
ORIGINAL RESEARCH
published: 16 July 2021

doi: 10.3389/fspor.2021.676179

Frontiers in Sports and Active Living | www.frontiersin.org 1 July 2021 | Volume 3 | Article 676179

Edited by:

Matthias Kempe,

University of Groningen, Netherlands

Reviewed by:

Robert Rein,

German Sport University Cologne,

Germany

Arnold Baca,

University of Vienna, Austria

*Correspondence:

Ulf Brefeld

brefeld@leuphana.de

Specialty section:

This article was submitted to

Sports Science, Technology and

Engineering,

a section of the journal

Frontiers in Sports and Active Living

Received: 04 March 2021

Accepted: 26 May 2021

Published: 16 July 2021

Citation:

Martens F, Dick U and Brefeld U

(2021) Space and Control in Soccer.

Front. Sports Act. Living 3:676179.

doi: 10.3389/fspor.2021.676179

Space and Control in Soccer
Florian Martens, Uwe Dick and Ulf Brefeld*

Machine Learning Group, Leuphana University of Lüneburg, Lüneburg, Germany

In many team sports, the ability to control and generate space in dangerous areas on

the pitch is crucial for the success of a team. This holds, in particular, for soccer. In

this study, we revisit ideas from Fernandez and Bornn (2018) who introduced interesting

space-related quantities including pitch control (PC) and pitch value. We identify influence

of the player on the pitch with the movements of the player and turn their concepts into

data-driven quantities that give rise to a variety of different applications. Furthermore,

we devise a novel space generation measure to visualize the strategies of the team

and player. We provide empirical evidence for the usefulness of our contribution and

showcase our approach in the context of game analyses.

Keywords: soccer (football), movement model, motion model, pitch control, soccer analytics

1. INTRODUCTION

An important aspect when analyzing soccer games is how much space on the soccer pitch is
controlled by teams and players at any point during a game. While, in general, control is a rather
flexible term in soccer and includes the ability of a player to control the ball or the ability of a team
to control possession, we focus on spatial control, that is, control of areas on the pitch. This concept
has been introduced by Taki et al. (1996) who developed the concept of a dominant region of a player
that defines the area on the pitch that is controlled by that player. That is, a player is expected to
reach any point in her dominant region before any other player. These regions are derived from the
so-called motion or movement models that are able to predict whether a player can reach a certain
point on the pitch in a given time.

Dominant regions have the advantage that they can be visualized by partitioning a soccer
pitch into areas around players that they have control over and can thereby be easily interpreted.
Interpretability is a key factor to empower non-technical staff, such as coaches or game analysts, to
understand data-driven results and turn them into actionable insights. Therefore, dominant regions
have been frequently used as the basis for research questions on higher-levels, such as the evaluation
of passes or spatial pressure (Taki and Hasegawa, 2000; Gudmundsson andWolle, 2014; Ueda et al.,
2014; Horton et al., 2017; Brefeld et al., 2019). In this line of work, Fernandez and Bornn (2018)
understand control on the pitch as a continuous spatial quantity. That is, instead of assigning every
point on the pitch to exactly one team, they compute a value that measures how much control
a team has over a position. Their concepts are intuitive and interpretable but suffer from a too
coarse player influence model. Our first contribution is to remedy this limitation by incorporating
data-driven movement models as the underlying motion model (Brefeld et al., 2019). Secondly, we
provide empirical results showing that the data-driven approach leads to realistic measurements of
space. Thirdly, we propose new metrics for passers and pass receivers on the basis of data-driven
quantification of space.

Empirical results are computed on positional data from 54 Bundesliga games from season
2017/18. We show that identifying the influence with movements of the player leads to high
correlations with quantifiable outcomes such as shots on target, expected goals, and the market
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value of players. Finally, we showcase the benefit of the usefulness
of our approach on the example of opponent analysis.

The remainder is structured as follows. Section 2 reviews
related work, and section 3 introduces basic player influence
models. Section 4 details our approaches to quantify space, and
section 5 presents a novel space generation metric together with
empirical findings. Section 6 concludes.

