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Introduction

Recently, several medical doctors (1) or sports scientists (2) argued that the expertise

gained in elite sport should be translated and applied for the benefit of many. In other

words, public health and rehabilitation could improve preventive or therapeutic methods

based on exercise by looking up at what the elite athletes are doing nowadays in terms of

(i) how they train and monitor adaptations to exercise; (ii) the innovation they use in

combining different stressors and/or in the multi-dimensional criteria assessment of

their performance.

The examples supporting this claim were however limited to “11 for health

programme” (1) or to four areas (e.g., individualized training prescription; health

wearables; environmental conditions; and concurrent endurance-strength training) (2).

There are obviously large differences in both characteristics of the individuals and

training loads undergone between elite athletes and clinical or sedentary/under-active

populations Therefore, careful adaptations of any method are needed and this top-to-

bottom approach may not be applied for all. However, in the present opinion paper,

we suggest that the benefits of looking up at elite sports, may bring wider potential

benefits than previously described. We indeed argue that there are—at least—22

topics where public health and rehabilitation can learn and benefit from knowledge

and know-how started and/or developed in elite sports. In this opinion letter, we state

that improved strategies leading to larger positive outcomes in clinical setting may be

obtained in the following areas:

A / Exercise prescription (1. Submaximal cardiovascular assessment;

2. Individualization of exercise intensity; 3. Prescribed interval-training based on VO2

kinetics; 4. Submaximal strength assessment; 5. Non-invasive assessment of diffusive

and convective components of O2 transport; 6. Non-invasive assessment of the muscle

oxidative capacity; 7. Non-invasive assessment of the muscle structural properties).

B/ Monitoring of fatigue and adaptations (8. Multidisciplinary approach; 9. Specific

exercise wearables; 10. Non-invasive cardiovascular monitoring; 11. Coping strategy

from extreme sports).
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C/ Optimizing exercise dose-response to physical activity

(12. Integration of environmental conditions; 13. Concurrent

endurance-strength training; 14. Weight-reduced load; 15.

Vascular occlusion; 16. Neuromuscular electrical stimulation;

17. Transcranial direct current stimulation; 18. Specific

responses in women; 19. Exercise training quantification; 20.

Predictive models; 21. Technological innovations in mobility;

22. Ethical considerations).

This opinion letter is not aiming at presenting in detail each

of these points but rather overview the areas that are—in our

view—the most promising ones for a more effective

application of exercise for rehabilitation and health promotion

in the general public (3):
Exercise prescription

Submaximal cardiovascular assessment

For long, prescription of exercise intensity was mainly based

on expressing exercise intensity relative to maximal values

measured either during an incremental test to exhaustion

[e.g., % maximal heart rate—HR—or maximal oxygen

consumption—VO2max (4)]. The determination of the second

ventilatory threshold has later also been shown as important

(5). Since the widely dissemination of the polarized training

strategy in endurance athletes (6), the determination of the

“aerobic” threshold (7) delineating the moderate intensity

zone (8) became paramount.

The individualization of cardiovascular training based on

intensity zones (e.g., moderate, heavy, severe, supramaximal)

is now applied across all fitness levels, as well as being in

patients recovering from cancer (9) or with musculoskeletal

disorders such as low back pain (10) or osteoarthritis (11).

Since there is no need of maximal exercise to determine

submaximal thresholds, the accurate prescription of exercise

intensity is accessible to a wider range of patients (e.g., heart

failure or obese patients) for whom maximal test would be

dangerous or squarely impossible (12). Moreover, digital tools

are now available and render user-friendly and more accurate

the non-invasive thresholds determination (13). Some authors

have also suggested alternatives as the use of the walk-to-run

transition speed, allowing to consider training in almost all

patients, as far as they can walk fast enough to reach their

“natural walk-to-run transition speed” as experimented in

obese patients (14).
Individualization of exercise intensity

In the supramaximal (i.e., above velocity associated with

VO2max) as well as in submaximal intensity zones, exercise

intensity may be prescribed based on the different thresholds.
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As an example, to ensure exercise is performed at low to

