]

All the values and the related confidence intervals were computed according to what proposed in Giavarina (64). The corresponding graphical depiction of the values is

presented in Figure 5.
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trend is clearly visible in the error of SP-computed jump heights

(Figure 5), as confirmed by Kendall’s Tau analysis (t ¼ 0:38). On

the contrary, there is no trend for MLP-estimates (Figure 5,

t ¼ �0:02). Estimates homoscedasticity corroborate model

generalizability outside the training dataset.

Feature reduction, performed using Lasso regularization to avoid

possible multicollinearity between the initial set of features, selected

17 features as model input. Permutation feature importance

analysis proved this reduced feature set as influential of the

outcome and ranked it in terms of influence on the model output

(Figure 6). All the selected features, once the dataset was permuted

(59), increased the MSE from a minimum of 2- to a maximum of

about 9-times if compared with e0 (see section “Model creation

and evaluation”). Indeed, all the features exhibited a FI . 1,

possibly indicating that Lasso regularization included only those

features that could be predictive of jump height.

Among the five most important features, four of them (J , e, q,

and s) belonged to two phases of the jump (braking and

propulsion phases), with the fifth most important being the height
Frontiers in Sports and Active Living 08
computed through the TOV method from smartphone measures

(hSP).

Maximum acceleration (e, typically occuring in the propulsion

phase of the CMJ), and the time from negative peak velocity to the

end of the braking phase (i.e. the duration of the braking phase –

J) were much more influential than all the others, increasing the

MSE of about 9 times, when permuted. This could be seen as a

mutual relationship, even though not collinear, between two

distinct features of the CMJ. Indeed, the correlation between e and

J in the training set was r(e, J) ¼ �0:52, meaning that the shorter

the braking phase, the bigger the magnitude of the recorded

maximum acceleration. Moreover, the minimum negative velocity

value (s) importance resulted prominent as well, having an impact

of about 7-times on the MSE of the trained model. The impact of

these three features together could be possibly linked to the

biomechanical mechanism required for achieving the best possible

jump height, that is, the stretch-shortening cycle (1,3,4).

The shape factor (q) after PFI influenced the MSE increasing it of

about 7 times. This is in line with the claimed potential of this feature
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to relate to an optimal force generation for achieving the maximum

performance (5).

Although the height computed through smartphone alone

(feature hSP) is not sufficient for obtaining accurate estimates, it

is still one of the most influential features as a first guess value

to stay close to (FI ¼ 6:39). Even though less influential than the

above-mentioned features (FI ¼ 4:48), the high central frequency

(f3) testifies the role of wobbling into disrupting jump height

estimates. This is in line with similar results obtained using

vertical acceleration measured from a belt-worn IMU at pelvic

level: for this signal, the high central frequency was included in

a model predictive of jump power, possibly compensating for

the effects of soft tissue wobbling (22). This is also promising in

the perspective of using VMD to identify the contribution of

arm swing into vertical jump height, when voluntarily included

in the jump action.

Such results must be analyzed in a wider framework. First, the

sampling frequency, considered as a key player in jump height

estimates quality, was lower (128 samples/s) than the

1,000 samples/s suggested as essential for a proper jump analysis

(52). Nonetheless, testing the worst-case scenario was motivated by

the democratization mission of this study, as results would then

apply to any SP device available on the market, irrespective of its

sensor sampling frequency. Second, holding the sensor in the

hands was thought to be the most practical while repeatable

experimental setup, with little perturbation to each jumper

technique; however, it entails an undesired upper limb oscillatory

movement. Despite the central frequency associated with this effect

partially compensates for it, it can be hypothesized that placing the

SP closer to the trunk and/or within an ad hoc harness could

further enhance the prediction. Third, trial height ranged from a

minimum of 10 cm up to a maximum of 41 cm, since none of the

participants was an elìte athlete. Theoretically, the model output

can be considered valid only within this range.

Among the strengths of this study, the model was devised using

as gold standard reference jump heights that: (i) were computed from

laboratory FP signals; (ii) were estimated through the TOV method,

considered as the most reliable (36). Moreover, the approach

presented here involves the use of features which are

biomechanically related to the nature of the jump itself. Most

importantly, they can be easily retrieved directly from the

acceleration trace during the jump with simple mathematical

manipulation.

The method could be embedded in the creation of a SP

application, exploiting the current results to give runtime insights

about jump height. The possibility to access the code and the

methodology used (github.com/Maskul93/height-democratization)

can also leverage actions to enlarge the current database and

improve the estimates.
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