2. RELATED WORK

Dominant regions are studied in many publications. A general
definition refers to dominant regions of a player as the region
on a pitch which can be reached by this very player before any
other one (Gudmundsson and Horton, 2017). Taki et al. (1996)
first introduced this concept based on a simple motion model
that incorporates the acceleration and direction of a player.
Their approach constitutes a significant improvement to simple
Voronoi region models (Taki et al., 1996; Taki and Hasegawa,
2000), which simply credit space to the closest available player,
ignoring running direction, or speed. Further improvements to
this basic model are presented by Fujimura and Sugihara (2005)
who include a resistive force to bound the, otherwise infinite,
acceleration as in Taki et al. (1996). By contrast, Brefeld et al.
(2019) introduce a purely data-driven probabilistic movement
model using sampled trajectories of each individual player. The
model can be used to derive densities of locations of player and
convex hulls for all reachable points on the pitch for a predefined
time window that again can be translated to dominant regions.

The previouslymentioned approaches treat control as a binary
variable such that every location is either controlled by one or
the other team. Fernandez and Bornn (2018) also rate controlled
areas on the field but propose a continuous measure of control
that is based on the influence of each player on a given point
on the pitch at a given time. They use a general Gaussian
influence model, in which the covariance matrix of each bi-
variate Gaussian is defined by the velocity vector of a player’s and
her distance to the ball. Further, the authors value space on the
pitch itself. Clearly, occupied zones that are close to the goal of the
opponent are of higher value than open and unoccupied space in
the center of the pitch (Link et al., 2016). The authors rate areas
that are usually controlled by defensive players given a certain
location of the ball. They use this concept to measure how well
players are able to occupy and gain space during a game. In fact,
they empirically show, albeit using only data from a single game,
that top players such as Lionel Messi or Andres Iniesta are able to
actively occupy higher valued space than others (Fernandez and
Bornn, 2018). However, the analysis does not involve movement
models or movement characteristics of an individual player;
individual differences such as maximum speed, acceleration, and
agility are ignored. Similarly to the approaches mentioned above,
the proposed model is not quantitatively evaluated.

Dominant regions are used to analyze different aspects of
soccer. Some studies use dominant regions to evaluate passes.
Taki and Hasegawa (2000) and Nakanishi et al. (2010) estimate
the success of a pass along a straight line by measuring whether
it ends in the dominant region of the receiver. Horton et al.

(2017) estimate the quality of a pass by using a prediction model
that, among other features, uses features based on dominant
regions to learn a human rating of observed passes. Some of those
features also use a measure of defensive pressure that, based on
dominant regions, estimate whether defending players are able to
put the passing player under enough spatial pressure to influence
the outcome of the pass. A similar concept was used in Taki
and Hasegawa (2000) who also measure spatial pressure based
on dominant regions. Ueda et al. (2014) analyze defensive and
offensive positioning depending on the location where the ball
was acquired. For pitch control (PC) introduced by Fernandez
and Bornn (2018), however, such evaluations are missing so far.

Several other approaches that model the movements of
the player exist, however. Recently, models that make use of
reinforcement learning and deep learning techniques led to
impressive results such as the study of Le et al. (2017) on deep
imitation learning, who show that the movements of the player
can be predicted over time periods up to several seconds. Dick
and Brefeld (2019) use reinforcement learning in combination
with deep convolution networks to predict the dangerousness
of an offensive situation. Their model is purely data-driven and
works without any expert or prior knowledge. The drawback of
suchmethods, however, is their lack of interpretability that makes
it hard for experts to take actions on these insights. This is an
issue that, for example, Mortensen and Bornn (2019) attempt to
tackle by modeling the movements of the player in basketball
with Markov transitions as Poisson point processes.

Other studies are based on similar ideas. For basketball,
Franks et al. (2015) take a similar approach to rate shots based on
spatiotemporal features of defending players. Link et al. (2016)
also include distances of the players to the goal to quantify
the dangerousness of offensive actions, and Hobbs et al. (2018)
use the notion of defensive disruption as a measure of how
far defenders deviate from their preferred positions in similar
situations and compute transition values for the offensive team.

3. INFLUENCE OF PLAYER ON THE PITCH

3.1. Data
The data that are used in this study are provided by a European
top-flight soccer league. The data include 54 Bundesliga games
from season 2017/18. The data stems from two main sources:
(i) tracking the player and ball position and (ii) event data.
The former is automatically captured from video footage at 25
frames per second by the data provider. At each frame, the (x, y)
coordinates of all 22 players plus the ball are listed. The event
data consist of manually recorded in-game events such as passes,
shots, and tacklings etc. Such events are collected by human
observers who tag each event and enrich them with additional,
event-specific information such as passing player, pass receiver,
and shot success. For both data sources, (x, y) coordinates relate
to a pitch size of 105×68m. The center of the pitch is always at the
origin (0, 0), and positions are scaled to a [−52.5, 52.5] range on
the x-axis and to a [−34, 34] range on the y-axis. The timestamps
of the two data sets need to be aligned so that instances from both
sources can be processed together.

