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Wearable devices fall short in providing information other than physiological metrics

despite athletes’ demand for psychological feedback. To address this, we introduce a

preliminary exploration to track psychological states of athletes based on commercial

wearable devices, coach observations and machine learning. Our system collects Inertial

Measuring Unit data from tennis players, while their coaches provide labels on their

psychological states. A recurrent neural network is then trained to predict coach labels

from sensor data. We test our approach by predicting being in the zone, a psychological

state of optimal performance. We conduct two experimental games with two elite

coaches and four professional players for evaluation. Our learned models achieve above

85% test accuracy, implying that our approach could be utilized to predict the zone at

relatively low cost. Based on these findings, we discuss design implications and feasibility

of this approach by contextualizing it in a real-life scenario.

Keywords: sports, psychological states, deep learning, flow state, machine learning

1. INTRODUCTION

Research on sports wearable technologies suggest that athletes are not satisfied by raw physical
data and demand feedback on their psychological states (Havlucu et al., 2017). However, the state
of the art methods fall short in tracking the psychological states to provide feedback in realistic
environments (Reinecke et al., 2011). Existing wearable devices offer affordability and convenience,
but are limited to providing physiological information, such as heart rate (Aroganam et al., 2019).
Considering both limitations, our motivation is to create affordable and convenient methods to
track and give feedback on psychological states. We approach this motivation by correlating the
physiological data collected from conventional wearable devices such as Apple Watch with labels
from expert coaches, who are shown to observe psychological states in their players (Bakker
et al., 2011; Havlucu et al., 2018), and training models to detect these states through machine
learning (Figure 1).

We introduce a preliminary exploration to this approach by tracking what the coaches call
being-in-the-zone (Young and Pain, 1999) in tennis. We picked tennis, since it is physically intense
and mentally challenging (Fernandez et al., 2006). Based on the interview findings of previous
research with tennis coaches, we focused on being in the zone as a psychological state (Havlucu
et al., 2018). We conducted an experimental study involving two tennis games, with two elite
coaches and four professional players. Our goal was to predict if tennis players are in the zone, by
utilizing the Inertial Measuring Unit (IMU) data fromAppleWatch Series 2 and coaches comments
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FIGURE 1 | Summary of our approach to detect psychological states with wearable technology, expert labels and machine learning.

on their players zone. We used a deep recurrent neural network
(LSTM) model to learn and was able to predict whether a tennis
player is in the zone with around 85% test accuracy. Based
on these results, we discuss the design implications and the
feasibility of our approach. We also contextualize our approach
in a real-life scenario.

The main contribution of this work is two-fold; (1) a novel
step toward detecting psychological states through off-the-shelf
wearable technology, machine learning and expert labels, and
(2) design implications and the feasibility of such technology for
HCI. Note that this work is a preliminary exploration for tackling
our broad motivation, due to the extremely challenging nature
of detecting psychological states and conducting longitudinal
studies. We believe our findings can guide sports researchers
and interaction designers on how to detect psychological states,
as well as present particular directions for future of wearable
technology.

2. BACKGROUND

Tennis is among a few individual sports, which has both
self-paced (serve) and externally-paced (ground strokes)
performances with continuous switches (Koehn et al., 2013).
Tennis players try to counteract their opponents’ actions,
pay attention to their own performance and get distracted by
repetitive breaks, while exerting intense physical effort, all of
which trigger shifts in their mental states (Fernandez et al.,
2006). Therefore, tennis players wish to get feedback on the
mental aspects of their performance, rather than feedback on
their physical performance (Havlucu et al., 2017). These mentally
challenging features make tennis a great case for exploring the
psychological measures of a sports performance.

