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Semitendinosus muscle
morphology in relation to
surface electrode placement in
anterior cruciate ligament
reconstructed and contralateral
legs
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Laura E. Diamond1 and David J. Saxby1

1Gri�th Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute

Queensland, Gri�th University, Gold Coast, QLD, Australia, 2Department of Applied Physics,

University of Eastern Finland, Kuopio, Finland

The semitendinosus tendon is commonly harvested as graft tissue for anterior

cruciate ligament reconstruction (ACLR). Although the semitendinosus tendon

can regenerate following harvesting, ACLR results in substantial reductions

in semitendinosus muscle size and length, potentially complicating electrode

placement for electromyography. The purpose of this study was to assess

whether themost commonly used electrode placement [recommended by the

“Surface Electromyography for Non-Invasive Assessment ofMuscles” (SENIAM)

project] is appropriate for measuring semitendinosus electromyograms after

ACLR. In nine participants (unilateral ACLR with a semitendinosus graft), B-

mode ultrasonographywas used to bilaterally determine (i) the semitendinosus

muscle-tendon junction position and the state of tendon regeneration (latter

for the ACLR leg only) and (ii) the anatomical cross-sectional area (ACSA) of the

semitendinosus muscle at the SENIAM-recommended electrode placement

site at rest and during isometric maximal voluntary contraction (MVC) at two

knee joint angles. Depending on the contraction state and joint angle, the

semitendinosus muscle had retracted past the recommended placement site

in 33–78% of ACLR legs, but not in any contralateral legs. The ACSA of

semitendinosus was smaller both at rest and MVC in the ACLR compared to

contralateral leg. The ACSA for both legs decreased at MVC compared to rest

and at deep compared to shallow knee flexion angles, likely due to sliding of

the muscle under the skin. These results suggest SENIAM guidelines are likely

unsuitable for recording surface electromyograms from the semitendinosus

muscle after tendon harvesting for ACLR as the muscle of interest may not be

within the electrode detection volume.
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Introduction

Because of the biomechanical properties of the tendon

and graft and the small surgical incision size that circumvents

affecting the knee extensor mechanism (1), the whole distal

semitendinosus (ST) tendon (sometimes including the distal

gracilis tendon) is widely used worldwide for anterior cruciate

ligament reconstruction (ACLR) (2), a debilitating injury and

treatment that is increasingly common (3). After ST tendon

harvesting for ACLR, long-term morphological changes often

persist; ST muscle volume and maximal anatomical cross-

sectional area (ACSA) are ∼25–45% and ∼20–30% smaller,

respectively, and the ST is ∼4–10 cm shorter when assessed by

either change in muscle length or proximal shift in the distal

muscle–tendon junction (MTJ) position (4–13). Despite these

morphological changes, the harvested ST tendon has potential

for regeneration and bony reattachment below the knee joint

line (14), which could result in restoration of some level of

function to a muscle that is important for high-velocity athletic

tasks such as sprinting (15, 16).

Electromyography (EMG) can be used to indirectly

assess some aspects of muscle function, such as muscle

activity amplitudes, patterns, and temporal relationships.

However, the specificity of surface EMG recordings depends

on careful placement of the electrode(s) over the muscle(s)

of interest. Many studies continue to use electrode placement

recommendations from the “Surface Electromyography for

Non-Invasive Assessment of Muscles” (SENIAM) project (17).

Accordingly, numerous studies including participants post-

ACLR with an ST graft placed electrodes halfway between

the ischial tuberosity and the medial tibial epicondyle (as per

SENIAM guidelines) to measure ST muscle activity (18–28),

as a surrogate of all medial hamstring activity (29–35), and

to drive EMG-based neuromusculoskeletal models (36, 37).

Other studies placed bipolar electrodes more distally on the

thigh (38, 39). However, none of these studies reported using

ultrasound guidance for electrode placement, suggesting the

alterations in muscle–tendon unit morphology (i.e., what is

beneath the electrode) may not have been fully considered.

Given substantial muscle shortening following ACLR, the ST

muscle may not always be present under electrodes placed

according to recommendations for healthy legs. Furthermore,

moving from shallow to deep knee flexion angles and/or ST

muscle activation could result in further ST muscle shortening

(40, 41), potentially past the SENIAM-recommended location.