Frontiers in Sports and Active Living | www.frontiersin.org 2 July 2021 | Volume 3 | Article 676179

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Martens et al. Space and Control in Soccer

FIGURE 1 | Player influence models according to Fernandez and Bornn (2018). The ball is visualized in green. (Left) Player standing with the ball. (Right) Player

moving away from the ball.

3.2. Gaussian Influence Models
An analysis of space and control requires a model of a of the
influence of a player on the current situation of the game, that is,
the spatial and temporal configuration on the pitch. Fernandez
and Bornn (2018) model the influence of a player by a bivariate
normal distribution to quantify the amount of control at a
position p ∈ R

2 for a player i at position pit and time t,

f it (p) =
1

√

(2π)2|6i
t|

exp

(

−
1

2
(p− µi

t)
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The mean µi
t of f

i
t is given by the position of the player and his

velocity vector vit using

µi
t = pit +

1

2
· vit

where vit is defined by

vit = pit − pitδ = (xt − xtδ , yt − ytδ )

with tδ = t − δ for an arbitrary time difference δ > 0. The
covariance matrix 6i

t ∈ R
2×2 is a function of the velocity and

distance of a player to ball, as shown in Figure 1. Its computation
resembles an eigendecomposition and is given by

6i
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i
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i
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i
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where R is the rotation matrix that twists the bivariate normal
counterclockwise according to the direction of the velocity vector
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with θ = atan2(yit − yitδ , x
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t − xitδ ). Finally, the scaling matrix Vi

t

determines the area of the distribution by

Vi
t =











rit+

(

rit

(

vit
vmax

)2
)

2 0

0

rit−

(

rit

(

vit
vmax

)2
)

2











where radius ri depends on the Euclidean distance between a
player pit and the ball pbt . By referring to expert knowledge, the
authors restrict ri to be in a range of [4, 10] meters. This function1

is shown in Figure 2. The quantity vmax is the maximum speed of
all the players. We refer to Fernandez and Bornn (2018) for more
details on r and vmax. Figure 1 shows two exemplary situations
to illustrate how velocity and distance to the ball affect the shape
of the Gaussian. Note that this approach ignores movement
capabilities of an individual, e.g., agility and acceleration.

3.3. Data-Driven Movement Models
Influence on the pitch can also be determined directly by possible
movements of players in the near future. One could argue that
a player can only influence the area she can actually reach in a
given time window. While many movement models have been
proposed by approximating equations from physics, Brefeld et al.
(2019) present a data-driven movement model by computing
frequency statistics from historic games. Their approach leads to
individual player movement models that capture characteristic
traits of the respective player.

The approach grounds on triplets (pitδ , p
i
t , p

i
t1
) generated by

the i-th player, with tδ = t − δ for a time horizon t1 = t + 1

1Fernandez and Bornn (2018) only provide a graph without any formula for the

function they used in their study. We reproduced this function by capturing some

coordinates from the plot and transformed these points into a feature matrix that

contains 3-degree polynomial combinations for each data point. This matrix is

learned using the ridge regression model (Hoerl and Kennard, 1970), and hyper-

parameter selection is based on a leave-one-out cross-validation on the negative

mean squared error.

Frontiers in Sports and Active Living | www.frontiersin.org 3 July 2021 | Volume 3 | Article 676179

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Martens et al. Space and Control in Soccer

FIGURE 2 | A function that maps the distance d to the influence radius ri .

such that δ,1 > 0 and tδ < t < t1 holds. Each triplet is a
subset that represents the trajectory of a player with past, current,
and final position. Hence, pitδ and pit can be used to estimate the

velocity vector vit including the direction a player is heading to
at time t. Given this initial velocity, pit1 represents a point that a
player is able to reach in 1 time steps. To this end, all triplets of
the same player are mapped (and rotated) into a new coordinate
system such that the first part realizes a movement along the x-
axis and the final endpoints of the triplets indicate points that are
reached by the player in time 1 with initial velocity v given by
the Euclidean norm of the velocity vector ‖v‖2 [see Brefeld et al.
(2020) for details on how to estimate v from tracking data]. To be
concrete, p′t1 is given by

