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Background: Physically active status is an important contributor to individual
health. Walking is regarded as commonly accepted exercise for exercise
promotion. Particularly, interval fast walking (FW), consisting of alternating
between fast and slow walking speeds, has gained popularity from practical
viewpoints. Although previous studies have determined the short- and long-
term effects of FW programs on endurance capacity and cardiovascular
variables, factors affecting these outcomes have not been clarified. In addition
to physiological variables, understanding of mechanical variables and muscle
activity during FW would be a help to understand characteristics of FW. In the
present study, we compared the ground reaction force (GRF) and lower limb
muscle activity between fast walking (FW) and running at equivalent speeds.
Method: Eight healthy men performed slow walking (45% of the maximum
walking speed; SW, 3.9 ± 0.2 km/h), FW (85% of the maximum walking speed,
7.4 ± 0.4 km/h), and running at equivalent speeds (Run) for 4 min each. GRF
and average muscle activity (aEMG) were evaluated during the contact, braking,
and propulsive phases. Muscle activities were determined for seven lower limb
muscles: gluteus maximus (GM), biceps femoris (BF), rectus femoris (RF), vastus
lateralis (VL), gastrocnemius medialis (MG), soleus (SOL), and tibialis anterior (TA).
Results: The anteroposterior GRF was greater in FW than in Run during the
propulsive phase (p < 0.001), whereas the impact load (peak and average vertical
GRF) was lower in FW than in Run (p <0.001). In the braking phase, lower leg
muscle aEMGs were higher during Run than during SW and FW (p <0.001).
However, in the propulsive phase, soleus muscle activity was greater during FW
than during Run (p < 0.001). aEMG of tibialis anterior was higher during FW than
during SW and Run in the contact phase (p <0.001). No significant difference
between FW and Run was observed for HR and RPE.
Conclusion: These results suggest that the average muscle activities of lower limbs
(e.g., gluteus maximus, rectus femoris, and soleus) during the contact phase were
comparable between FW and running, however, the activity patterns of lower limb
muscles differed between FW and running, even at equivalent speeds. During
running, muscles were mainly activated in the braking phase related to impact. In
contrast, during FW, soleus muscle activity during the propulsive phase was
increased. Although cardiopulmonary response was not different between FW and
running, exercise using FW might be useful for health promotion among
individuals who cannot exercise at high-intensity.
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TABLE 1 Physical characteristics of the subjects and walking speed
variables.

Age 22 ± 1 Year

Height 172.1 ± 1.7 cm

Weight 62.1 ± 7.0 kg

45% MWS (slow walk) 3.9 ± 0.2 km/h

85% MWS (Fast walk and run) 7.4 ± 0.4 km/h

MWS 8.8 ± 0.5 km/h

Values are means ± SD.
1. Introduction

Daily physical activity is associated with improved

cardiopulmonary function (1) and increased muscle mass and

strength (2). Reduced physical activity leads to metabolic

disturbances and related diseases, including insulin resistance

(3), hyperglycemia (4), and atherosclerosis (5). Increased

energy expenditure (EE) during exercise also reduces the risk

of cardiovascular diseases (6). Therefore, strategies to increase

exercise-induced EE are essential for health promotion.

Walking is widely accepted exercise modality among the

adults (7, 8). Particularly, interval fast walking (FW),

consisting of alternating between fast and slow walking

speeds, has gained popularity from practical viewpoint.

Cycling (pedaling) exercise is generally easy to perform but

requires a stationary bike. Running does not require

equipment but may pose risks of injury for those with

orthopedic or other medical problems. On the other hand,

it was reported that walking has a lower risk of injury than

running (9). Previous studies have demonstrated

improvements in maximal oxygen uptake, blood pressure,

and heart rate after 5 months of FW (≥ 5 sets of FW at

70%–85% of peak aerobic capacity followed by slow walking

at ≤ 40% of peak aerobic capacity; 3 min per set) (10, 11).