Therefore, the purpose of this study was to assess whether

the commonly used surface electrode placement location would

be suitable for EMG measures of ST in individuals post-ACLR.

We investigated the bilateral presence and ACSA of the ST

muscle at 50% of the distance from the ischial tuberosity

to the medial tibial epicondyle at rest and during maximal

isometric contractions at two knee joint angles (15◦ and 90◦).

We hypothesized that the electrode location for the ST as set out

by the SENIAM guidelines would not be suitable for ACLR legs,

owing to a significantly smaller length and size of the ST muscle,

and that the knee flexion joint angle and contraction state would

influence the presence of the STmuscle in ACLR legs and reduce

the ACSA of ST in both legs.

Methods

Participants

A total of 10 individuals who underwent unilateral ACLR

using an ipsilateral distal ST tendon autograft volunteered to

participate in the study. All ACLRs were performed by one

surgeon, and the ACLR procedure is described in a companion

paper from this data collection (42). Due to poor-quality

ultrasound recordings from one participant, data are reported

for nine participants (six women; age: 27.2 ± 5.2 years; height:

170.3± 9.6 cm; mass: 71.4± 13.7 kg). The participants were 436

± 85 days post-surgery, representing a time frame reflective of

return to physical activity. Potential participants were excluded

from the study if they had ACLR more than 6 months after ACL

injury, gracilis tendon harvest in ACLR, previously sustained

other major knee injuries, neurological disorders, or physician

recommendations to avoid undergoing a magnetic resonance

imaging scan. The participants were requested to refrain from

strenuous exercise commencing 24 h prior to the investigation.

The study was approved by the Griffith University Human

Research Ethics Committee (2018/839) in accordance with

the Declaration of Helsinki. All participants provided written

informed consent prior to any involvement in the study.

Experimental design

The participants attended a laboratory session where B-

mode ultrasound was used to (i) identify any presence of ST

tendon regeneration in the ACLR leg and the bilateral location

of the distal MTJ at rest, and (ii) measure the ACSA of the

ST muscle at the recommended electrode location in ACLR

and contralateral legs during rest and at maximum isometric

knee flexion contractions of 15◦ and 90◦ of knee joint flexion

(0◦ = full extension). These joint angles were chosen due

to their relevance for assessing potential neural influences on

knee flexion strength after ACLR; weakness is consistently

documented at deep knee flexion angles, such as 90◦, but not

always at shallow angles (6, 10). All measurements were obtained

bilaterally.

Assessment of ST tendon regeneration
and distal MTJ position

With the participants positioned prone (hip and knee

neutral), the lower posterior thigh was scanned to detect any
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presence of regenerated ST tendon tissue using a 30 mm linear

ultrasound transducer (L18-7H30-A5; ArtUS, Telemed, Vilnius,

Lithuania) operating at 18 MHz (depth: 30mm). Subsequently,

the posterior thigh was scanned to locate the most distal aspect

of the distal ST MTJ (i.e., the beginning of the free tendon where

the tendon was regenerated, or the distal muscle stump if the

tendon was not regenerated). The location of the distal ST MTJ

was marked on the skin surface with indelible ink. The distance

from the distal MTJ to the popliteal crease was recorded with

a flexible tape measure. As this measurement has been shown

to be reliable (43), the between-leg difference was used as a

clinically viable estimate of longitudinal ST muscle shortening.

A qualitative depiction of the proximal shift in the distal STMTJ

position is shown in Figures 1A,B.

Assessment of ST ACSA at the
recommended electrode location

After a warm-up of 5min on a cycle ergometer at a

freely chosen pace, the participants performed isometric knee

flexionmaximal voluntary contractions (MVCs) on an isokinetic

dynamometer (System 4 Pro, Biodex Medical Systems Inc.,

Shirley, NY, USA) at 15◦ and 90◦ of knee joint flexion. The

participants also performedMVCs at 45◦ and 60◦ of knee flexion

as part of larger data collection, but ultrasound images were not

obtained at those joint angles. All trials were performed with

the participants positioned prone, strapped to the bed at the

waist level, and the ankle locked in a neutral position with an

ankle cast (Aircast AirSelect Short, DJO Global Inc., Lewisville,

TX, USA). Following a warm-up series of submaximal isometric

knee flexion contractions at volitional intensity, a minimum of

three MVCs of ∼3- to 5-s duration were performed with 1-

min rest between efforts. Further MVCs were performed if the

third, or subsequent, efforts were ≥ 5% in the maximal torque

magnitude than previous efforts (44). Note that the torque data

are not reported here. The order in which legs and knee joint

angles were tested was randomized using a random number

generator (MATLAB version R2018b, MathWorks, Natick, MA,

USA). A 2-min rest was given between knee joint angle changes

and at least 10-min rest was given between legs.

