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Optimizing repair of tendon
ruptures and chronic
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Tendons are dense connective tissues of the musculoskeletal system that link
bones with muscles to foster mobility. They have complex structures and exist
in varying biomechanical, metabolic and biological environments. In addition,
tendon composition and mechanical properties can change over the lifespan
as an individual ages. Many tendons function in high stress conditions with a
low vascular and neuronal supply, conditions often leading to development
of chronic tendinopathies, and in some cases, overt rupture of the tissues.
Given their essential nature for human mobility and navigation through the
environment, the effective repair and regeneration of different tendons after
injury or damage is critical for quality of life, and for elite athletes, the return
to sport participation at a high level. However, for mainly unknown reasons,
the outcomes following injury are not always successful and lead to
functional compromise and risk for re-injury. Thus, there is a need to identify
those patients who are at risk for developing tendon problems, as well those
at risk for poor outcomes after injury and to design interventions to improve
outcomes after injury or rupture to specific tendons. This review will discuss
recent advances in the identification of biomarkers prognostic for successful
and less successful outcomes after tendon injury, and the mechanistic
implications of such biomarkers, as well as the potential for specific biologic
interventions to enhance outcomes to improve both quality of life and a
return to participation in sports. In addition, the implication of these
biomarkers for clinical trial design is discussed, as is the issue of whether
such biomarkers for successful healing of one tendon can be extended to all
tendons or are valid only for tendons in specific biomechanical and
biological environments. As maintaining an active lifestyle is critical for
health, the successful implementation of these advances will benefit the
large number of individuals at risk.
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Introduction

Purpose of this review

The purpose of this review is to discuss recent advances in

the use of biologics and cell therapies in the treatment of injured

tendons and developments in the field of biomarkers regarding

the healing of injured tendons with good vs. poor outcomes.

Subsequently, a discussion regarding the integration of these

advances to improve clinical trial design is undertaken.

Finally, several issues regarding the generality of extending

findings from biomarkers developed regarding one tendon to

all tendons is addressed to help focus studies going forward.
Background

Tendons are complex connective tissues that connect

muscles to bones to allow for mobility of joints. They consist

of a myotendinous junction (MTJ), a mid-substance, and a

specialized enthesis which links the tendon to bone. Thus,

tendons exhibit location-specific features (1).

The tissues also consist of the tendon proper plus a distinct

surface layer of cells and extracellular matrix (ECM) called the

epitenon or paratenon (2). Tendons exist and function in

diverse biomechanical environments and as such exhibit both

different characteristics as well as common features. Tendons

are also dynamic in that they can change their characteristics

or properties during aging, such as their stiffness (3–5), and

thus their risk for injury and potential loss of function is not

uniform across the lifespan. Thus, as the stiffness of tendons

such as the Achilles tendon increase with age, the incidence of

Achilles tendon ruptures increases, often in males >40 years

of age. Thus, the combination of biomechanical, metabolic

and biologic environments, and aging could lead to age-

dependent risk for the rupture of specific tendons.

Tendons consist mainly of collagen, particularly collagen

type 1, plus a number of other minor collagen types and

proteoglycans (2). At birth, tendons are very cellular, but

gradually become less cellular as matrix is deposited during

use and during growth and maturation (6–9), reaching

relative homeostasis at skeletal maturity. The intrinsic cells

(i.e., tenocytes) of the tendon proper synthesize the

extracellular matrix (ECM) which is then laid down in an

organized manner using the template established during

development, but the surface layers of tendons also contain

some vascularity (10), innervation (11–13), and tissue

localized cells of the immune system such as mast cells (14).

Much of the innervation and microvascularity is mainly

associated with the paratenon/epitenon structures surrounding

the tendon proper and there is minimal involvement or

inclusion of these elements in the tendon proper. The cells of
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the paratenon/epitennon and the tendon proper appear to be

different in some respects (collagen types expressed by the

fibroblasts, endothelial cells, neural elements, mast cells), and

thus may have different roles in responses after injury during

the deposition of early scar tissue (15). Tendons also appear

to be affected by sex hormones which likely contribute to sex

differences in risk for tendon dysfunction (16, 17) in some

tendons but not all (18, 19). Sex also appears to play a role in

outcomes after injury to the Achilles tendon in both rats (20)

and humans (21). In the rat model, female, male and

ovariectomized (OVX) females were assessed after injury and

the females differed biomechanically from the males and the

OVX animals also differed mechanically and biologically from

the females. In the human populations, female surgical

patients had more symptoms than male surgical patients

following surgery and had lower scores in the heel-rise test at

6- and 12-months post-surgery. However, the majority of

patients were male (152 M vs. 30 F) and the age range

spanned the onset of menopause. As such, regulation of

tendon metabolism in females may also be altered after

menopause (22) and affect injury risk, outcomes, and

responsiveness to interventions.