moderate intensity, the most obvious way is to expressed

intensity in %vVT1 (e.g., 90% vVT1, velocity associated with

the first ventilatory threshold); or, alternatively, to ensure an

exercise at higher intensity (between vVT2 and vVO2max),

potentially also expressing the intensity as % within this zone

(e.g., Δ50% meaning 50% of the differences between vVT2

and vVO2max). Similarly, supramaximal exercise intensity

can be determined as % of anaerobic speed reserve (i.e.,

difference between the maximal sprint speed and vVO2max)

(15). Expressing intensities in % of a given boundary (e.g.,

VT2) does not take into account that the other boundaries

(e.g., vVO2max) may differ between individuals (16).

To our knowledge, exercise intensities remain commonly

expressed with absolute values (e.g., km/h or W) or as % of

one “marker” (e.g., %vVO2max) but not as % of a given

intensity zone. Since patients differ to a large extent in these

markers, there is a high risk of error in the prescribed

intensity if expressed relative to VO2max, for instance (see

below). These commonly used practices of prescribing exercise

don’t acknowledge the individual variability of these metabolic

boundaries (17). This is paramount for moderate intensity

that is often recommended for many patients. For instance,

60%–70% of VO2max which is assumed to be a moderate

exercise intensity for a fit person may in fact corresponds to

supra-VT1, i.e., “heavy” intensity for some individuals. This

would induce delayed post-exercise autonomic recovery and

increased risk of overreaching or overtraining (18).
Prescribed interval-training based on VO2
kinetics

The “traditional” determination of the exercise intensity

zones by the ventilatory or lactic thresholds has been

challenged by a relatively recent approach based on the VO2

kinetics (19). That is the profile of VO2 following the onset

of constant-load exercise that defines the exercise-intensity

domain (e.g., moderate, heavy, severe, supramaximal) (8) in

which the exercise is performed. The individualization of

training based on these intensity zones is now applied across

all fitness levels (19). The analysis of the fast and slow

components of the VO2 dynamic response to exercise is

paramount in endurance sports (8). Physiological responses

to sessions of interval-training (20) or repeated sprints (21)

are related to the VO2 kinetics parameters of the individuals.

Moreover, the effectiveness of these sessions is increased by

adjusting work-interval duration or intensity based on the

VO2 kinetics parameters. For example, athletes with a slow

VO2 kinetics would benefit to a large extent of increasing

the duration of the work-interval (e.g., 30 s to 60 s) (20) or

increasing the work-interval intensity (e.g., from 100% to

105% vVO2max) (22). The investigation of VO2 kinetics is
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performed in several diseases (19) as chronic obstructive

pulmonary disease (23), type-2 diabetes mellitus (24) or

obesity (25). An important consideration is that this method

does not require the patient to perform intense exercise to

be assessed. It is beyond the scope of this article to describe

how VO2 kinetics is altered across these diseases [see (19)]

but to our knowledge there is no report yet of exercise

prescription taking into account this factor in clinical

populations.
Submaximal strength assessment

Determination of the load for strength training is

commonly based on a maximal strength test (e.g., expressing

the load in % of 1 RM, one repetition maximum (26). Since

accurate loads can even be prescribed based on submaximal

assessments (e.g., 6–12 RM) (27), strength training is

henceforth relying less on % 1-RM. The possibility to estimate

1RM through submaximal tests (e.g., 6RM) to minimize the

risk of injury would enable many patients (e.g., with

osteoarthritis) (28) to benefit from accurate load prescription

from this type of submaximal strength assessment for their

muscle strengthening programs, hopefully bringing several

supplementary beneficial health effects.

An alternative strength training method consists in velocity-

based resistance training now commonly used successfully by

strength-power athletes (29). To our knowledge, this

innovative method is less frequently used in patients or

elderly individuals known to develop their force at a lower

rate for eliciting a lower rate of force development (30).
Non-invasive assessment of diffusive and
convective components of O2 transport

VO2max is determined by both convective and diffusive

limitations, as described by (31). This model requires

invasive collection of arterial and muscle venous blood.