(x′t1 , y
′
t1
) = (d · cos θ , d · sin θ) (1)

where the rotation angle θ is computed as above,

θ = ∡(−−→ptδpt ,
−−−→ptpt1 )

= atan2(yt − ytδ , xt − xtδ )− atan2(yt1 − yt , xt1 − xt), (2)

and distance d is defined by

d = ||
−−−→ptpt1 ||2. (3)

To obtain an individual movement model for player i, all
available triplets (pitδ , p

i
t , p

i
t1
) are extracted from historic games

and transformed according to the above procedure. The resulting
endpoints are collected together with the initial velocities in a
set. This can be carried out for each 1 in a finite set of time
horizons T such that the result is S i

1∈T = {(pit1 , vt)}. The
time window δ to obtain the initial velocity vector remains fixed
for all combinations. For practical reasons, similar velocities are
often aggregated into bins of similar ranges. Since all passes
are completed within 5 s, we use the time horizons T =

{0.2, 0.4, . . . , 5}. The initial velocity is estimated in the preceeding
δ = 0.2 s. Following Brefeld et al. (2019), we group velocity
ranges into standing ([0, 1) km/h), walking ([1, 7)), jogging

([7, 14)), running ([14, 20)), and sprinting (≥ 20). Every triplet
in the same bin is then summarized by a non-parametric
kernel density estimation (KDE)2 with Gaussian kernel as it
seems to be a good fit for the resulting endpoint distributions.
The bandwidths of the kernels are optimized using Bayesian
optimization (Brochu et al., 2010; Snoek et al., 2012; Srinivas
et al., 2012). We denote the resulting probability density by
P
i
1
(p|pitδ , p

i
t , v

i
t). The measure P

i
1

computes the probability
density that player i can reach position p in time 1 from position
pitδ with initial velocity vit .

Figure 3 shows an example: Trajectories of players are
projected into a new coordinate system such that every trajectory
starts in the origin with an initial movement along the x-axis.
The endpoints of the trajectories are then stored for the actual
initial velocity and time window. Depending on the application,
the point distribution can be either used directly or approximated
by its convex hull. We refer to Brefeld et al. (2019) for details on
the computation of data-driven movement models.

4. QUANTIFYING SPACE

4.1. Influence of the Player
Fernandez and Bornn (2018) introduce PC to measure the
dominance of players and teams in certain areas on the pitch. In
that sense, PC is similar to dominant regions (Taki et al., 1996) or
zones of control (Brefeld et al., 2019).We aim to study data-driven
movement instead of Gaussian approximations together with PC.

For the data-driven approach, we need to map the distance
between player and ball to a time horizon 1. Since our analyses
will focus on passing events, the amount of time a player can
move around is upper bounded by the time it would take to
pass the ball to her. This can directly be translated into the
time horizon that is necessary to select the best-suited player
probability density of the player Pi

1
because of the binning into

discrete time intervals 1 ∈ T . This function can also be learned
from historic data using pass data as an approximation. The idea
is to learn a predictor of the time a player usually has to reach the
ball given the initial distance between him and the passer at the
time the pass was initiated tp. For example, for short distances the
receiving player has less time to react and therefore less ground
she can cover to get herself in an open-spot position to receive a
pass. The distance is then defined as the Euclidean norm of the
vector between passer pb and receiver pr at time tp:

d = ‖
−−−→
pbtpp

r
tp
‖2.

The time window 1 is derived by the duration of pass i.e., the
traveling time of ball from passer to receiver

1 = tr − tp

2Alternatively, parametric approaches like adapting a Gaussian with maximum

likelihood or a Gaussian mixture using expectation maximization could be

pursued. However, the former cannot appropriately represent the multi-modal

player distributions (cmp. Brefeld et al., 2019) and there remains the problem

of choosing the number of mixing components in the latter. We simply

circumnavigate these issues by staying non-parametric.
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FIGURE 3 | Data-driven movement models. (Left) The initial position pt is mapped to the origin such that the initial direction of movement vt follows the x-axis.