Thus, tendons are heterogeneous and appear to develop,

mature and adapt to perform functions in unique biological

and biomechanical environments. Thus, the tenocytes in the

tendon proper respond to the biomechanical and biological

environment to allow the tissue to function optimally. They

are also dynamic in that they can be influenced by exercise,

and their properties and composition can change during the

aging process. In addition, they exhibit sex-dependent

characteristics (20–22). Taken together, even though they are

discussed as a class of tissues, they are very heterogenous, a

fact that can complicate the development of effective

treatment modalities to enhance repair and regeneration after

injury. Furthermore, the low cell density and paucity of

vascularity and innervation likely also contribute to an

ineffective and prolonged repair response, particularly during

aging. However, humans are very heterogeneous, and some

patients may have the ability to initiate better repair responses

following a tendon injury than others [(23), Chen et al.,

unpublished].

To define a good vs. a poor outcome in Achilles tendon

healing, the literature usually uses the Achilles Tendon Total

Rupture Score (ATRS) and the Foot and Ankle Outcome

Score (FAOS), both validated questionnaires (23), and often a

functional outcome test such as the heel-rise test (HRT) (23).

The questionnaires have multiple subscales for scoring, and a

lower score indicates a poorer outcome. For example, the

ATRS consists of 10 items and a maximal score of 100,

indicating full function and no pain. The questionnaires can

be administered at any times post-surgery but in the report

by Chen et al. (23), the data were obtained at 1-year post-

surgery. Good outcomes based on the questionnaires is a
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score of >80 for each questionnaire, and a poor outcome is a score

of <79. The HRT outcomes are related to repetitions of heel raises

and limb symmetry (i.e., differences in the functional test

outcomes between the injured and contralateral limb). For the

paper by Chen et al. (23), the patients with good outcomes had a

mean score of 93 and those with a poor outcome had a mean

score of 64 for the ATRS so there was a wide separation between

the scores for the good and poor outcomes (23).
Biologics and tendon repair

Introduction

The need for tendon repair or regeneration can occur after

overt rupture of the tissue, partial tearing of the tissue, or due to

development of a chronic condition termed tendinopathy, with

the latter usually presenting as pain (24). The term tendinopathy

covers what used to be termed tendinitis or tendinosis as it more

accurately implies a loss of tendon integrity and does not infer

any specific mechanisms (inflammation in tendinitis and

degeneration in tendinosis). The involvement of inflammatory

cells, as might be expected from the term tendinitis, in

tendinopathies is quite variable based on the literature as

reviewed recently by Jomaa et al. (25). However, conclusions

regarding the role of inflammation and inflammatory cells may

depend in part on when in the process one investigates, and

what type of inflammatory cells one can detect (14).

Biologics can refer to a variety of intervention modalities

that range from growth factors, platelet-rich plasma (PRP),

mesenchymal stem/stromal cells from different tissue sources,

tissue-engineered constructs, to gene therapy approaches.

While several of these approaches have obtained some

success, albeit often limited, in the treatment of some tendon

disorders and often in preclinical model systems, many of the

interventions are still experimental in nature and not

approved by regulatory bodies. This lack of general success

can likely be attributed in part, to having unrealistic

expectations and not optimizing the conditions under which

they are being applied (26, 27). Furthermore, the

heterogeneous types of human tendon injuries, as well as any

underlying tendinopathy render much more complex

pathologies than those created in preclinical model systems.
Biologics and tendinopathies

Tendinopathies are usually noticed as the onset of pain

either when engaging in an activity, or even at rest (28).

Thus, the development of pain is the usual first indication

that there has been a change to the integrity of the tissue at

some location within the complexity of the tissue (insertion of

the tendon into bone/enthesis, mid-substance, myotendinous
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junction) and surrounding tissues (paratenon, epitenon). As

the tendon proper is poorly innervated (11–13) but some of

the surrounding tissues are innervated, the pain appears to

arise secondarily to the loss of tendon integrity.