Near-infrared spectroscopy (NIRS) was recently proposed as

a non-invasive approach to investigate these components.

NIRS-derived signals of tissue saturation (Tissue Saturation

Index, TSI) reflects the balance between O2 delivery and O2

utilization at the microvascular level within working skeletal

muscles. This is allowing to non-invasively estimate the

convection and diffusion components of VO2max (32). This

promising method could optimize the services in clinical

populations (33).
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Non-invasive assessment of the muscle
oxidative capacity

The muscle oxidative capacity is assessed from muscle

tissues collected by invasive biopsies (34). This technique

enables to investigate the mitochondrial adaptations

(respiration, biogenesis…) following a given training

intervention (35). NIRS is a method that has been used to

determine the changes in semi-superficial muscle

oxygenation in athletes (36) following various training

intervention as strength (37) or hypoxic training (38).

Recently, NIRS has been shown as a valid and non-invasive

means of assessing both muscle oxidative and oxygen

diffusing capacity in vivo (39). Such monitoring of both

cardiovascular fitness and muscle oxidative properties may

be valuable in many at-risk individuals; e.g., patients with

obesity (40). Moreover, through exercise-induced myokines

and muscle-to-brain signaling pathways (41), this non-

invasive assessment could be used beyond cardiovascular or

metabolic dysfunction; e.g., for patients with

neurodegenerative diseases, as Parkinson disease (42).
Non-invasive assessment of the muscle
structural properties

The determination of the muscle properties requests

invasive biopsies to determine muscle structure, fibres

composition as well as adaptation to a given exercise (e.g.,

muscle damage) (43). Histological analysis enables an accurate

determination of the fast- vs. slow- twitch fibres composition

(44). Recently a non-invasive alternative based on the muscle

carnosine content by Proton magnetic resonance spectroscopy

(45) has been developed with direct application in elite sport

(46). Such innovation in the determination of human muscle

fibre type composition is promising for many neuromuscular

diseases’ patients (e.g., myopathy) (47).
Combination of biomechanical,
physiological and psychological
parameters

Sport scientists and coaches aim to assess or improve the

energetics, biomechanics and mental characteristics of their

elite athletes. Training in endurance sports consists in

increasing the total energy available (i.e., increasing the

maximal aerobic power and the anaerobic capacity),

decreasing the energy expenditure at a given intensity by

improving the locomotion mechanics/technics of the athletes

(48). Variables combining energy expenditure and velocity

[e.g., energy cost (49)] or power output efficiency (50)) are
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used to determine the level or training adaptations in athletes.

Similarly, multi-criteria psycho-physiological scales (e.g.,

combining objective training intensity/load and subjective

feeling/mood responses) are relevant for monitoring athletes.

Despite some limitations, rating of perceived exertion [Borg’s

scale (51)] is probably one of the most used tool in sport

sciences. One of the main application of RPE is to quantify in

a very simple way, the training load undergone by athletes to

prevent overreaching (52). The integration of multidisciplinary

methods has been shown to be highly relevant in elite athletes

and to our knowledge is less spread in the clinical setting,

certainly warranting more research in the field.
Monitoring of fatigue and
adaptations

Specific exercise wearables

Until 20 years ago, sport science was limited to laboratory

setting/testing. We needed non-wearable equipment to

measure gas exchange, muscle oxygenation or muscle

electromyography activity. For long, only HR was measured

with HR monitors. Thanks to technological advancement and

miniaturization of the devices, it is now possible to measure

several time motion and/or physiological responses during

exercise in the field [e.g., speed (GPS); power output

(powermeter); stride frequency and several running mechanics

parameters as contact time (Inertial Measurement Units);

forces in the pedals or under the running shoes; heart rate

(HR and HR variability); muscle oxygenation (portable Near-

infrared spectroscopy); blood pressure; arterial saturation

(pulse oximeter); breathing frequency (instrumented shirts);

