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Introduction

For athletes, chronic energy deficiency termed low energy availability (EA) is a

significant issue in both female and male athletes (1, 2). EA is defined as the amount

of dietary energy remaining for other body functions after the energy cost of exercise

is covered and normalized to fat-free mass (FFM) (or lean body mass) (3). The

conventional EA equation is as follows:

EA(kcal/kg FFM/day) = [EI(kcal/day)− EEE(kcal/day)]/FFM (kg)

EI= energy intake; EEE= exercise energy expenditure.

An EA of <30 kcal/kg FFM/day is typically defined as clinically low EA (4).

Since the introduction of EA in 2007 (5), numerous researchers have assessed EA

in athletes with equivocal results, due in part to no clear methodological guidelines

for calculating EA, including techniques used to measure each component of the EA

equation (6, 7). For example, female athletes with similar EI had different menstrual

conditions (eumenorrheic or amenorrheic) (8, 9), while in males, EI is similar between

cross-country athletes and sedentary controls (10). Conversely, the mean EEE in female

and male athletes at risk for low EA was significantly higher than moderate or no-

risk athletes (11, 12), suggesting that in athletes, high EEE affects EA values. Athletes

participating in high levels of exercise do not appear to be eating adequately to cover

EEE. This inconsistency may be attributed to the difficulty in accurately measuring EI

and EEE. The assessment difficulties of EI are well documented (6), but the components

to be included in EEE are less frequently examined. To date, only one study has attempted

to calculate EA based on different methods for estimating EEE (8). Therefore, the

goal of this opinion piece is to outline the rationale for including non-exercise activity

thermogenesis (NEAT) as part of EEE in the EA equation to improve estimates of EA.
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Calculation of EEE in free-living
athletes

Assessing of EEE in the field is challenging and typically only

includes exercise expended in sport training. To demonstrate

the difficulty in determining EEE, Guebels et al. (8) measured

EA in female college athletes, with or without menstrual

dysfunction, using different methods for quantifying EEE. They

measured total energy expenditure (TEE) using 7-day activity

logs, accelerometers, and running energy expenditure on the

treadmill to assess more accurately “planned EEE” and then EEE

calculated using four different methods. Method 1 comprised

of all planned exercise that included exercise training and all

purposeful physical activity (PA) regardless of intensity but did

not include PA that resulted from social games, hobbies, leisure

pastimes, or transport-related activity (<30 consecutive min).

Method 2 included all planned exercise plus bicycle commuting

and all walking. This method also added transport-related

activities as planned PA. For consistency, bicycle commuting was

entered as general/leisure bicycling of 4.0 metabolic equivalent

(METs) and all walking was entered as moderate-intensity

walking (3.3 METs). No other activities were identified as being

equal to 4.0 or 3.3 METs; walking (lasting for ≥30 consecutive

min or within an exercise workout) was included in Method 1.

Method 3 included all exercise at ≥4 METs. This method

quantified EEE more objectively using a 4.0 MET cut-off, which

incorporates the bicycle commutes but excluded walking of≥3.3

METs. Method 4 included all exercises of>4METs and included

all the activities fromMethod 3, except for the bicycle commutes

(4.0 METs). As expected, the more activities were included in

EEE, the lower the EA value. This means that EA values varied

widely depending on how EEE was qualified.

Alternative method for calculating
EEE in free-living athletes

TEE comprises four components: resting metabolic rate

(RMR), diet-induced thermogenesis (DIT), NEAT, and EEE

(13). Activity-induced energy expenditure (AEE) refers to the

energy obtained by subtracting DIT and RMR from TEE (14),

that is, the sum of planned exercise or sport exercise training and

NEAT. Athletes often perform spontaneous exercises such as

swimming and running, in addition to their scheduled training.

Almost all previous EA studies have included only the energy

expenditure of planned training as EEE and do not include

PA performed in their daily lives. In addition, some athletes

may spend more than an hour commuting to school/work by

bicycle over the intensity of 4.0 METs. For endurance runners,

the mean AEE was 1,688 kcal/day (47% of TEE) in males (15),

and 1,585 kcal/day (52% of TEE) in females (16), accounting for

approximately half of the TEE. Since energy used to support one

process cannot be used for others (17), accurate measurement of

EA depends on how accurately and realistically EEE is assessed.

A method that includes NEAT and planned exercise in EEE

is more suitable for free-living athletes than the conventional

method. Reassessing how EEE is calculated will allow for more

accurate predictions of EA and the ability to detect energy-

deficient athletes earlier. Therefore, we propose that the EA

calculation in free-living athletes should be as follows:

Improved EA (kcal/kg FFM/day) = [EI (kcal/day) – AEE

(kcal/day)]/FFM (kg), where AEE includes programmed EEE

and NEAT.

Alternative methods for detecting
low EA without measurement of EI
or EEE

Early detection of athletes at risk of energy deficiency is

essential, regardless of gender, age, or sports events. Owing to

difficulties and errors in measuring EI, EEE and FFM, which are

the components of EA, other potential surrogate markers for

low EA have been investigated (7). The RMR ratio, measured

RMR divided by predicted RMR, is an acceptable indicator of

low EA regardless of race and sex (18–22). The “field method”

would allow for identification of athletes at risk for low EA

without assessing EI or EEE. To calculate this ratio, it is

necessary to both measure and estimate the RMR. Thompson

and Manore (23) showed that FFM should be used to calculate

RMR estimates for athletes and that the Cunningham equation

was the most suitable for RMR estimation in male and female

athletes. The Cunningham equation is also widely used to

estimate the RMR in White individuals (19, 24). The tissues and

organs that are components of FFM are not energetically equal

and have specific metabolic rates. Therefore, the dual-energy

x-ray absorptiometry (DXA) equation, which is obtained by

measuring body composition with high accuracy usingDXA and

multiplying it by the value of the RMR of each tissue, has been

utilized (20, 24). Race was found to be a significant predictor of

RMR after adjusting for age, sex, body mass index, fat mass, and

FFM, and it is appropriate to use an RMR equation that matches

the population’s characteristics (22). In addition, there is a cut-

off value suitable for each RMR estimation method to determine

the RMR ratio (25).