As some spring-like tendons such as the Achilles tendon, vs.

positional tendons, function normally in a high-stress

environments (29), loss of tendon integrity may arise from

“overuse” (30–32). Over-use can result from the continued

use of the tissue at the high end of its stress-strain curve

without adequate time to repair any microdamage that can

occur, or it may arise due to age-related changes that

influence the properties of the tendon (33). Age dependent

changes include alterations to the integrity of the collagen

organization in the tendons, alterations in abilities to repair,

and biomechanical properties (33). As many elderly

individuals try to maintain their activity, the age-related

changes may contribute to the increased risk for

tendinopathies. Tendinopathies can also be accompanied by

altered expression of structural matrix proteins (34) or growth

factors (35, 36). Additional risk for development of

tendinopathy may also have a genetic basis but this is still an

emerging field (37, 38). In some sports such as volleyball

where there is considerable jumping and hitting at angles that

put abnormal stresses on both lower and upper extremity

tendons, one could experience both types of risk, genetics and

overuse. As tendons exist in a variety of biomechanical

environments with corresponding variation in structural and

functional features, the induction of a tendinopathy in a

specific tissue (i.e Achilles tendon, patellar tendon,

supraspinatus tendon) may exhibit unique induction features

and unique response patterns that are tendon-specific. As

discussed above, tendons are poorly innervated and

vascularized, conditions which specifically under repetitive

stress may lead to an inadequate supply of essential factors.

Thus, scarce provision of essential healing factors together

with endothelial dysfunction may propagate the development

of tendinopathy [reviewed in (39)].

The usual course of events following presentation with a

tendinopathy is rest and possibly bracing, physiotherapy

protocols (40–43), anti-inflammatories (including glucocorticoid

injections) (44, 45) (but this is controversial), and finally

surgeries to debride the areas around the tendon of abnormal

tissue accumulation (46). For some tendons such as the

supraspinatus tendon of the shoulder, the tendinopathy may be

accompanied by a partial tear, often at the enthesis (47, 48)

which may require surgical repair. Unfortunately, while many

of these approaches to resolve tendinopathies may offer short

term relief, due to the relatively modest repair capabilities of

tendons to heal, the outcomes are not fully successful and

patients are left with some compromise and for elite athletes,

they cannot return to play at the same high level. For some

patients, the outcomes after surgery can also be affected by

extrinsic factors such as metabolic factors (49) and smoking
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(50), an extrinsic variable that can also affect the

microvasculature. Interestingly, genomics may also play a role

in the treatment and management of tendinopathies such as

Achilles tendinopathy (37), but again this is an emerging field.

One cellular intervention that has been used extensively in the

treatment of tendinopathies associated with a variety of tendon

is Platelet-rich Plasma (PRP) (51–53). The PRP is usually

generated from autologous blood, but it can vary in its

preparation leading to variations in perceived effectiveness

(reviewed recently in (54); discussed in (55)). As platelets

contain many anabolic molecules such as growth factors, their

presumed effectiveness in some patients is likely due to

enhancing the anabolic environment after injection to the site

of interest. It may also exert an anti-inflammatory effect and

influence pain [reviewed in (54)]. Some of the variation in PRP

preparations can also come from the use of autologous blood

as the number and content of platelets can vary with age and

sex (56–58). For premenopausal females, PRP “quality” could

also be potentially influenced by phase of the menstrual cycle.

Based on the variation in effectiveness, some reports have

concluded PRP should not be used for some tendinopathies

(59), while others report that some patients respond to PRP

and others do not (60). Why some patients respond to the

PRP, and others do not, is not well defined, but based on the

literature it could be due to the PRP preparations, the stage of

the injury, the genetics of the patient or other unknown factors!

Another cell therapy that has been used in the treatment of

tendinopathies is the use of mesenchymal stem/stromal cells

(MSC) from a variety of tissue sources including bone

marrow, adipose tissue, and other sources including both

allogeneic as well as autologous sources. Such studies have

been recently reviewed extensively (61–67). As reviewed by

Di Matteo et al. (61) and Mirghaderi et al. (65), often such

MSC preparations are used in conjunction with PRP.

However, similar to studies with PRP alone, outcomes of

studies with MSC or MSC + PRP were often quite variable with

some showing improved outcomes while others exhibited no

significant improvement in outcomes. This variability in

outcomes could be the result of variation in the quality of the

cells used, the state of the injury, or the environment (i.e.,

inflammatory) that the cells are placed (26, 27). Thus, placing

the MSC and/or PRP into a catabolic environment could

compromise their potential to enhance repair (27).

While the use of MSC has yielded variable results, an

emerging field of study regarding tendinopathy treatment has

advocated using exosomes or extracellular vesicles (EV)

derived from MSC and related cells. These EV or exosomes

are shed or released from cells and can contain a variety of

growth regulating molecules including proteins and miRNAs

(68–71). The contents of such EV or exosome can be

influenced by the culture conditions of the cells of origin (72,

73). EV would have to be taken up by endogenous cells and

exert an anabolic effect to foster repair of an injured tendon,
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or perhaps modify cells contributing to a catabolic

environment such as macrophages (69).