glycaemia by CGM (continuous glucose monitor); central

temperature (ingestible pills); galvanic skin response; thoracic

impedance (impedance sensors);… ]. Of importance is that

many of these exercise wearables are now certified by the

medical authorities (e.g., Apple Watch for ECG function

approved by the FDA in USA). Sport is an area where there

are many technological innovations and where many

wearables are used. Not all the devices mentioned above are

accessible for a daily use for the active individuals in the

community but some have changed the way people train at all

levels [e.g., GPS in running (53); powermeter in cycling (50)].

A key issue is about the accuracy and reliability of these

wearables that are highly promoted by the industry (54). In

fact, due to remaining limitations in data storage and

algorithmic computation, very few of these devices are

relevant for constant 24 h/24 h ambulatory monitoring of

patients. In clinical setting, wearables are mainly used for

safety reasons as surveillance and monitoring of the

individuals. We claim that many wearables would also be

useful to motivate and to monitor changes within the
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individual progress of the patients, and to provide continuous

feedback for a more accurate and efficient exercise

prescription (55, 56).
Non-invasive cardiovascular monitoring

Preventing overreaching and overtraining is an important

concern for coaches and sport scientists (57). Among various

means, resting heart rate variability or photoplethysmography

(58) have been used in elite performance area, particularly in

endurance sports. Despite that there is no consensus about

the optimal procedures or variables to be measured, HRV is

recognized as effective and is recorded on a daily basis by

numerous elite athletes (59, 60).

HRV is also used extensively in clinical setting with many

different types of patients (61, 62). HRV is then seen mainly

as a valuable diagnostic metrics of health. However, HRV is

rarely used for guiding, monitoring or amending a

rehabilitation program as it is performed in sport where

training program can be HRV-guided (63). Similarly, the

monitoring of HR recovery post-exercise may be a

complementary variable for monitoring the progress during

rehabilitation, as shown in patients after acute coronary

syndrome (64).
Coping strategy coming from extreme
sports

Ultramarathons, with specific neuromuscular, renal,

inflammatory and cardiovascular alteration/recovery kinetics,

have been proposed as a unique experimental model to

explore the responses of healthy humans to extreme load,

fatigue and stress (65). Among those complications, three

“specific” diseases may lead the patient to intensive care units

(ICU): malignant hyperthermia, rhabdomyolysis or

hyponatremia. However, contrary to many patients admitted

in ICUs who are often with comorbidities, ultra-endurance

runners are healthy individuals, which often makes the

treatment or investigation of the mechanisms associated to

such diseases easier than in the clinical population. This may

suggest that clinicians would benefit from the reports and

observations from ultra-endurance athletes or sport scientists

involved in this field. For example, it is possible to investigate

regulatory mechanisms or organs interplay as the relationship

between acute kidney injury and some adverse cardiac

dysfunctions (66). Another example comes from professional

cycling: arterial endofibrosis is a common pathology in

cyclists (67) and it led to clinical improvement in its diagnosis

and treatment (68).
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Dose-Response to exercise

Integration of environmental conditions
as heat, cold or hypoxia

Altitude/hypoxic training (69) and heat acclimatization (70)

are very important components of preparation in elite sport.

Recent innovative methods have been developed [e.g., to cite

only few: repeated sprint training in hypoxia—RSH—for team

sport athletes (71); warm bath (72) for heat acclimatization);

full body cryotherapy for improving recovery or rehabilitation

(73)…]. Combination of several environmental stressors is

also investigated (74). Some mechanisms explored in sport

lead to clinical advancements [e.g., RSH-induced

compensatory vasodilation that may be of interest in

angiology for treatment of patients with endothelial

dysfunction (75)]. Intermittent hypoxic conditioning, have

been implemented for general health purposes or in clinical

populations, for example in patients with diabetes (76) or

neurodegenerative diseases (77). The effective “dose” (e.g.,

hypoxia severity; temperature level, duration and intermittent

pattern of exposure) for any of these conditions are likely

specific to type of patient and disease (78) and certainly

warrants further promising investigations.
Concurrent endurance-strength training

For long, endurance athlete did not perform any strength

training believing that this would be counterproductive.