Interval FW for 2 weeks improved insulin sensitivity, while

reducing 24 h maximum glucose levels and mean

amplitudes of glycemic excursion, in patients with type 2

diabetes (12).

Although previous studies have established the short- and

long-term effects of FW programs on endurance capacity and

cardiovascular variables, factors influencing these outcomes

have not been investigated (10, 12). In our previous study, we

demonstrated that EE and carbohydrate oxidation during

walking were enhanced in a non-linear manner with

increasing speed. It was notable that walking at speeds

> 8.0 km/h caused greater EE and carbohydrate oxidation than

running at an equivalent speed in young individuals (13).

Moreover, previous studies reported that interval walking for

17 weeks or 5 months increased muscle strength of knee

extensors and flexors muscles (14, 15),. Although Kubo et al.

(16) reported that a walking exercise program for six months

increased muscle strength of the knee flexors, no significant

increase in muscle strength of the knee extensors was found.

In addition to physiological variables, understanding of

mechanical variables and muscle activity during FW would be

a help to clarify characteristics of FW. Walking speeds

influence biomechanical variables such as joint kinematics,

GRFs, joint moments of moments and powers, muscle

activities, and spatiotemporal gait parameters (17). Previous

studies compared GRFs (18) and muscle activity of the lower

limbs (19) among different walking speeds. However, in these

studies, no significant differences in GRFs were found

between slow and normal speeds. Hence, comparisons of both
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GRFs and lower limbs of muscle activity between FW and

running are currently required.

Therefore, the purpose of the present study was to compare

the ground reaction force (GRF) and lower limb muscle activity

between FW and running at equivalent speeds. We

hypothesized that the GRF would be lower during FW than

during running. Moreover, we hypothesized that lower limb

muscle activity during FW would be mainly enhanced in the

propulsive phase, whereas it would be activated in the braking

phase while running.
2. Materials and methods

2.1. Participants

Eight men were recruited in the present study (mean ±

standard deviation: age, 22 ± 1 y; height, 172.1 ± 1.7 cm;

weight, 62.1 ± 7.0 kg); they received an overview of the

experiment and possible risks (Table 1). None of them had

any history of chronic diseases that could affect

neuromuscular function, exercise, or daily physical activity.

All participants were not involved in any training programs at

the start of the study. Written informed consent was obtained

from all participants. This study was approved by the ethics

committee for Human Experiments at Ritsumeikan University

(BKC-IRB-2020–047) and was conducted in accordance with

the Declaration of Helsinki.
2.2. Experimental overview

Participants visited the laboratory twice throughout the

experimental period. On the first visit, a familiarization

session and determination of the maximal walking speed

(MWS) were conducted. On the second visit, each participant

performed the main experimental trials, consisting of slow

walk trial, FW and Run trial. The anteroposterior and vertical

GRF components, surface electromyography (EMG) of lower

limb muscles were evaluated during each trial.
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FIGURE 2

The measurement places of surface electromyography (EMG) of
lower limb muscles. The EMGs were recorded and amplified from
seven right lower limb muscles. GM; gluteus maximus, BF; biceps
femoris, RF; rectus femoris, VL; vastus lateralis, MG; gastrocnemius
medialis, SOL; soleus, TA; tibialis anterior.

Makino et al. 10.3389/fspor.2022.1055302
2.3. Exercise protocol

2.3.1. MWS measurements
The participants began walking on a treadmill (Elevation series

E95Ta; Life Fitness Corp., Franklin Park, IL, United States) at a

speed of 4.0 km/h. The speed was progressively increased by

1.0 km/h at 1 min intervals until the participants could no longer

match the speed; this speed was recorded as the MWS.