Flow state, commonly known as ’the zone’ for sports (Young
and Pain, 1999), is a psychological state the state of optimal
experience and performance (Jackson and Csikszentmihalyi,
1999). In the zone, athletes describe being immersed in and in
total control of their performance effortlessly, which leads to
their ideal performance (Kimiecik and Stein, 1992). Therefore,
it is the state every athlete aspires get into. Research on the zone
presents characteristics and dimensions to experience the zone
(Jackson and Csikszentmihalyi, 1999). However, experiencing the
zone consistently has been shown to be extremely challenging.
Researchers have investigated the relationship between tennis

performance and the zone (Koehn et al., 2013). Their findings
indicate that the zone is a valuable psychological state to assess
tennis performance. Studies on other sports such as football
revealed coaches rating of players’ performance included a
significant correlation to their self-rated zone experience (Bakker
et al., 2011). Specifically for tennis, these results were in line with
the findings of Havlucu et al. that coaches could observe the
zone of their players while rating their performance (Havlucu
et al., 2018). They further elaborate that coaches track the body
language, posture, activity and rituals of the players as the tennis
specific cues of the zone.

3. RELATED WORK

Current state-of-the-art fall short in tracking psychological states
of athletes since measuring these states rely on invasive methods
and can not be applied in real sports settings (Reinecke et al.,
2011). The conventional method to measure psychological states
is subjective scales (Jackson and Eklund, 2002), which include
items rated by the participants and are administered through
the Experience Sampling Method (ESM) (Csikszentmihalyi and
Larson, 2014). ESM, Researchers probe participants at various
intervals to fill out the scales. However, ESM intrudes into
participants performance. In a sports setting, this intrusion can
trigger unwelcome shifts in psychological states. Unlike ESM, our
approach does not interfere with the participants activities during
data collection.

Another approach is to correlate psychological states with
psychophysiological measures. For example, researchers argue
that heart rate variability (HRV) and respiratory rate are
reliable indicators for different psychological states and use
bulky and expensive equipment like electrocardiography and
electroencephalography (EEG) to detect these states (Nacke and
Lindley, 2008). Yet, we should note that the technology is
advancing and these devices have become cheaper since the
last decade. Thus, we see chest straps being utilized to measure
HRV during matches in tennis (Fuentes-García et al., 2022) and
racket sports (Parraca et al., 2022). Although, the same is true
for measuring EEG with textile head ware (Pineda-Hernández,
2022), it still very challenging for athletes to perform a sports
activity, especially professionally. These methods are still far
from having the convenience and affordability of using current
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wearable technologies. In contrast, we use a machine learning
approach to successfully predict the psychological state of ’zone’
with wearables.

Human Activity Recognition (HAR) employs sensors from
wearable devices and machine learning to predict and recognize
diverse physical activities (Wang et al., 2019). In sports cases,
multiple studies use IMU data to effectively recognize sports
actions (e.g., forehand) (Connaghan et al., 2011). Although
this approach is only used for detecting physical activity,
the affordability and convenience proposed overcomes the
limitations of the aforementioned methods. Therefore, we
were inspired by HAR to create our approach to detect
psychological states.

Psychological states manifest in behavioral responses along
with physiological responses, which could be detected by
HAR. Previous research illustrates with music, participants’
walking style and rhythm change reflecting changing stress levels
(psychological states), which is sensed and analyzed by IMUs
attached to their heads (Tateyama et al., 2019). Tennis players also
show behavioral responses while experiencing ’the zone’. Elite
tennis coaches can observe the zone from their players’ body
language, posture, activity and rituals (Havlucu et al., 2018). They
argue these cues are relevant to themovement and behavior of the
players, which suggests IMUs could be used to detect these states.

4. METHOD

Our goal is to track the zone by utilizing data from off-the-shelf
wearable technologies. We decided to limit the data to IMU for
two reasons. First, tennis coaches observe the zone from their
players movement and behavior, which can be quantified by
IMUs (Havlucu et al., 2018).We were also inspired by research on
other fields, for instance music, that report behavioral responses
of psychological states such as distress levels could be successfully
detected with IMUs (Tateyama et al., 2019). Second, IMU sensors
are present in many off-the shelf wearable devices, unlike heart
rate or EMG sensors. In our case, IMU offered affordability and
convenience compared to other sensors, while providing high
accuracy for our trained models (see Results).