Nowadays however, strength and power training is an

important component of the endurance athletes preparation

(79). A large body of research has been published on the

optimal combination of strength and aerobic training (i.e.,

concurrent training) for endurance and strength

enhancement. Overall, it seems that strength-training—

particularly if it includes plyometric stimuli—could be

beneficial for endurance performance, while hypertrophy may

be blunted by large amount of low-intensity training. The

intra-session session sequence (i.e., endurance prior strength

or vice-versa) is a question of importance in elite sport (80),

general population (81) or in rehabilitation (82). For instance,

the use of plyometric exercise has been shown to be beneficial

for young obese females by reducing the pre-training observed

metabolic abnormalities (83).

Similarly, the recommendations for exercise in elderly (i.e.,

“healthy aging”) are no longer limited to aerobic exercise for

cardiovascular maintenance but also integrate exercises

dedicated to the neuromuscular function (84); e.g., strength

training for counterbalancing muscle force loss and sarcopenia

(85); flexibility to maintain join amplitude or proprioception

and agility/coordination to counterbalance altered balance and
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reduce the risks of fall (86). Strength training has indeed been

shown to be effective even at very old ages (e.g.,

nonagenarians) (87).
Weight-reduced modalities (low-G;
hypoxia; immersion)

For injured or in-rehabilitation athletes, several methods

have been developed to decrease the mechanical load and

enable exercise despite biomechanical constraints or pain like:

running at relative lower body weight on a Low-Gravity

treadmill (88), on a water immersion treadmill (89), uphill

(90) or in hypoxia (91). The knowledge acquired on the

physiological responses in such conditions may be useful for

many clinical populations with locomotion limitation; for

example for patients who are subject to excessive body weight

(92) and/or elderly patients (93).
Vascular occlusion

Strength training at low load with vascular occlusion (e.g.,

blood flow restriction; BFR) enables gains in hypertrophy

similar to those obtained with high-loads (94). Developed

originally for clinical application, BFR is now extensively used

by strength/power athletes looking for muscle mass

development (95). This created an increased knowledge on

the benefits and limitations of this method that is now

benefiting the therapeutic applications again (96) in many

diseases or pathologies. This has already been used in diabetic

patients (97), for muscular rehabilitation (98), or to

counterbalance sarcopenia in older individuals (99).
Neuromuscular electrical stimulation

Since early 70 s, neuromuscular electrical stimulation

(NMES) has been used for increasing muscle strength in

athletes and its use has been soon transferred to clinical

patients (100). Recent improvement in methods, devices and

impulse characteristics has improved its effectiveness in both

athletic (101), sedentary (102) or elderly (103) individuals.

There is a large interest for the use of NMES in

rehabilitation with many avenues for improving adaptations

(104), particularly by implementing algorithm-based NMES

therapy and dosing the treatment with tension-controlled

NMES (105).
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Transcranial direct current stimulation

Transcranial direct current stimulation (tDCS) is one of the

non-invasive brain stimulation techniques aiming at modulating

cortical excitability (106). In sport, tDCS has been shown as a

potential means of improving performance (107), particularly

time to task failure (108). More recent meta-analyses reveal

that the ergogenic effect of tDCS is probably small (109).