2.3.2. Main experiment
The participants walked for 4 min at 45% of MWS (slow

walk) on a special treadmill with built-in force plates (HPT-

2200D; Tec Gihan Co., Ltd., Kyoto, Japan); they then ran

(Run) or walked at 85% of MWS (fast walk) for 4 min. The

exercises were separated by 3-min rest periods. The order of

running and FW was randomized. Based on our previous

study which revealed significantly greater EE and

carbohydrate oxidation in FW than in running (13), we

selected 85% of MWS during fast walk phase. Heart rate

(HR), rating of perceived exertion (RPE), GRF, and EMG

were measured during the exercise (Figure 1).

2.3.3. GRF and EMG measurements
A dual-belt treadmill with two force plates (HPT-2200D;

Tec Gihan Co., Ltd.) was used for GRF measurements.

Surface EMGs were recorded and amplified (SX230–1000,

Biometrics Ltd., Ghent, United Kingdom) from seven right

lower limb muscles: gluteus maximus (GM), biceps femoris

(BF), rectus femoris (RF), vastus lateralis (VL), gastrocnemius

medialis (MG), soleus (SOL), and tibialis anterior (TA). EMG

electrode placement was based on the guidelines for

non-invasive surface EMG assessment of muscles (20)
FIGURE 1

Protocol overview.
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(Figure 2). GRFs and EMGs were recorded at a sampling

frequency of 1 kHz using a data acquisition and analysis system

(LabChart; ADInstruments, Sydney, Australia) with a 16-bit

analog-to-digital converter (PowerLab/16SP; ADInstruments).
2.3.4. HR and RPE
HR was measured continuously (every 5 s) using a

wireless HR monitor (RCX5; Polar Electro, Kempele,
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Finland). RPE was evaluated using a 10-point scale (21) at

the end of each trial.

2.3.5. Data analyses
The anteroposterior and vertical GRF components were

analyzed after they had been filtered at 40 Hz and 60 Hz,

respectively, using a low-pass Butterworth filter. The contact

phase, between the foot strike and toe-off, had a detection

threshold of 50 N for the vertical GRF component. The

braking and propulsive phases were between the foot strike

and braking-to-propulsion transition, and between the

braking-to-propulsion transition and toe-off, respectively. All

GRF values were normalized according to body weight.

EMG signals were filtered at 20–450 Hz using band-pass

Butterworth filters, then rectified and smoothed at 60 Hz using

low-pass Butterworth filters. The muscle activity for each phase

was calculated as the average EMG (aEMG) amplitude, using

maximum voluntary contraction as the reference. EMG data

were reported for the contact, braking, and propulsive phases.

The GRF data and EMG signals during 10 steps have been

averaged individually. In the GRF data, impulse and averaged

force for each phase were calculated. The rectified time course

EMG signals were aEMG for each phase.

2.3.6. Statistical analyses
Data are presented as means ± standard deviations. A

commercially available statistical software (SigmaStat 2.03;

SPSS, Inc.) was utilized. For comparisons of each variable

among the trials, one-way repeated-measures analysis of

variance (repeated ANOVA) was used to compare the main

effect. When ANOVA found significant main effect, post hoc

test (Tukey method) was performed to identify specific pairwise

differences. The level of statistical significance was set at p < 0.05.
3. Results

Table 1 shows walking speed variables.
3.1. GRFs comparison between SW, FW,
and Run

Figure 3 shows the anteroposterior average and impulse

GRFs. The impulse was significantly lower for Run than for SW

or FW during the braking phase and during the propulsive

phase. During the braking phase, the average force was

significantly higher for FW and Run than for SW; it was higher

for FW than for Run. During the propulsive phase, the average

force was significantly higher for FW than for SW or Run.

Figure 4 shows the vertical peak, average, and impulse GRFs.