Transverse ultrasound images were obtained by a single

experienced investigator (AK) at the midpoint of the distance

between the ischial tuberosity and the medial tibial epicondyle

in accordance with the SENIAM guidelines for ST (17) with a 60

mm linear transducer (L12-5N60-A2; ArtUS, Telemed, Vilnius,

Lithuania) operating at 8.5 MHz (depth: 60mm). After marking

the location on the skin surface with indelible ink, visibility of

the ST muscle underneath the ink marking (i.e., if the muscle

had or had not shortened past the scan location) was noted. If

the ST muscle could be visualized, the ultrasound transducer

was held over the ink marking with minimal compression,

and cine loop images were recorded at 30Hz during MVCs,

including approximately 3 s prior to contraction (Figures 1C–F).

The transducer was replaced over the skin for each effort, and

no noticeable shifting of the ultrasound transducer relative to

the ink marking was observed during MVCs. The ACSA of ST

from one trial was measured using the polygon tool in ImageJ

(Version 1.52a, National Institutes of Health, Bethesda, MD,

USA). Rest ACSA values were obtained from one image prior

to the onset of contraction, and MVC ACSA values from an

image during the plateau phase of the isometric contraction. If

the muscle had shortened past the scanning location, the value

was recorded as 0 cm2. Recordings were re-analyzed 6 months

later by the same investigator (AK) to determine intra-rater

reliability, which resulted in intra-class correlation coefficients

(A,1) and 95% confidence intervals of 0.973 (0.917–0.989) at rest

and 0.972 (0.928–0.988) during MVCs.

Statistical analyses

The effect of leg (contralateral, ACLR) on the distal MTJ

position was assessed using a paired t-test. All data were

normally distributed, except the following: ACSA on the ACLR

leg at MVC at 15◦, resting ACSA on the contralateral leg at 90◦,

and ACSA at MVC at 90◦ on both legs. To bypass distribution

assumptions (45), a full-factorial linear mixed model with

restricted maximum likelihood estimation was used to assess

the effect of leg, contraction state (rest, MVC), and knee joint

angle (15◦, 90◦) on ST ACSA. Leg, contraction state, and knee

joint angle were set as fixed factors and repeated measures (first-

order autoregressive covariance structure), with participants and

their intercepts as random factors. The degrees of freedom

were calculated using the Satterthwaite approximation. When

significant interactions were detected, post hoc Bonferroni tests

were conducted to identify significant differences between legs

at each contraction state or joint angle condition. Partial eta

squared (η2p) was estimated and adjusted for bias (46). All

hypothesis tests were performed using SPSS (version 27, SPSS

Inc., Chicago, IL, USA) with statistical significance set at p <

0.05. Data are presented as mean± one standard deviation.

Results

Of the nine participants, six had ST tendon regeneration in

their ACLR leg. The distance from the distal MTJ to the popliteal

crease was significantly larger in the ACLR (10.5 ± 4.4 cm)

than the contralateral (5.3 ± 1.8 cm) leg (net shortening [mean

difference]: 5.2 ± 4.0 cm; t = −3.893; p = 0.005; η
2
p = 0.611).

Consequently, the ST muscle was not visible at rest in three

ACLR legs at 15◦ and in four at 90◦ knee flexion. In a further

three ACLR legs at 90◦ knee flexion, the ST muscle was visible
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FIGURE 1