4.1. Machine Learning Tasks
There are several questions of interest that we want to address
with multiple machine learning tasks. The answers have design
implications on the use cases of our approach:

1) Can we detect the psychological state of being in the zone
of a single or multiple tennis player(s) with a model learned from
physical IMU data? This question deals with the core idea of the
paper; whether the movement information contained in the IMU
data can be used to detect ’the zone’. For this, we define two
machine learning tasks: (a) Use the data of each player separately
and learn personalized models for each player. (b) Use the data of
all the players which involves learning a single aggregate model
from all the player data. We look at the test accuracies of both
tasks to decide on the answer.

2) Can a learned model generalize to new players? This
question deals with whether a learned model can predict the zone
labels of a previously unseen player. If the answer is positive, a

generalized model can be produced to detect ’the zone’ of every
player. If it is negative, we need to collect data for each player,
i.e., the models need to be personalized. The associated machine
learning task: (a) Use the data of 3 players for training and the
data of the remaining for testing, and rotating the tested player.
We look at the test accuracies to decide on the answer.

3) If a learned model cannot generalize, can it be re-trained to
speed up learning for a new player? This question deals with if it is
beneficial to re-use a learned model, if the answer to the previous
question is negative or if the resulting performance is low. If the
answer is positive, the data collection and training duration can
be shortened. The associated machine learning task: (a) Re-train
the models from the task 2a using the remaining players data.
We compare the number of training epochs to reach an average
test accuracy threshold (80%) between the models trained from
scratch (in the task 1a) and the re-trained models, and testing
accuracies to decide on the answer.

4.2. Machine Learning Formulation
We formulate the zone state detection as a binary classification
problem where the windows of 12-dimensional IMU time series
as the input and the latest coach label as the target. We use
a Long Short Term Memory (LSTM) recurrent neural network
model for all the ML tasks with a windows size of 50 (5 s). The
structure of neural network includes two stacked LSTM layers
with hidden unit sizes of 64 and 32 respectively, followed by a
fully connected layer with 8 ReLU neurons and a single sigmoid
output. We apply a dropout rate of 0.5 after the first LSTM
layer. We use cross entropy loss, Adam optimizer with learning
rate of 0.0025 and batch size of 128. Each model is trained for
100 epochs. The exact machine learning approach is of limited
importance for our purposes. LSTM based models are widely
used and well-established in activity recognition that are shown
to be successful (Wang et al., 2019). LSTMs can successfully
model the temporal nature of the data. Our model produced
sufficient results for the sake of this study. However, we do not
claim that it is the best possible model.

4.2.1. Train-Test Splitting
The coach labels are not distributed uniformly in time (see
Figure 2 in Results). This makes it difficult to perform standard
time-series data splitting such as only taking the last 20% for
testing. However, the label ratios are more or less 50%. Thus,
we randomly pick parts from the data of at least 50 points and
remove them as the test set. We then use the remaining data as
the training set. This makes sure that the train and test sets have
roughly the same ratio of labels and that no point in the test set is
ever in any of the windows of the training set. The amount of data
for the test set is picked to roughly give a 1/4 ratio of test data to
train data. We perform this random splitting 5 times and report
the average results.

4.3. Participants, Procedure, Setting, and
the Data
Two elite level tennis coaches and four professional players
participated in the experiment. The coaches had 25–28 years
of tennis experience, with 9–11 years of professional coaching.
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FIGURE 2 | Labels of coaches, C1 (top) and C2 (bottom), for their respective players (P1 and P2, P3 and P4) according to individual scores and score differences.

They were both male, 35–38 years old, respectively. We described
our aims to the coaches prior to conducting the experiment.
Both coaches were knowledgeable of the zone from their own
and their player’s experience and shared they could observe
the zone of their players. Accordingly, each coach was asked to
select two of their professional players. All players were male,
because the coaches only trained male players. Previous research
demonstrated that gender has no significant effect on the zone in
tennis (Koehn and Morris, 2012). The players were aged between
18 and 20 (M = 19.0, SD = 0.7), and all have participated in and
won international tournaments.