While all of the cellular therapies discussed above indicate

that these approaches may have merit, there is still much that

is needed to be done to better understand the variability in

outcomes, and certainly more clinical trials are needed as has

been suggested by several authors (61, 65, 74) to enhance the

quality of evidence for their use.
Biologics and repair of tendon ruptures

In addition to chronic conditions such as tendinopathies,

tendons can undergo traumatic ruptures. Partial or complete

tears of tendons such as the Achilles, patellar and rotator cuff

tendons can result from participation in sports but are rare.

Some tendons such as the Achilles tendon can also undergo

rupture following treatment with some antibiotics (75, 76) or

statins (77–79) but this again is a rare event and some aspects

have been called into question (80–82). Partial tears of the

rotator cuff tendon often occur very near the enthesis of the

tendon-bone interface, a site very difficult to repair and have

a high rate of re-injury (83–85), likely as the enthesis is a

unique structure (86, 87). As tendons can have three sites for

incurring a tear (myotendinous junction, mid-substance, or

the insertion into bone), this further complicates the repair

process. Healing of other tendons such as the flexor tendons

of the hand is further complicated by the formation of

adhesions between the healing tendon and its sheath which

compromises function (88). Thus, improvements to healing of

flexor tendon ruptures requires better repair tissue formation

and reduced adhesion formation (89–91).

Endogenous repair following either conservative care (no

surgery) or following surgery leads to scar formation with the

risk for functional compromise due to the inferior

biochemical and biomechanical properties of the scar tissue

(84, 85, 92). However, recently Chen et al. (23, 93) have

reported that some patients who have had their Achilles

tendon ruptures surgically repaired had very good functional

outcomes by 1-year post-surgery while others had less optimal

outcomes. Therefore, outcomes following tendon rupture can

be variable, possibly due to the quality of the product of the

healing process. The basis for a “good vs. poor” healing

outcome is not known, but could result from the age, sex,

genetics and epigenetics of the individual patient.

While such variation in endogenous outcomes exists, there

is a need to improve on the outcomes for many patients, and

thus many studies have turned to the evaluation of biological

interventions such as those discussed previously (i.e., PRP,

MSC, EV), as well as others such as the use of individual

growth factors (94–97), or even pulsed electromagnetic fields

(98). Much of this effort has been focused on preclinical

models thus far in an attempt to better understand the
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optimal parameters (99–103), but a number of clinical trials are

evaluating the potential of the use of biologics to enhance

healing outcomes. These studies include the use of PRP (104),

the potential of stem cells (105–108), and more recently, the

use of EV or exosomes (109–111).

Presently, research on the use of biologics in tendon rupture

is progressing but the outcomes thus far have not definitely

shown consistent advances to improve healing with enhanced

functional outcomes. In part, this may again reside with the

fact that there is variability in the effectiveness of endogenous

outcomes and therefore, a randomized control trial of a

biologic intervention is challenged to show efficacy with

regard to a specific intervention.
Biomarkers of tendon repair

Biomarkers and Achilles tendon healing

Following rupture of the human Achilles tendon, a number

of reports have indicated that after a common surgical repair,

endogenous repair without any interventions leads to better

outcomes in some patients compared to others (23, 93,

112–114). Thus, there is heterogeneity in functional outcomes

at 1-year following surgical repair. Such findings indicate that

this variation could be due to genetic or epigenetic

heterogeneity in the patient population as other factors such

as sex or body mass index do not play an obvious role in the

different outcomes (23, 93). A further implication of such

findings is that depending on the relative contributions of the

number of patients with the potential for good vs. poor

outcomes in a clinical trial, the effectiveness of the

intervention to be tested may be compromised due to such

innate variation in healing. Therefore, it would be

advantageous to know which patients are destined for a good

vs. poor outcome to be able to concentrate interventions on

those with risk for poor outcomes rather than a mix of

patients. Thus, having validated biomarkers early after injury

that are prognostic of outcome would be valuable for future

studies.