Coronal view from the in-phase sequence of a T1 Dixon magnetic resonance image (MRI) series acquired supine (used here only for illustrative

purposes) of the contralateral (A) and the anterior cruciate ligament reconstructed (ACLR) (B) legs. Red arrows illustrate the end of the

muscle–tendon junction (beginning of the free tendon), which was quantitatively assessed from ultrasound. Dashed white rectangles

approximate the recommended proximodistal electrode placement according to SENIAM guidelines. Resting ultrasound images of the

contralateral leg at 15◦ (C) and 90◦ (D) of knee joint flexion and of the ACLR leg at 15◦ (E) and 90◦ (F) of knee joint flexion. Yellow arrows indicate

the semitendinosus muscle borders. Note that the MRI images are not from the same coronal slice for both legs and do not capture the full

length of the semitendinosus muscle within a given slice (slices for this figure were chosen independently for each leg to best visualize the distal

semitendinosus muscle–tendon junction). Also note that the ultrasound images were acquired so all images contained the same left-to-right

orientation. All images are from the same participant.

only at rest, leading to no visible ST muscle in seven ACLR legs

during MVC at 90◦ knee flexion.

The ST ACSA data are shown in Figure 2. Significant

effects on ST ACSA were detected for leg [F(1,13.43) = 65.11;

contralateral: 5.7 ± 3.2 cm2; ACLR: 1.8 ± 2.5 cm2; p < 0.001;

η
2
p = 0.816], knee joint angle [F(1,50.55) = 82.47; 15◦: 5.3 ± 3.7

cm2; 90◦: 2.2± 2.5 cm2; p< 0.001; η2p = 0.612], and contraction

state [F(1,45.30) = 28.69; rest: 4.4 ± 3.6 cm2; MVC: 3.1 ± 3.3

cm2; p < 0.001; η
2
p = 0.374]. The leg–angle interaction was

significant [F(1,33.50) = 5.48; p = 0.025; η
2
p = 0.115], while

there were no significant leg–contraction [F(1,54.44) = 1.40; p

= 0.243; η
2
p = 0.007], angle–contraction [F(1,49.49) = 0.16; p

= 0.687; η
2
p = −0.017], or leg-angle-contraction [F(1,53.32) =

1.04; p = 0.312; η2p = 0.001] interactions. Post hoc tests revealed

that compared with the contralateral leg, ST ACSA on the ACLR

leg was significantly smaller at 15◦ (p < 0.001; η
2
p = 0.744)

and 90◦ (p < 0.001; η
2
p = 0.516). Furthermore, ST ACSA was

significantly smaller at 90◦ than at 15◦ for both the contralateral

(p < 0.001; η2p = 0.580) and ACLR (p < 0.001; η2p = 0.273) legs.

Discussion

This study investigated the presence and size of

the ST muscle at the ST EMG electrode location as

recommended by SENIAM guidelines (17) bilaterally in

individuals with ACLR at rest and during knee flexion

MVCs at two knee joint angles. Agreeing with our first

hypothesis, the ST muscle at the SENIAM-recommended

location was, when present, smaller on the ACLR than

the contralateral leg. Furthermore, consistent with our

second hypothesis, voluntary muscle contraction and

knee flexion angle influenced the presence and size of

the ST muscle at the SENIAM-recommended location.

Overall, recording surface electromyograms at the SENIAM-

recommended position may not be suitable for high-fidelity

recordings of ST in ACLR legs, and caution may also be

warranted in non-ACLR legs due to the morphological

changes induced by altering knee joint angles and

contraction states.
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FIGURE 2

Means and standard deviations for between-leg di�erences in the semitendinosus anatomical cross-sectional area (ACSA) at rest (A) and during

maximal voluntary contraction (B) in the contralateral (red) and anterior cruciate ligament (ACLR; blue) legs at 15 and 90◦ of knee joint flexion.

Data from participants whose tendon was regenerated on the ACLR side are shown with a solid line, while those without tendon regeneration

are denoted with a dashed line.

E�ects of muscle atrophy on electrode
placement at the recommended location

The proximal shift of the distal ST MTJ (5.2 ± 4.0 cm) in

the ACLR leg was greater than both the minimal detectable

change [1.26 cm; (43)] and the normal between-leg variation in

ST muscle length [<1 cm; (13)], and was within the range of ST

muscle shortening after ACLR (mean of∼4–10 cm), as reported

in previous studies (4–13). Consequently, the ST muscle was

not visible at the imaging location for 33–78% of ACLR legs,

depending on the knee joint angle and contraction state. At

a more proximal imaging location, Morris et al. (47) did not

observe the ST in two of 15 ACLR legs, but in that study ST was

seemingly present in all legs at approximately the same imaging

location used in our study. The larger proportion of ACLR legs

without presence of ST in the current study, particularly at 90◦

and during MVC compared with 15◦ and rest, respectively, is

due to further proximal muscle shortening that occurs with joint

motion in a shortening direction (48) andmuscle activation (49).