The peak force was significantly higher for FW and Run than for

SW during the contact phase; it was significantly higher for Run
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than for FW. The average force was significantly higher for FW

and Run than for SW during the contact phase; it was

significantly greater for Run than for FW. The impulse was

significantly lower for FW and Run than for SW during the

contact phase; it was lower for Run than for FW.
3.2. EMGs comparison between SW, FW,
and Run

Figure 5 shows the aEMGs for the GM, BF, RF, and VL

during the contact, braking, and propulsive phases. The

contact phase aEMG for the GM was significantly higher in

Run than in SW. The braking phase aEMG for the GM was

significantly higher in Run than in SW and FW; it was higher

in FW than in SW. The contact phase aEMG for the BF was

significantly higher in Run than in SW or FW; it was higher

in FW than in SW. The braking phase aEMG for the BF was

significantly higher in FW and Run than in SW. Furthermore,

the propulsive phase aEMG for the BF was higher in Run

than in SW or FW. The contact phase aEMG for the RF was

significantly higher in FW and Run than in SW. The braking

phase aEMG for the RF was significantly higher in Run than

in SW or FW; it was higher in FW than in SW. The contact

phase aEMG for the VL was higher in Run than in SW or

FW; it was higher in FW than in SW. The braking phase

aEMG for the VL was higher in Run than in SW or FW; it

was higher in FW than in SW.

Figure 6 shows the aEMGs for the MG, SOL, and TA

during the contact, braking, and propulsive phases. The

contact phase aEMG for the MG was significantly higher in

Run than in SW or FW; it was higher in FW than in SW.

The braking phase aEMG for the MG was significantly

higher in Run than in FW or SW. The propulsive phase

aEMG for the MG was significantly higher in FW than in

SW. The contact phase aEMG for the SOL was significantly

higher in Run and FW than in SW. The braking phase

aEMG for the SOL was significantly higher in Run than in

SW or FW. The propulsive phase aEMG for the SOL was

significantly higher in FW than in SW or Run. The aEMG

for the TA during all phases was significantly higher in FW

than in SW or Run.
3.3. HR and RPE

Table 2 shows the HR and RPE. HR was significantly higher

in FW and Run than in SW, but it did not significantly differ

between FW and Run. RPE for breath (RPEbreath) was

significantly higher in FW and Run than in SW, with no

difference between FW and Run. RPE for leg muscles (RPEleg)

was significantly higher in FW and Run than in SW, and it

was higher in FW than in Run.
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FIGURE 3

Anteroposterior component of ground reaction force during the braking (A,B) and propulsive (C,D) phases. Values are means ± SD. Significant
difference between trials (*p < 0.05, **p < 0.01, ***p < 0.001). SW; Slow walk trial. FW; Fast walk trial. Run; Run trial.
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4. Discussion

The present study compared GRF and lower limb muscle

activity between FW and running at equivalent speeds.

Consequently, anteroposterior GRF was greater during FW

than during Run, whereas vertical GRF was greater during

Run than during FW. Moreover, muscle activity during the

braking phase was lower in FW than in Run, while it was

higher in FW during the propulsive phase. These findings

suggest that FW causes less mechanical stress during impact

and produces greater propulsive force, compared with

running at an equivalent speed.

Despite equivalent speed, the impulse and average of

anteroposterior GRF were significantly greater during FW

than during running. In contrast, the average vertical GRF

was higher during running than during FW. These results

may be related to differences in locomotion (22). We (13)

reported that EE and carbohydrate oxidation during walking
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were enhanced in a non-linear manner with increasing

speed. Peak GM activity generally occurs immediately

after foot-ground contact (23). In the present study, aEMGs

for the GM, RF, and VL during braking phase were greater

in Run than in FW. aEMGs during breaking phase showed

similar trend for average vertical GRF. In the braking

phase of running, the lower limb joints (i.e., hip, knee, and

ankle joints) flexed because of the impact during ground

contact. In the subsequent propulsive phase, these joints

were extended, and the mechanical energy exchange

involved elastic energy storage and release (24). Also, the

peak of vertical GRF was significantly greater during

running than during FW, and it is advantageous for the

mechanical energy from exchange stretch- shortening cycle

perspective (25).