Biomarkers that correlate with outcomes following surgical

repair of Achilles tendon rupture in patients have been reported

(23, 93, 112–114) using tissue samples taken at the time of

surgery or via analysis of microdialysates obtained from both

the surgically repair tendon and the contralateral tendon at

2 weeks post-surgery (23). Depending on the analysis used to

identify the biomarker, different molecules have been

identified. Based on qPCR assessment of mRNA levels, FGF

was identified as a biomarker (93). Using metabolomic

approaches, pyruvate and lactate levels were determined to be

prognostic biomarkers of healing (113, 114). Subsequent

proteomic analysis using mass spectrometry and gene set

enrichment and meso scale discovery tools, complement
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factor D was also identified as a predictor of patient

outcomes (23). Presently, these studies are continuing using

diverse bioinformatic approaches with proteomic data to

identify additional prognostic biomarkers using tissue samples

taken at the time of surgery and to further characterize the

basis for the differences in outcomes between patient subsets.

These additional studies have identified elongation factor-2

and inter-alpha-trypsin inhibitor heavy chain-4 as also being

prognostic biomarkers (unpublished observations).

Thus, a cadre of prognostic biomarkers associated with good

healing outcomes in patients with a ruptured Achilles tendon

have been identified and taken together, are starting to

provide a framework to pursue a better understanding of the

molecular and cellular basis for good vs. poor outcomes after

surgery. However, it remains to be determined whether the

same or different biomarkers are also valid as prognostic of

healing outcomes after injury to other tendons such as the

patellar tendon or the rotator cuff tendon which exist in

different biological and biomechanical environments (26).

However, if the basis for a good outcome is associated with

genetics, then one might expect that some of the biomarkers

identified would be in common in different healing

environments, particularly those biomarkers related to

inflammatory processes. Interestingly, there is some gene

expression data available that is correlated with poor

outcomes after rotator cuff repair (115). While the number of

patients was not large in that study, the authors did find

using gene set analysis that those with higher expression of

matrix molecules had poorer outcomes post-surgery and that

those with higher levels of M1 macrophages did better than

those with lower levels. Thus, extracellular matrix gene

expression levels and cells associated with inflammation (i.e.,

marcrophage subsets) were associated with the different

outcomes. These findings are somewhat in agreement with the

general findings regarding Achilles tendon healing although

the analysis for Achilles tendon healing is more detailed

presently.

Additionally, just as there appear to be genetic markers for

good outcomes after rupture of tendons such as the Achilles and

rotator cuff tendons, genetic risk for tearing/rupturing such

tendons has also been reported (116–123). Thus, the

biomarkers that are proteins result from gene expression (to

variable levels dependent on regulation at the DNA level)

while genetic risk for injury is in the genome (DNA and

potentially epigenetically modified DNA) but how such

genomic risk is translated to risk at the tissue level is still

largely unknown. While some of these studies are based on

risk in twins (123), others have indicated that variations in

specific molecules such as MMP-3 (122), iNOS (119), or

extracellular matrix genes such as COL1A1 (117) pose risk.

Ultimately, there will be a need to integrate the risk factors

for injury with those for good and poor healing outcomes to

obtain a more complete picture of the landscape in individual
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patients. However, while rapid genetic testing for risk factors

can be performed on DNA from cells from any tissue (white

blood cells, skin, mouth epithelial cells), whether such risk

factors are modified in specific tissues such as the Achilles

tendon via epigenetic mechanisms can only be determined

using DNA from that tissue, a situation that is problematic

from a clinical perspective. Thus, integration of prognostic

biomarkers with injury risk in a specific tendon may require

evaluation using AI or ML approaches and large numbers of

patients.
Early biomarkers of good healing
outcomes are focused on inflammatory
processes

It should also be mentioned that an overt injury, such as the

rupture of the Achilles tendon is an inflammation-inducing

event, and that the surgery to repair such ruptures is another

inflammation-inducing event. While chronic inflammation

may be detrimental to effective healing, acute inflammation

may be viewed as a positive as it is required to remove

damaged tissues and initiate the first phase of healing. This

perspective is relevant to the current discussion in that several

of the biomarkers previously discussed that were identified as

being prognostic of a good outcome after surgery were

obtained using tissue taken from the ruptured tendon at the

time of surgery (93, 115) and thus early (2–4 days post-

rupture), or at 2 weeks post-surgery (23, 112–114). Thus, such

biomarkers were assessed early in the inflammatory/healing

phase, and during the later phase of the inflammatory phase

of healing, respectively. This means that prognosis of outcome

can be defined very early in the healing process and is likely

shaped by the quality and extent of the inflammatory process!