As a result, in some individuals, even those with ST tendon

regeneration in their ACLR leg, bipolar EMG electrodes placed

according to SENIAM guidelines would not be atop the ST

muscle. In other participants, such electrode placement would

be close to the distal ST tendon, which, irrespective of other

morphological issues, affects EMGmeasurements (17, 50). Thus,

it is imperative for future studies using EMG for ST after ACLR

to consider muscle morphology when positioning electrodes.

As expected, ST ACSA on the ACLR leg was significantly

smaller than that on the contralateral side in all assessed

conditions. Nonetheless, the mean between-leg difference in

resting ST ACSA (59–77%) was substantially larger than that

previously reported for maximal ACSA [∼20–30%; (4, 11, 12)].

As shown in Figure 1, the entire ST ACSA fit within the

ultrasound field of view for all participants, whereas panoramic

(extended field of view) images are typically required at the

site of maximal ACSA, generally located at or above halfway

between the greater trochanter and the lateral knee joint (43,

51). Conversely, SENIAM guidelines recommend placing the

electrode more inferiorly at the midpoint from the ischial

tuberosity to medial tibial epicondyle, a position distal to the

location of maximal ST ACSA, and even more distal on ACLR

legs due to muscle shortening. Therefore, the large between-

leg ACSA difference results from comparing measures obtained

from the same absolute location along the thigh but different

locations relative to ST muscle length, which is consistent with

recent findings of larger relative differences in ST ACSA at distal

than at more proximal thigh locations (47). As the adjacent knee

flexor synergists are near their maximal size at the location for

ST as set out by the SENIAM guidelines (43, 51) and these

synergists generally do not undergo volumetric atrophy after

ACLR (4, 6, 11, 12), the consequence is a smaller ST muscle

(if not fully retracted past) sandwiched between large synergistic

muscles. To facilitate morphologymeasures, we obtained images

at the SENIAM-defined proximodistal location but maneuvered

the transducer to center on the ST, which overlooks potential

additional errors from poor mediolateral electrode positioning

(52). Thus, bipolar surface EMG recorded from this location is

likely to be contaminated by the adjacent muscles (i.e., cross-

talk), even if the electrode is centered over the ST, which may

not necessarily occur (i.e., slight deviations in the mediolateral

position or the muscle retracted past the location). As such,

signals recorded via electrodes placed on the posterior thigh
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according to SENIAM guidelines may not accurately reflect ST

muscle activity in ACLR legs (where the ST was used as graft

donor), which may not necessarily be inferred from synergist

muscles because myoelectric activity amplitudes and patterns

differ between hamstring muscles (53–59). Therefore, future

work is needed to clarify if signals acquired from a more specific

location over the ST may result in different interpretations of

STmyoelectric activity post-ACLR compared with data obtained

from electrodes placed according to SENIAM guidelines.

E�ects of joint movement and MVC on
ST ACSA at the recommended electrode
location

Varying knee flexion angle and activating the knee flexors

induced changes in ST ACSA in both legs, likely due to

the constant imaging location along the thigh. The ACSA

of ST measured at standardized, distal locations along the

thigh appears to become smaller with knee flexion (60).

Although Raiteri et al. (49) found the ACSA of tibialis anterior

increased with activation across almost the entire muscle length,

comparisons at the same location along the leg were not made.

By contrast, during elbow flexion contractions, Akagi et al. (61)

observed the ACSA of the elbow flexors to increase proximal,

and decrease distal, relative to the location of the resting

maximal ACSA when obtaining measures at constant positions

along the upper arm. As muscles should bulge to maintain

a constant volume during contraction (49, 62), the smaller

ACSA measured at a constant location along the thigh indicates

measures in the two conditions (15 vs. 90◦, rest vs. MVC) are

not obtained from the same portion of the muscle. Shortening

of ST in the proximal direction during contraction or when the

knee is flexed to 90◦ shifts the already distal imaging location

in the current study to an even more distal portion of the ST

muscle and leads to muscle shortening past the imaging location

in some ACLR individuals (see Supplementary Video). Hence,

as electrodes are typically placed under conditions that differ

from the task(s) participants perform during the experimental

procedure, it is important to consider muscle morphology

during the contraction state and posture conditions in which

recordings from surface EMGmay be used.