Gazendam & Hof (23) reported minor hamstring

differences in the walking and running profiles, but major

differences in the EMG profiles were observed for the lower
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limb muscles. In the present study, aEMGs for the MG and

SOL during braking phase were higher in running than in

walking. However, aEMG for the MG during the propulsive

phase was significantly higher in FW than in SW, and

aEMG for the SOL was significantly higher in FW than in

SW and running. Less knee flexion with greater ankle

plantarflexion decreased mechanical efficiency at fast speed

(26), and it may augment mechanical work, thus decreasing

mechanical efficiency (27). Furthermore, impulse and

average anteroposterior GRFs were significantly higher in

FW than in running during the propulsive phase. Therefore,

increased muscle activities during push-off might be

involved in the greater EE during walking (28). The present

study also demonstrated differences in aEMGs for the TA

during FW and Run. The EMG of TA was significantly

higher in FW than in SW and Run during all phases. The

increased aEMG for the TA during FW would contribute to

maintaining the ankle joint in a dorsiflexed position, thus

improving ankle joint stability while walking (29).

Furthermore, the augmented muscle activities of lower limb

muscles might explain significantly higher score of RPEleg in

FW than in Run.

As limitations of the present study, joint torques and powers

were not evaluated. Also, the evaluations of GRFs were limited

during 4 min of exercise (walking or running). In further study,

determination of GRFs during actual interval FW exercise

would be valuable.
FIGURE 4

The peak (A), average (B) and impulse (C) of vertical component of
ground reaction force. Values are means ± SD. Significant
difference between trials (*p < 0.05, **p < 0.01, ***p < 0.001). SW;
Slow walk trial. FW; Fast walk trial. Run; Run trial.
5. Conclusion

FW resulted in a smaller impact (i.e., vertical GRF) than

running at an equivalent speed. During the contact phase,

the average muscle activities of GM, RF, and SOL were not

significantly different between FW and running. However,

further analyses presented that the activity patterns of lower

limb muscles differed between FW and running, even at

equivalent speeds. In running, GM, RF, VL, MG, and SOL

were mainly activated during the braking phase than the

propulsive phase. On the other hand, in FW, the muscle

activity of SOL during the propulsive phase was increased
TABLE 2 Hr and RPE.

Slow walk Fast walk

(SW) (FW)

HR (bpm) 90 ± 14 147 ± 17

RPE breath 1.3 ± 0.5 3.5 ± 1.2

leg 1.3 ± 0.5 4.9 ± 1.4

Values are means ± SD. HR; heart rate. RPE; rating of perceived exertion.
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than during the braking phase. Therefore, FW causes

smaller mechanical stress than running at an equivalent

speed, but it highly activates lower limb muscles. These

notions may be useful for designing exercise program for

health promotion, particularly in individuals with

orthopedic or other medical issues (e. g., joint injuries, type

2 diabetes, and obesity).
Run Post hoc test (p-value)

(Run) SW/FW FW/Run SW/Run

145 ± 19 <0.001 0.851 <0.001

2.8 ± 0.7 <0.001 0.101 <0.01

3.4 ± 1.1 <0.001 <0.01 <0.001
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FIGURE 5

Averaged surface electromyography (aEMG) of femoral muscles during the contact (A—D), braking (E—F) and propulsive (I—N) phases. Values are
means ± SD. Significant difference between trials (*p < 0.05, **p < 0.01, ***p < 0.001). SW; Slow walk trial. FW; Fast walk trial. Run; Run trial. GM;
Gluteus maximus, BF; Biceps femoris, RF; Rectus femoris, VL; Vastus lateralis.

Makino et al. 10.3389/fspor.2022.1055302
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FIGURE 6

Averaged surface electromyography (aEMG) of lower leg muscles during the contact (A—C), braking (D—F) and propulsive (G—I) phases. Values are
means ± SD. Significant difference between trials (*p < 0.05, **p < 0.01, ***p < 0.001). SW; Slow walk trial. FW; Fast walk trial. Run; Run trial. MG;
Gastrocnemius medialis, SOL; Soleus, TA; Tibialis anterior.

Makino et al. 10.3389/fspor.2022.1055302
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