This conclusion is also supported by the studies of Blomgran

et al. (124) who reported that administration of the anti-

inflammatory steroid dexamethasone very early (<4 days post-

rupture) after Achilles tendon rupture in a rat model resulted

in poor outcomes while administration of the same drug later

(5–9 days post-rupture) during the late inflammatory/early

remodeling phase led to significantly enhanced/improved

outcomes. Thus, good vs. poor outcomes at 1-year in patients

may be defined by very early inflammation-related events

occurring shortly after the time of injury and in the early

phases of healing.
Immune cell involvement during early
biomarker expression

The immune system is involved in healing (125), and as

such specific cells of the inflammatory response could shape

the initial response leading to good vs. poor outcomes. Two
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critical cells may be macrophages (125) and mast cells (126).

Mast cells are present in tendons such as the patellar tendon

(14) and mast cell degranulation occurs during healing of the

healing of the rat Achilles tendon after rupture (127), as well

as the human tendon [unpublished observations]. Trends for

elevated levels of mast cell tryptase, a marker for mast cell

degranulation have been detected by proteomic approaches

two weeks post-surgery to repair human ATR [unpublished

observations]. Mast cell numbers are also reported to increase

during the healing of the rabbit flexor tendon after rupture

(128). Conversely, the use of mast cell stabilizers, or drugs

that prevent mast cell degranulation have been used to modify

healing of patellar tendons in mice (Sodium cromolyn) (129),

to inhibit abnormal fibrosis leading to joint contractures in

rabbits (ketotifen) (130, 131), and to inhibit excessive

contraction and fibrosis of skin wound healing in red Duroc

pigs (ketotifen) (132). The latter is a genetic model of

abnormal dermal wound healing, but it is not known whether

similar genetic variation in humans could relate to

inflammation-associated healing outcomes. However, such

preclinical studies have led to the hypothesis of a

myofibroblast-mast cell-neuropeptide axis that contributes to

abnormal fibrosis and wound healing (133), a hypothesis also

consistent with the findings of Alim et al. (127). In addition,

use of the leukotriene inhibitor montelukast (Singular; a drug

used to treat asthma) in a rat Achilles tendon injury model

very early after injury led to declines in tissue healing

parameters (134). As montelukast is a modulator of

inflammation, and also a modulator of the PPAR pathway,

this may additionally imply that the detrimental down

regulation of inflammation very early after injury involves the

anti-inflammatory effects of the PPAR pathway as well

[discussed in (135)]. Therefore, the use of a drug such as

ketotifen, a drug approved for use in humans for >30 years,

or montelukast and/or dexamethasone after the initial

inflammatory phase of healing could potentially improve

healing outcomes on their own or set the stage for improved

outcomes with the subsequent use of cell therapies after overt

tendon injuries requiring surgery. Thus, the identification of

early biomarkers of good outcomes after tendon injury has

focused on the inflammatory phase as being a critical early

step, and further analysis of why and how these biomarkers

relate to specific molecular pathways should be a fruitful

direction to focus research efforts going forward.
Implications of finding biomarkers
prognostic of healing outcomes on
study design and clinical trials

The “gold standard” for clinical trials is often touted to be

the “double blind, placebo-controlled trial” or the “double

blind, standard of care-controlled trial”. Even if the subject
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population is somewhat selected via inclusion and exclusion

criteria, human heterogeneity often complicates the ability to

form conclusions with a high level of evidence. As discussed

in previous sections of this review, this complication has often

inhibited the development of good evidence for the

effectiveness of biological therapies to improve outcomes after

development of tendon disorders. If indeed, genetic and

perhaps epigenetic factors are involved in good vs. poor

outcomes via endogenous healing, assessing additional

interventions to improve healing outcomes would potentially

be compromised. This assumes that the biological or cellular

interventions would not be able to further improve the

outcomes for those having good outcomes based on

endogenous healing. If that is in fact true, then one might

want to focus the trial of a biological intervention on the

population at risk of a poor outcome rather than a mixed

population.

A further implication of such biomarkers, and the

elucidation of how the molecules influence the healing

process, may also relate to whether one should use an

autologous or allogeneic biological interventions. Thus, the

autologous materials may be compromised by the genetic

influences leading to a poor outcome! Since the effectiveness

of an autologous biological intervention such as PRP or stem/

stromal cell preparations depends on both the quality of what

is administered as well as the environment into they are

placed, the use of such autologous reagents may compromise the

outcomes even if the local environment is controlled (26, 27).

Therefore, in such circumstances, the use of allogeneic

materials which do have some risk but are likely not very

immunogenic (136, 137), may be preferred. However,

extracellular vesicles from stem cells may be even better

choices as they have very low immunogenicity and also have

immunomodulatory potential (138) so may affect

inflammatory environments.