Position pt1 marks the end of the trajectory. Position ptδ is required to estimate initial velocity. (Center) Resulting point cloud. (Right) Smoothed movement model

using density estimation.

with tr being the point in time, the receiving player actually
receives the ball3. The mapping function can be phrased as a
regression task with 1 as response and d as an explanatory
variable.We use 25,663 passes to calculate the distance d and pass
duration 1. In short, 80% of the passes are used as the training
set. Hyper-parameters are optimized using cross-validation. All
models are finally validated against the remaining 20% of the
passes, and the best model is chosen by selecting the one with the
minimal mean squared error on the validation set. The resulting
linear regression4 provides a power feature transformation (Yeo
and Johnson, 2000) to better fit the underlying assumptions
for linear regression models (e.g., homoscedasticity in errors).
The learned relationship between distance and time is shown in
Figure 4.

Finally, influence likelihoods of the players are normalized
such that the degree of control of a player’s for each point on
the field lies in the interval [0, 1] by dividing the likelihood of
each point pj with the likelihood at the underlying mode of
distribution (main). This will further be referred to as the player
influence area (PI). For data-driven movement models, the main
mode is computed with mean shift (Comaniciu and Meer, 2002),
and the PI is given by

PIit(p) =
P
i
1
(p|pitδ , p

i
t , v

i
t)

P
i
1
(mode|pitδ , p

i
t , v

i
t)

(4)

3The actual timestamp of the ball reception is difficult to determine due to noise

in the data. In this study, we use a heuristic to select the point in time when the

ball position is in a radius of 1.5 m around the receiving player. This heuristic is

a trade-off between accuracy and the amount of successful passes that are actually

detected in the tracking data.
4For simplicity, we choose a simple model with only a single feature. For higher

predictive accuracies, we suggest to learn more sophisticated (possibly non-linear)

functions to estimate the time horizons using additional features like actual

player/ball positions and/or velocity vectors.

FIGURE 4 | The function that maps the distance d to time window 1.

As a result, the influence value of the player at the main
mode (the highest peak) of each movement distribution has the
value PIit = 15.

4.2. Pitch Control
Pitch control (PC) for a team is defined as the sum over all
influence areas of players. Hence, with all players belonging to
team a collected in set A and their opponents in set B, the
summed team influences can be subtracted to obtain the pitch
control at point p at time t,

PCt(p) = σ
(

∑

a∈A

PIat (p)−
∑

b∈B

PIbt (p)
)

, (5)

where σ maps PC into an appropriate interval. In the remainder,
we make use of tanh :R 7→ [−1, 1], i.e., the value PCt(p) = −1
indicates that the defensive team has full control at point p and

5The influence of the player also depends on the position of the ball pb. For

notational simplicity in the notation, this is omitted and is implicitly included by

the time t and the positions of all actors at that time.
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FIGURE 5 | Pitch control (PC) for the proposed approach (Left) and baseline (Right).

time t whereas PCt(p) = 1means that the offensive team controls
that area.

Figure 5 compares the resulting PC with the original
formulation in Fernandez and Bornn (2018) (baseline) on an
exemplary situation. The red team plays from left to right. The
ball is currently at the green cross and being passed to the purple
cross where the red striker scores with a volley shot. The figure
reveals the main differences between both the approaches. The
influence areas of the baseline are much larger and cover a great
deal of the pitch. By contrast, influence areas computed with
the data-driven movement model are much smaller, especially
when a player is close to the ball. Note that the location of the
purple cross has a PC value of –0.21 for the baseline, while the
proposed approach clearly reflects the known outcome of this
scoring possession by a PC value of 0.57. Since the red player
is already in possession of the ball and moreover able to pass it
on to the striker, the data-driven model delivers a more realistic
interpretation of control on the pitch.

To confirm this impression, we aim to conduct an experiment
on all 289 successful ball possession phases in the data.
Throughout this analysis, we define a possession to be successful
if it ends with a shot at the goal. We focus on sequences with
at least three successful passes because the vast majority of
possessions with fewer passes are rather chaotic and, e.g., consist
of a series of headers after a goal-kick. Analog to the example

above, we collected the pitch control PC
pd

t for the attacking team
at the pass destination pd and at the time t the final pass was
made before the attacker shots at the goal. Figure 6 compares the
results of both models. For our data-driven approach, in nearly
75% of the cases the attacking team has a positive PC before
the pass receiver is able to take a shot. This follows the intuition
that the attacking team must have created some space to realize
the shot at the target. Using the baseline model, however, the
observed PC values do not allow for an informed guess on the
known outcome of these situations.