We conducted the experiments on the coaches registered
tennis club indoor hard courts. In each experiment, one coach’s
two players played a game, while their coach observed the players
simultaneously. The coaches and the players were different in
both games (Coach 1 with Player 1 and 2, Coach 2 with Player 3
and 4). The games were in best-of-three format and each lasted
around 75 min. During the games, each player was asked to
wear Apple Watch Series 2 on their dominant wrists, which was
decided according to the arm players used for the racket. We
collected 10 Hz IMU data from these devices. The IMU data,
measured at each time step, is a 12 dimensional vector consisting
of acceleration (3-dim), gravity vector (3-dim), orientation (3-
dim) and rotation-rate (3-dim). Simultaneously, the coaches were
instructed to label their players getting in and out of the zone
according to their own observations of the players’ movement
and behavior. Due to their experience of the zone, the coaches
were free to share and label any observation they have found
relevant. These labels were used as binary data. The exact timing
of these labels were stamped by the coaches. The content of the

labels were written down by the experimenter and then matched
with the timestamps. The total number of IMU measurements
were about 193,000 with 47 labels by the first coach and 9 labels
by the second. The duplicates were removed and themissing time
stamps were filled with linear interpolation before learning.

5. RESULTS

5.1. The Games and the Labels
Both games ended with two consecutively won sets. The first
game was more intense and contained many comebacks. The
coach from the first game (C1) labeled more instances for both
players (P1 and P2, 47 vs. 7) (Figure 2) and the content of these
labels were more elaborative (i.e., C1 - “[P1] is doing his rituals.
His gaze is sharpened. He is controlling his breath.”). On the
other hand, the coach from the second game (C2) only labeled the
entrance to and exit from the zone. However, the LSTM model
was only trained with binary labels (“In the Zone” and “Out of
the Zone”).

5.2. The Machine Learning Tasks
To summarize, our evaluations answered the 1st and the 3rd
questions positively, and the 2nd question negatively. All of our
results are presented in Table 1. In this section, we elaborate on
the results and explain the findings.

1) Coaches zone labels can be detected from IMU data in
tennis with high accuracy.

The 1a and 1b columns of Table 1 show that the testing
accuracy of the models learned from individual player data
and from the aggregated data are above or close to 85% other
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TABLE 1 | The testing results of tasks explained in the Section 4.1 using 5 train-test splits and 100 epochs.

ML 1a Individual 1b Aggregate 2a Generalization 3a 80% 3a Accuracy

task models model threshold

C1 P1 85.69% (1.14%) N/A 50.52% (1.38%) 19 vs. 14 88.31% (0.73%)

C1 P2 78.49% (1.20%) N/A 51.81% (0.57%) N/A vs. 24 85.64% (1.59%)

C2 P3 87.22% (1.59%) N/A 49.74% (1.90%) 23 vs. 5 88.44% (0.79%)

C2 P4 85.79% (1.28%) N/A 52.00% (1.66%) 17 vs. 4 88.64% (1.79%)

All/Avg. 84.30% (2.63%) 83.24% (0.55%) 51.02% (2.93%) N/A 87.75% (2.62%)

“C” represents the coaches and “P” represents the players. The last row provides the average of the average accuracies of individual models for tasks 1a, 2a, and 3a. The 3a Threshold

column shows the training epoch when the average accuracy is consistently better than 85% (random start vs. transferred). The values in parenthesis show the standard deviations.

than the second player of the first coach. Previous studies
in HAR present accuracies between 80 and 90% to yield
in successful detection (Connaghan et al., 2011). Given the
challenging nature of detecting psychological states, these results
show that our approach can be utilized to detect the zone state
of a player. We conclude that the answer to the first question
is positive.