Similarly, its therapeutic effectiveness in many pathologies

(e.g., pain, Parkinson’s disease, motor stroke, multiple

sclerosis, epilepsy, Alzheimer’s disease, depression,

schizophrenia) is likely moderate (110). However, even if not

supported by evidence, the recent interest for such “brain

doping” techniques in sport (111, 112) may results in

improvements in methods and devices, and presumably in

ethical debates in a close future.
Specific responses in women

In both sport and exercise science (113) or medicine (114)

areas, there is a lack of studies on the specificities of women,

that are underrepresented in science, not only as researchers

but also as research participants (115). Moreover, beyond these

quantitative considerations, there is a major concern regarding

methodological limitations (e.g., consideration of menstrual

cycle phase, type of hormonal contraceptives and hormone

replacement therapy, stage of menopause) and the low quality

of many studies that precludes the generalization of the results

to the entire female population (113, 116). There is an

increasing body of recent researches in sport sciences about

specific characteristics of women; e.g., the effects of menstrual

cycle (117), pregnancy (118) or menopause (119) on the

responses to exercise. This led to improved management of

training load (120) or reduced RED-S (i.e., relative energy

deficiency in sport) (121) in elite female athletes. To our

knowledge, this body of research on the prescription of exercise

for preventive or therapeutic purposes is less developed,

warranting promising female-centred research for the future.
Exercise training quantification

Several methods of quantification of the training stimulus

(e.g., training loads) are used in sport science. Based on the

records of HR (122), training velocities (123) or RPE (124)

for every training session, these training load assessment

methods aim at quantifying the load either to improve sport

performance and/or to prevent overreaching (52), illnesses

(125) or injuries (126). Training loads are also the foundation

of the different types of periodization in sport; i.e., polarized

(6), block (127) or pyramidal (128) training. The translation
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of these training patterns, based on objective training load

measurement, may benefit the long-term exercise-based

rehabilitation program (129).
Predictive models of the exercise effects
on health

The relationships between training content/load and

fluctuation of performance are extensively investigated in elite

sport (130). Initiated by Banister (122), several model exist and

may help predicting short- or long-term changes in performance

(131). In most of these models, performance is calculated as the

balance between negative (i.e., fatigue) and positive (i.e., fitness)

antagonistic functions. Such models were shown useful in many

sports as triathlon (132) or swimming (133). Such predictive

models of the relationships between exercise stimulus and the

primary health outcomes may also be effective in clinical setting

but may require to combine different types of monitored

variables beyond training load (e.g., neuromuscular function,

HRV, psychological wellbeing, past injury history) similarly to

an approach implemented in elite sport (134).
Technological innovations in mobility

Paralympic elite sport is a growing area of innovation in sport

sciences. Many paralympic sports require sophisticated

technological modifications (e.g., in prosthetic and wheelchair

devices) (135). Such technology advancement may be seen as

unfair (136) and the potential technological advantage for a

Paralympian, when competing against an Olympian, is unclear

(137). However, beyond performance, the innovation is also for

improving safety (138) with a direct impact for the stability/safety

of equipment used daily by disable individuals (139), potentially

bringing to the latter a substantial improvement of their qualityof life.
Ethical considerations

The increase of data availability has potential associated

issues, as data ownership and data transfer could potentially

lead to ethical issues in case of breach of confidentiality. In

elite sport, a recent gathering of professional football (soccer)

players can give glimpse on the potential issues with the

ownership and use of the data (https://fifpro.org). The latter

group of players and professionals created the Charter of

Player Data Rights, aiming at implementing global industry

standards in order to protect the players’ privacy and allowing

them to protect and benefit from personal rights for the

access and management of the information relative to their

health status and performance scores. We believe that the

developers of health care technologies and tools shall
frontiersin.org

https://fifpro.org
https://doi.org/10.3389/fspor.2022.1072154
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Millet and Chamari 10.3389/fspor.2022.1072154
continuously check the data protection rules/laws, in order to be

proactive in this field hopefully ensuring a healthy use of their

products by respecting ethics and data confidentiality (EU’s

2016 General Data Protection Regulation GDPR).
Conclusion

In this opinion letter, we listed 22 topics where sport sciences

may benefit and be of great value for enhancing public health and

rehabilitation. We acknowledge that there may be other points

where a better interplay between sport scientists and medical

researchers should be valuably considered. To conclude, the

main objective of this letter is to claim for a better integration

of exercise science—including the ones that has been developed

with elite athletes—for a greater use in preventive medicine for

a better health in the general population.
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