In response to periods of low EA, the hypothalamic-

pituitary-thyroid axis adapts to reduce energy expenditure

(26). Athletes with menstrual disorders have demonstrated

consistently decreased triiodothyronine (T3) levels (9, 27),

therefore, a low T3 level is one objective blood marker that

could be used to identify female athletes with low EA. In

exercising men, it has been reported that leptin and insulin

are reduced, independent of whether low EA had originally

occurred with or without exercise; however, low EA did not

significantly impact ghrelin, T3, testosterone, and insulin-like

growth factor-1 (IGF-1) levels (28). Another study indicated
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FIGURE 1

Components of TEE, components of conventional EA equation,

and components of improved EA equation. TEE, total energy

expenditure; EA, energy availability; RMR, resting metabolic rate;

DIT, diet-induced thermogenesis; NEAT, non-exercise activity

thermogenesis; EEE, exercise energy expenditure; AEE,

activity-induced energy expenditure. Conventional EA (kcal/kg

FFM/day) = [EI (kcal/day) – EEE (kcal/day)] / FFM (kg). Improved

EA (kcal/kg FFM/day) = [EI (kcal/day) – AEE (kcal/day)] / FFM (kg).

a significant positive association between IGF-1 and the RMR

ratio in highly-trained male soccer players (29). Further research

regarding male athletes’ endocrine adaptive processes to exercise

training and response to reduced EA is necessary.

Discussion

Better method for EEE

For athletes, EA is the residual energy available to support

physiological functions after covering the costs of physical

activity. However, the EA equation and low cut-off value was

derived in a metabolic laboratory-based study based on the

impairment of hormones related to the female reproductive

cycle in eumenorrheic, weight stable, and sedentary women

(4, 6). This EA concept only accounts for EEE of planned

exercise in the laboratory setting and NEAT was low. NEAT

varies with environmental factors, activity status, physiological

factors, and occupation, and can vary up to 2,000 kcal/day

in individuals (30), even with similar body sizes (31). While

the lack of consideration of NEAT in the calculation of EA

outside the laboratory provides simplicity of EA calculation,

it poses a potential “noise” factor for the comparison of EA

between studies or for using universal EA threshold values (13).

This may skew the true EA for physiological functionality in

active populations (32). Therefore, we suggest an improved

EA calculation that includes NEAT (Figure 1). NEAT should

include the energy expenditure outside of planned sport training

such as voluntary exercise training, strength training, cycling

exercise using a bicycle ergometer, swimming, and biking to

school/work. Methods available in the field to measure NEAT

are accelerometer (29), multisensor armband (32), or calculation

from activity logs using METs (8). If the doubly labeled water

(DLW) technique is available, there is a laboratory method of

calculating NEAT by subtracting RMR, DIT (0.1TEE), and EEE

from TEE (33).

Lee et al. (29) reported that the EA of collegiate soccer

players calculated by the conventional equation was 31.9 ±

9.8 kcal/kg FFM/day. A recalculation of EA for the same

participants using the AEE approach resulted in an EA of 19.7

± 8.5 kcal/kg FFM/day. The number of participants with LEA

(<30 kcal) increased from 5 to 10 using AEE instead of EEE with

the improved equation. All five participants with newly classified

LEA had lower testosterone levels, and higher bone resorption

markers than the reference value. Thus, these participants would

be considered at risk for future health issues caused by LEA,

making early detection of at-risk athletes more realistic by

improved EA equation.

Better methods for EI

As mentioned earlier, EI is a critical component of EA

and is known to be underestimated (6). DLW is the gold

standard for measuring TEE under free-living conditions, and

the TEE measured by DLW can be considered an EI if body

weight is stable (34). To eliminate the underestimation of

EI by participants in EA studies, research assessing EI using

DLW could be used in the EA calculation. It is also necessary

to measure body composition in relation to FFM with high

accuracy using DXA. So far, only one study (35) has combined

DLW and DXA to determine EA (kcal/day) of athletes. In this

study, the EA at the beginning of the season was ∼39.1 kcal/kg

FFM/day in male athletes and 42.9 kcal/kg FFM/day in female

athletes. These values are higher than those reported in previous

studies of both sexes using EI values obtained from dietary

records (36, 37). The Food Frequency Questionnaire (FFQ)

is often used to calculate EI in EA studies because it is less

burdensome and more cost-effective. However, the FFQ tends

to overestimate EI in low-energy consumers and underestimate

EI in large eaters (38); thus, researchers and dietitians should be

careful in EA evaluation using FFQ.

Taken together, it is crucial to build evidence for the

physiological effects of low EA by facilitating studies that can

more accurately measure the components of EA, including using

the DLW surrogate for EI, adding NEAT in EEE, and accurately

measuring FFM. Better laboratory-based measurements will

help researchers develop a more accurate, cheaper, and simpler

field method for calculating EA. A better field method for EA

will standardize and improve the identification of free-living

athletes at risk for energy deficiency and associated health issues

that occur if chronic energy deficiency persists. Furthermore,

knowing an athlete’s EA can help in developing diet plans that

more accurately help an athlete meet their needs.
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