4.3. Pitch Value
While PC provides interesting insights, many of the colored
regions in Figure 5 are irrelevant for the shown situation (e.g.,
space controlled by the red goal-keeper). Again, we borrow

FIGURE 6 | PC for final passes before a shot was made.

concepts from Fernandez and Bornn (2018) to compute the
value of a position. The underlying idea is that defensive players
intuitively cover highly valuable space. Obviously, defensive
players do not position themselves perfectly in every situation,
e.g., to prevent through-passes. But we argue that such individual
mistakes are exceptions and that defenders usually cover the
important areas on the pitch in similar situations, hence,
with a sufficiently high number of training situations that a
model should be able to generalize well and predict the high
valued space.

We thus aim to learn influence areas for a defending team
from historic data given the ball position at that time pbt . This
will be referred to as defensive influence (DI). The observed DI
on point pj is the sum of influences of all players in the defensive
teamA at time t,

DI
pj

t (pbt ) = min

{

∑

a∈A

PIat (p
j), 1

}

. (6)
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FIGURE 7 | Pitch value using the learned function fnθ . The ball is located at the green cross, and the attacking team plays from left to right. (Left) data-driven.

(Right) baseline.

FIGURE 8 | PC (left column), pitch value (center column), and space quality (right column) for baseline (top row) and proposed approach (bottom row).

Analogous to PC, we define the maximum amount of DI to be
one. Using this definition, the pitch value is defined as

PV
pj

t (pb) =



1−
||
−−→
pjpg ||2

||
−−→
pcpg ||2



 · DI
pj

t (pbt ). (7)

Here, pc denotes the point at the opposite corner such
that the denominator marks the longest possible distance to
the goal. Hence, pitch value equals the defensive influence
scaled by the distance to the goal that is in the range
[0, 1] following the idea that points on the pitch are
generally more valuable the closer they are to the goal of
the opponent.

Though DI
pj

t can be extracted from historic games, we need a

function fnθ (p
b
t , p

j) that approximates DI
pj

t well and that can be
applied to new and unseen situations for generality. Following

Fernandez and Bornn (2018), we propose to learn fnθ with a
feed-forward neural network (FNN) by minimizing the mean
squared error,

min
θ

∑

t,pj

(

DI
pj

t (pbt )− fnθ (p
b
t , p

j)
)2
.

The training data contain game situations from 54 Bundesliga
games (about 34 million observations) where goalkeepers are
ignored. To render this training task computationally feasible, we
choose points as features that lie on an equally spaced 21 × 16
grid G such that pj ∈ G. This results in a (|T | × |G|) × 4
feature matrix X where each row contains the (x, z) coordinates
of one pj ∈ G and the ball position pbt at time t for all available
timestamps T in the data set. Dropout (Srivastava et al., 2014) is
applied to all hidden layers to prevent over-fitting, and all hyper-
parameters (# layers, # units per layer, dropout rate, and learning
rate batch size) of the network are optimized with Bayesian
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FIGURE 9 | The resulting area under the curve (AUC) values.

optimization. In our experiments, the network with the best
performance had two hidden layers and 64 units in each layer.
The optimization was carried out using the Adam optimization
algorithm (Kingma and Ba, 2015).

Figure 7 shows an example of the data-driven approach and
the baseline (Fernandez and Bornn, 2018). The ball is on the
left wing just outside the box visualized by the green cross. The
attacking team plays from left to right. In the data-driven model,
the last defending line forms up right behind the center-line with
the intention to use the offside rule to limit the space in which
the attacking team can operate. The right defender covers space
slightly deeper than his peers on the left side. This is a useful
tactic to prevent straight and long passes in the back of the last
defending line. It also discloses the habit of defending teams to
prevent crosses from one side to the other. Strikers and offensive
midfielders position themselves in a way that their opponent is
forced to play the long passes mostly along the sideline. The
influence area reaches far out to the left penalty box to isolate
the ball-possessing player on his side. Such insights are hidden
in the results of the baseline that considers about half of the
pitch important.