The finding of prognostic biomarkers for healing outcomes

for the Achilles tendon, and to a lesser extent the rotator cuff

tendon, also has implications for study design in other tendon

injury or other connective tissue injury circumstances even if

biomarkers are not available for that specific situation. That

is, given the heterogeneity observed to date for endogenous

healing outcomes, going forward it is likely that each patient

in a cohort should be assessed individually rather than

combined into groups comparing interventions such as

biologic and cell interventions that use autologous or

allogeneic reagents. The design of trials may in the future

become more precise based on rapid genetic testing of

patients for specific markers of outcomes early after injury or

as part of a routine health/disease-related DNA platform to

assess risk for injury which would aid both trial design to

assess risk and need, but this will likely not be achieved in the

near future, but it certainly could be a goal. However, such an

individual database may need to be updated at intervals as it
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would not capture the ever-changing epigenetic landscape

which could impact the phenotype of the individual patient.

In summary, the finding that some patients heal much

better after rupture of a tendon without any interventions

than other patients have implications at several levels and

some of these are listed:

1. Using validated biomarkers corelated with healing

outcomes, interventions to improve healing should focus

on populations of patients at risk for poor outcomes to

assess efficacy.

2. If such validated biomarkers are not available, large

databases of genetic test results may suffice until validated

biomarkers are available and can be integrated with

genetic databases.

3. When considering cellular therapies to improve healing in

those destined for a poor outcome, optimizing the in vivo

environment they will be placed in is required, as well as

assessment of the quality of autologous reagents. If quality

is compromised by age, co-morbidities or other factors,

then well characterized allogeneic materials, such as

extracellular vesicles from mesenchymal stem cells should

be considered.

Developing the use of biomarkers for
assessing healing outcomes of
tendons and ligaments going
forward

Applications in tendon healing

While the use of biomarkers to identify those patients who

will have a good outcome vs. a less good outcome following an

Achilles tendon rupture is very promising, the findings thus far

also provide the opportunity to explore their development in

other circumstances regarding healing of Achilles tendon

injuries, as well as other tendon injuries. As the use of cellular

therapies become more established, and hopefully assume

clinical validation and regulatory body approval, the

combined use of such modalities (139–142), the combination

of biomarker identification and optimized cellular therapies

should lead to significant impact on improved healing. Some

of these possibilities are discussed briefly below.

Healing of connective tissue injuries become less effective as

an individual ages (143). As individuals are living longer, this

means that tendon injuries in those >60 years of age may

start to heal with poorer outcomes. For females, this could

likely be further influenced by menopause which can affect a

large number of physiological systems [discussed in (144)].

Thus, for the female population it would be of interest to

ascertain whether the same biomarkers of healing outcome

were evident after tendon ruptures in those <40 and those

>60. If the biomarkers related to outcomes change
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significantly with aging in females, then one could ask questions

related to why and how, as well as potentially altering the use of

autologous vs. allogeneic cell therapies. Similar considerations

may be applied to young and old males.

The issue of re-rupture is also one of concern following

rupture of a tendon such as the Achilles tendon (145, 146), as

well as others (147). Re-rupture in younger patients with

Achilles ruptures (145) could be due in part to excessive use

of the repaired tendon and more return to play in athletics.

However, it would be of interest to assess whether the same

biomarkers as were determined by Chen et al. (23) were again

indicative of good vs. poor outcomes since the environment

would be somewhat different in the second rupture.

More patients have tendinopathy than experience rupture of

a tendon such as the Achilles tendon. Those that have Achilles

tendinopathy do have an elevated risk for subsequent tendon

rupture (128, 148). Other patients rupture their Achilles

tendon without evidence for chronic tendinopathy. Therefore,

it would be of interest to assess whether biomarkers for good

and poor outcomes were the same or different for those with

and without tendinopathy. Such information would also

potentially inform the effective use of PRP and/or stem/

stromal cell interventions.

Thus, the above future research, and likely others will add to

the use of appropriate biomarkers with outcomes for tendons,

and potentially, start to better define whether some of these

biomarkers are surrogates for the different outcomes, or

whether they are integral for specific pathways of healing.
Applications in ligament healing

While ligaments and tendons function in different

environments and are functionally different (tendons are the

interface between muscles and bone regarding movement and

ligaments are mainly stabilizing structures) they do share

some structural similarities and respond to injury similarly.

However, some ligaments such as the medial collateral

ligament (MCL) of the knee mainly functions in the toe

region of the stress-strain curve and thus even if it heals

“poorly” it can still provide function even if treated non-

surgically. In contrast, the ACL functions in a fairly high

stress environment in the knee and thus even a partial

rupture heals poorly and can compromise function as shown

in a sheep model (149). In contrast, a full tear of the ACL,

with rupture of one end from the femur can adhere back to

another structure but is non-functional (150), or ruptures and

cannot adhere back to the original site of attachment and

requires reconstruction with an autologous tendon, a

cadevaric bone-ACL-bone construct, or some other construct.