2) The models cannot be generalized between players.
The 2a column of Table 1 shows that the testing accuracy of

the learned models are the same as random guess. This suggests
that, at least with our data, the learned models can not generalize
to a previously unseen player and individual training is needed
for our approach to work. As such, we conclude that the answer
to the second question is negative. This result may be due to the
highly personalized nature of the zone and psychological states as
discussed in Section 6.1.

3) Learning can be sped up by utilizing a previously
learned model.

The 3a Threshold column of Table 1 shows that the models
converge faster if we retrain a previous model as compared
to training from random initialization. Furthermore, the re-
trained models obtained better performance with the same
number of epochs, with all models surpassing 85%. This
suggests that previously collected data has some use even if
the models are not generalizable between players. This also
suggests that there could be a weak shared representation
among the players. We conclude the answer to the third
question is positive. This positive answer has implications
on how a model should learn from data. The results
suggest that the more data is collected and more models
are learned, the faster the learning will be. Another point is
that the existing models may decrease the amount of data
needed to learn.

6. DISCUSSION

Our goal is to track the zone by utilizing data from off-the-shelf
wearable technologies. The results suggest that our approach
could be utilized to predict the zone of a tennis player with
above 85% accuracy. In this section, we discuss the feasibility
of our approach through design implications of the results,
contextualize it in a real life scenario to illustrate the potential,
present the limitations of the current study and point out future
research directions.

6.1. Personalized Psychological States
We can trainmachine learningmodels to detect what coaches call
’the zone’ for individual players with high accuracy. Additionally,
we can train a single model for multiple players. Yet, thesemodels
do not generalize to new players. Thus, players must be observed
and labeled before predicting psychological state. This may not
be a shortcoming of our approach, but simply the nature of
psychological states (Young and Pain, 1999). Previous research
discusses the zone as a highly personal state. Athletes have their
own individual experience in the zone and some aspects of this
experience may not be observed in others. According to coaches,
unique player behaviors provide cues about their state (Havlucu
et al., 2018). They need to know the player well to perceive these
states.We could argue that user’s model cannot be used to predict
another user due to the highly personal nature of ’the zone’.
Nonetheless, our results suggest that previously learned models
can partially be used. The personal nature of these states is an
open area for future research.

6.2. Labeling “The Zone”
Each coachs labeling of the zone was different. Although the
data trained in the model was binary (In the Zoneİ and Out
of the Zone), the number of instances were significantly higher
in the first experiment (47 vs. 9). We emphasized that the
coaches should be experts and need to know the players well to
properly assess the zone (Havlucu et al., 2018). This means each
player should be labeled only by their own coach. These coaches
could label the zone differently. Thus, the labels they produce is
subjective. This challenges the reproducibility of the labels and
generalizability of the models. On the other hand, it proposes
a system that produces personalized models for each user and
illustrates the possibility of predicting the zone of individual
players. Therefore, we believe subjectivity of the labels is not a
major issue for this work. In fact, subjectivity could be a strength
of the approach, as the players might need a subjective assessment
of their psychological states, which is not provided by current
wearable devices (Havlucu et al., 2018). Additionally, the first
game was more competitive, which may have resulted in more
switches between the psychological states of the players and more
coach labels. However, more labels do not necessarily mean more
robust measurement. We do not yet know the optimal amount or
time (i.e., after, during or before points) of the labels to reliably
measure these states. In any case, we need to investigate the
quantity and temporal dimensions by recruiting more coaches
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FIGURE 3 | Contextualization of the approach: PsychWear’s usage scenario and workflow.

and comparing their labels with the trained models. We believe
this will allow a more coherent and reliable way of measuring
psychological states and possibly present a guideline on how to
effectively label these instances, which could be addressed by
future studies.