Additional morphological factors to
consider for electrode placement

In addition to the practical implications described previously

resulting from morphological changes in the ACLR leg (due

to surgical intervention) or in both legs (due to joint angle

change and/or voluntary activation), the general morphology

of the ST also needs to be considered when placing surface

EMG electrodes. The ST contains a tendinous inscription

separating the muscle into two neuromuscular compartments

with separate nerve branch innervations (63). At the SENIAM-

recommended location, recordings are generally obtained from

the distal ST compartment. As most ST muscle fascicles attach

directly onto the tendinous inscription (63), blindly (i.e., without

ultrasound guidance) placing the electrode proximally to the

SENIAM-recommended location may lead to an electrode

being placed atop, or on either side of, this inscription, and

thus potentially over different neuromuscular compartments of

the muscle. Although ultrasound guidance should be used to

ensure electrodes are placed atop the ST throughout all testing

conditions, bipolar surface electrode placement may be further

complicated by the 3 cm shift in the ST innervation zone when

the knee is moved through its entire range of motion (50), which

is likely related to the >6 cm ST muscle length change from

full extension to 90◦ of knee joint flexion found in cadavers

(64, 65). The latter agrees with the rationale for the change in

ACSA between joint angles found for both legs in the present

study. As the location of the innervation zone with respect

to the recording electrode affects the amplitude and spectral

properties of the EMG signal, differences in bipolar surface EMG

measures of the ST taken at different knee joint angles may have

anatomical, rather than physiological, explanations (50). Multi-

channel arrays, which may be able to account for sliding of

the muscle under the skin (50, 66), may be more advantageous

for recording electromyograms of the ST. However, multi-

channel arrays may be less accessible and/or not suitable for

complex data collections involving multiple muscle groups.

Therefore, despite similar mechanical functions between ST

compartments (67), future studies should confirm if (i) similar

ACSA changes and movement under the skin also occur in the

proximal compartment of the ST, and (ii) if recording from

the proximal compartment would affect the interpretation of

ST muscle activity during functional tasks as differences in

EMG amplitudes have previously been reported between ST

compartments at some submaximal MVC levels in humans (68),

as well as during some locomotor tasks in cats (69).

Limitations

Study limitations resulting from an absence of concurrent

EMG and ultrasound measurements are twofold. First, rather

than directly comparing EMGmeasures obtained from different

locations and muscles, we adopted a morphological approach,

and the results demonstrate the recommended location for

electrodes, particularly following ST ACLR, would either expose

the recordings to large amounts of cross-talk or not record from

the ST at all. Second, we do not have an EMG recording to

confirm muscle relaxation in the resting condition. However,

we instructed the participants to remain fully relaxed prior to

contraction and did not detect fluctuations in baseline torque
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prior to contraction or any muscle contraction during the

resting part of the analyzed cine loop images. Next, we obtained

“control” measures only from the contralateral leg. However, as

hamstring morphology on the contralateral leg does not change

after ACLR with an ipsilateral ST graft (4) and is comparable

with legs of control group participants (47), the results obtained

from the contralateral leg are likely representative of a pre-injury

state. Furthermore, despite the relatively small sample size,

this study was conceived based on similar observations during

pilot tests performed on participants with ACLR performed

by surgeons from different countries. Thus, these results are

likely generalizable across the ST-tendon ACLR demographic.

Finally, we only tested knee flexion in the prone position, and

it remains unknown how regional ST morphology in static

and dynamic states may change with isolated or concomitant

hip flexion.

Conclusion

Due to muscle shortening and radial atrophy, using the

SENIAM-recommended electrode placement to measure ST

muscle activity after ACLR with an ST graft is unlikely to

result in high-fidelity recordings. The single-site ACSA of ST

changes with contraction state and joint angle, likely due to

substantial sliding of the muscle underneath the skin, which

may have implications for obtaining and comparing EMG

recordings across different conditions. Therefore, using the

SENIAM-recommended location does not appear to be suitable

for recording bipolar surface electromyograms of ST following

ACLR with an ST graft, and caution may be warranted for

healthy legs.
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