The reconstruction with an autologous tendon (i.e., a strip of

the patellar tendon, hamstring tendon, etc} requires drilling a

hole in the femur and the tibia to run the tendon graft
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through and then anchoring the graft into the bone. Attempts

to enhance the integration and healing of the tendon-bone

materials with cellular therapies has been attempted

(151–153) but the clinical results are still a “work in progress”

(151, 154). Over time, some of these ACL reconstructions

stretch out/creep (become more scar-like) and become less

functional. Whether cellular therapies could prevent such

changes from happening could not be found in the literature.

In addition, whether biomarkers for this process of becoming

a scar could be identified also could not be found in the

literature. Therefore, there is still considerable research that is

required to address the need to improve healing in ligaments,

the Achilles tendon, supraspinatus tendon, and others.
Methodologic advances

While the proteomic or metabolomic approaches have

provided tools to identify biomarkers for good vs. poor

outcomes after Achilles tendon rupture, and thus identifying

those patients destined for poor outcomes and as such

candidates for specific interventions such as cellular therapies

or combined cellular/drug therapies, these methodologic

approaches are complex and take time to do the analysis.

While some aspects of the time frame to obtain prognostic

results may be improved, the results thus far would indicate

that the “die is cast” very early after injury as to outcomes, so

appropriate interventions would have to be initiated quickly

after surgery. Perhaps with the identification of a panel of

biomarkers for good vs. poor outcomes could be generated to

provide very strong predicative value and these could then be

the focus of new methodology to rapidly assess them in a

complex mixture so as to assist the clinicians involved to then

apply the most appropriate interventions to the right patients.

Optimally, such assessments could be performed within 1–2

days and then leave time to develop the intervention plan for

each patient. As the identification of biomarkers that correlate

with outcomes is an emerging field, further strengthening of

their use in clinical decision making should make investment

in research leading to the above methodologic advances a

valuable set of tools.

In addition to the above methodologic advances, it would

also be advantageous to have methods to noninvasively

monitor the healing of a tendon such as the Achilles tendon

at intervals between the time of surgery and out to 1-year

post-surgery and beyond. One technique that could be applied

to noninvasively assess remodeling and function of the

healing Achilles tendon is via measuring shear wave speed

and properties (155–157). It may be possible to correlate scar

remodeling post-surgery and the return of tissue organization

that may reflect normal (compared to the contralateral

tendon) properties along with physical dimensions. By

assessing patients longitudinally, it may also be used to assess
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the healed tendon of those with good vs. poor outcomes beyond

one year to determine whether the healing differences are due to

intrinsic differences established at the time of injury or are a rate

phenomenon and those with a poor outcome at 1-year may

improve by 2- or 3-years post-injury. Such methodologic

abilities could provide additional insights into the

mechanisms involved. Such insights may reinforce the need to

enhance those destined for a poor outcome at 1-year using

cellular or combination therapies at the time of surgery.
Conclusions

Tendons are complex connective tissues that operate in

different biomechanical environments and under different

individual metabolic influences. As a group, they have been

considered to heal poorly due to their relative paucity of

innervation and microvascularity. However, more recently it

has been found that after surgical repair of Achilles tendon

ruptures some patients experience good outcomes, while

others experience poor outcomes. The identification of

biomarkers for good and poor outcomes regarding healing of

this tendon, and to a lesser degree the rotator cuff tendon

implies that there is heterogeneity in the healing process. This

heterogeneity in healing outcomes, and the characterization of

the basis for the heterogeneity should lead to more detailed

precision medicine for patients.

This variation in endogenous healing outcomes also has

considerable potential implication for why it has been difficult

to develop strong evidence for the effectiveness of biological

interventions, including cell therapies to improve healing

outcomes. Thus, assessment of patients using validated

biomarkers of good vs. poor outcome risk will identify those

patients that need interventions to augment the healing

process, and thus lead to a more accurate assessment of

intervention effectiveness in clinical trials. Moreover, validated

biomarkers will help to speed up answers and the

development of biological interventions in clinical trials. In

addition, more complete characterization of patients,

including both risk for tendon injury and other connective
Frontiers in Sports and Active Living 09
tissue injuries, will also contribute to more individual patient

trial designs in the future. Ultimately, this should lead to

better management of patients with connective tissue injuries,

and specifically, those with tendon injuries.
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