4.4. Space Quality
As shown in the previous sections, pitch control measures the
amount of dominance that a player or team has on a certain
location. Pitch value, by contrast, relates to the value that a
location has at that very moment. Space quality (SQ) for the jth
location at time t is now simply defined as the product of pitch
control and pitch value (Fernandez and Bornn, 2018),

SQ
pj

t = PC
pj

t · PV
pj

t (pbt ). (8)

Figure 8 shows all three parts of the equation for the same
situation. The red team stages an attack that, later on, ends
up in a shot at goal. The player with the ball (green cross)
plays a deep forward pass to the red player on the left wing.
The pass receiver generates pitch control in a highly valuable
area that results in space of high quality. Note the differences

of the two models around the left winger. The baseline credits
much space in her back to her team due to an excessively large
influence of the player. However, given the velocity vector of a
player in this situation the player can hardly control the areas
behind her, especially given the rather short distance to the
passer. Moreover, the baseline estimates the area directly in front
of her as a neutral zone (white). With the data-driven model,
however, that particular area turns dark red as one would expect
in this situation. Also note that the defensive team is pretty
disorganized; they are not doing well in covering the important
space because their defensive line and especially their right back
moved up too far that allows the aforementioned left attacker to
run into the exposed region.

5. SPACE GENERATION

While the previous section suggests that identifying the impact
of the player with individual movement models actually makes
sense, we now turn toward establishing an empirical basis for
this insight. Since the devised quantities are difficult to evaluate
quantitatively, we resort to proxies and study space generation
and measurable outcomes of ball possession phases.

To connect to the previous section, we first test the hypothesis
that passes into areas of high space quality are more likely to
result in a positive outcome than passes into zones with small
space quality. We follow a simple setup: For each pass in the
event log, the resulting space quality is computed at equidistant
points pj ∈ F lying on a 50 cm-spaced grid over the pitch6.
We use only two predictors: (i) the average space quality at the
location of the passer po and (ii) the average space quality at the
position of the pass destination pd for every possession. To take
the distance between a position (grid cell) and the pass origin and
destination, respectively, as well as some smaller inaccuracies in
the pass event data into account, we weigh space quality with
exponential decaying factors λ

o and λ
d, so that positions far

away from the pass origin and destination, respectively, do not
impact the results. The magnitude of the exponential decay is
controlled by parameters that are found by model selection. So,
the features for the kth possession with np pass timestamps Tk are
defined as:

xko =
1

np

∑

t∈Tk

∑

pj∈F

SQ
pj

t · exp(−λ
o · ||

−−→
pjpo||2) (9)

xkd =
1

np

∑

t∈Tk

∑

pj∈F

SQ
pj

t · exp(−λ
d · ||

−−→
pjpd||2) (10)

We use 5,277 ball possession phases in 54 Bundesliga matches
containing 31,824 passes where episodes with fewer than three
passes are discarded. In sum, 5.5% of the remaining data
constitute successful ball possession phases that end with a shot at
goal. These form the positive class.We use a linear support vector
machine (SVM) to learn a model that predicts whether an attack
is successful or not, based on the two input features.

6The proposed grid size trades-off accuracy and computation time. Other values

are certainly possible.
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FIGURE 10 | Correlation between SGrec and non-penalty xG per 90 min (Left) and between SGpas and xA per 90 min (Right).

FIGURE 11 | Comparison of average space quality of the player at the time of all passes (left column) and at the time each player is the actual pass recipient (right

column). Playing direction is from left to right. The SG values in the color bar relate to the average space quality a player generates at a certain field position during all

considered passing events.

For each experiment, we randomly choose 80% of the data
for training and 20% for model evaluation using area under the
curve (AUC). For every combination of parameter andmodel, we
repeat the experiment 1,000 times. To analyze the effect of adding
pitch value to the space quality equation, we repeat the same
setup but replace space quality with pitch control in Equations
(9) and (10). The results are shown in Figure 9. Using only pitch
control does not lead to significant differences between data-
driven and baseline approaches. However, adding pitch value and

thus focusing on space quality lead to a much better predictive
accuracy for the data-driven approach.

For the data-driven approach, the classifiers perform even
better: A very fine-grained focus on the pass destination increases
the ability to predict the outcome of the ball possession.
Translated to the situation in Figure 5, an area in a radius of
1.5 m around the shot position is considered as sufficient for
the classifier. This area is largely controlled by the red team.
The detailed focus on a small area around the pass destination
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FIGURE 12 | (Left) Average passes to player 6. (Right) Passes from 13 to 6.

is possible because the data-driven model is able to approximate
pitch control more accurately than the baseline does. This is

reflected by pitch control values at the shot location (PC
pd

t = 0.57

for the data-driven model vs. PC
pd

t = −0.21 for the baseline
model) and in Figure 6. In fact, for the baseline the classification
results show a very different behavior: the smaller the considered
space, the worse the performance. Overall, the classifiers based
on the data-driven model significantly outperform the ones that
ground on features from the baseline model. Often, large average
space quality values in ball possession phases are caused by only
a few high-quality passes.