6.3. Contextualization of the Approach
Based on our findings, we envision that our approach can
translate into a future wearable device application, PsychWear.
Note that PsychWear does not aim to replace the coaches, but
aims to supplement them. Figure 3 illustrates how PsychWear
works. Tennis clubs buy affordable wearable devices and
PsychWear for a small fee. Then the coaches provide labels for
each player in training sessions. These sessions are required
for each new player, because PsychWear can predict the zone
specifically for each player (Section 6.1 and 2a column of
Table 1). However, PsychWear can work with only one training
session per player with high accuracy (1a and 1b columns of
Table 1). During training, the players wear the devices and
run PsychWear. They play a tennis game competing against
other players, while PsychWear extracts the IMU data from the
devices. Meanwhile, the coaches provide zone labels for each
player (Section 6.2) using the master PsychWear application.
PsychWear sends these data to the cloud, where the learning
occurs, and then downloads the resulting model on the devices.
This lets PsychWear increase its learning speed for new players
(3a column of Table 1). Additionally, PsychWear can improve
itself over every game. Players can choose to provide their own
labels. This mode asks the players if they are in the zone upon
prediction. The players provide a yes/no answer, which iterates
PsychWears current data. Although this feature is not tested
since the experiment is not repeated with the same participants,
activity recognition literatur exhibits that improving the data
set increases prediction accuracy (Wang et al., 2019). Moreover,
PsychWear can be used in other physical activities in which the
mental states of the performer has a significant effect on the
performance outcome, and that have experts who can perceive
the psychological states. Dancing, where the performance reflects
the mental state, or yoga, where the mental processes are
integrated to the physical activity are some examples. Exertion

games, digital games that require physical effort, can also benefit
from this tool.

6.4. Limitations
Although our results are promising to track the zone in tennis,
the experiments were conducted with only two coaches and
four players and were not repeated with the same players.
The demanding nature of this experiment and its target group
hindered rapid and repetitive measurement. We recognize our
relatively small number of participants do not produce a
generalizable and validated large-scale user study even with
experts. Nonetheless, our aim in this study is to explore the novel
concept of detecting psychological states through off-the shelf-
wearable devices and machine learning, rather than validating
the results. There are examples recently published in ACM
conferences with similar number of participants. Khan et al.
(2017) explored the feasibility of a novel and inexpensive activity
recognition system in cricket with only 6 participants, who
were mostly amateur players. Hölzemann and Van Laerhoven
(2018) included only 3 participants for recognizing basketball
activities with IMUs. We argue that our study contributes in
exploring the feasibility of detecting psychological states with
wearable technology. Note that, we have around 193,000 IMU
measurements which by itself constitutes a large data set even
with few participants. We plan to conduct more experiments
and increase the participant pool. Moreover, we were not able to
longitudinally evaluate the model. We need to know how well
the model responds to previously trained players on different
occasions. This will inform how many labeling instances are
needed before accurately predicting the zone. Toward this end,
we intend to repeat the experiments with the same players.

Additionally, we should mention limitations regarding our
data collection. In each game, one coach was tasked to observe
two players simultaneously, which may have challenged their
concentration. Although, they are elite coaches, this may have
resulted in data loss for observing both players. Moreover, the
players were asked to wear the watches on their dominant wrists
to collect more precise data on their movement with the racket.
However, they were not used to wearing watches, thus their
movement and the data collected might be hindered.
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7. CONCLUSION

In this paper, we showed that wearable devices could help to
detect psychological states. We introduced a novel approach that
is utilized to predict ’the zone’ of a tennis player with above 85%
accuracy, by using Inertial Measuring Unit (IMU) data and elite
coaches’ labels on player performances. Primarily, we believe our
exploration casts light upon how the future of wearable sports
technology can detect psychological states of users. In broader
terms, we argue this work presents novel directions for future
wearable technology in HCI, and informs future studies aiming
deeper understanding of the concept. However, the results should
be treated within the discussed limitations, especially concerning
the relatively small sample size. The nature of this work was
to test the feasibility of the introduced approach. With this
regard, we presented its limitations and pointed out design
implications, rather than validating the results of the presented
study. To this end, we contextualized this technical approach
to a real life scenario that illustrates its potential. We believe
that our contribution has thus become accessible for readers

of non-technical backgrounds, namely interaction design and
psychology researchers.
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