Unsurprisingly, these experiments show that it is beneficial
for a soccer team to create valuable space during a possession
through passing in order to get in promising situations to score
a goal. Our analysis confirms that this can actually be measured
with the proposed approach. Our approach turns out accurate
and allows to derive meaningful metrics for individual players.

5.1. Measuring the Generation of Space
We now leverage space quality to off-ball movements and space
generation. A simple way to measure the off-ball movement is to

compute space quality SQ
i,p
t for player i at time t and location p

and subtract the space quality of all other players j ∈ P \ {i} at
that point and time,

SGi
t =

∑

p∈F

∑

j∈P\{i}

max
{

(SQ
i,p
t − SQ

j,p
t ), 0

}

. (11)

Hence, the resulting space generation is the sum of individual
space quality over an equally spaced grid F , i.e., the amount
of control that this player actually has on certain areas on the
pitch weighted by the pitch value. Note that this measurement
approach differs from the space generation gain concept in
(Fernandez and Bornn, 2018), which quantifies the space that an
attacker frees up by dragging the opponents into his direction.

To compute the rating of an individual player for space
generation, SGi

t is evaluated for all timestamps at which an
offensive player controls the ball and attempts to make a pass.

The following analysis is based on data from six teams playing
against each other leading to a subset of 30 games with a total
of 16,631 passes. Space generation is again computed on a 50 cm-
equidistant grid on the pitch. In our analysis, we only consider the
98 players who were involved in at least 30 passes (either as passer
or pass receiver) during these games for a robust comparison.

In the remainder, SGrec denotes the amount of average space
created by a pass receiver and SGpas credits this amount to
the passing player. SGrec thus corresponds to a player creating
space for herself by positioning in areas where she can get the
ball. Similarly, SGpas describes the ability of a passer to identify
valuable spaces and to pass the ball into valuable areas that were
generated by her teammates. SGtotal simply defines the sum of
both measurements.

We focus on possible relationships between our space
generation metrics and existing player metrics and valuations.
Prominent concepts are the expected goal (xG) and expected
assists (xA) metrics that measure the probability that whether
a shot will result in a goal and credit this likelihood either to
the shooter (xG) or the pass giver (xA), respectively. Although
implementations differ in details, the basic idea is to compare
shots with similar characteristics (e.g., shot position and body
part the attacker made the shot with) and calculate how many
of these shots actually resulted in a goal (Lucey et al., 2015; Le
et al., 2017; Rathke, 2017). Besides its popularity, we choose these
measures because, compared to the actual number of goals, it
leaves aside factors such as luck and rather aims at the ability of
the players to bring herself into situations to score7. From that
point of view, xG and SGrec pursue similar goals as the latter
values the ability of a player to bring herself into a position
to receive passes in high-quality areas that ultimately (for the
final pass in a possession) results in a position to shoot at
the goal.

Figure 10 (left) clearly shows a significant positive correlation
between both metrics [Pearson’s r = 0.66 with p-value= 8.85e−

7Comparing to traditional measures like the number of shots leads to similar

outcomes with slightly lower correlations since data are more noisy.
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14 and CI = (0.54, 0.76)]. For a more meaningful comparison,
the xG value is standardized per 90 min and penalty kicks
are excluded8. Note that the result is almost unaffected by the
three players with xG > 0.6 and the one with SGrec > 3
[r = 0.66, p-value = 7.49e − 13, CI = (0.52, 0.76)]. These
four players are strikers with very high SGrec values, so all of
them are able to create high valued space. In addition, the three
players with a superior xG > 0.6 are exceptionally good in
converting shots into goals. For the player with SGrec = 3.52,
the story is quite different. Despite the outstanding ability to
create high valued space, this player is often unable to convert
these situations.

Figure 10 (right) shows the results for SGpas and xA. Although
their relation is not as strong as in the previous comparison,
their correlation is still positive and significant [Pearson’s r =

0.21, p-value = 0.03, CI = (0.02, 0.4)]. This confirms our
initial intuition that both concepts describe similar aspects of
the game. Space generation metrics are not limited to shot or
scoring events but allow also for useful insights on preceding
actions in ball possessions and game analyses, as we will see in
section 5.2. This becomes clear, in particular, for the SGpas and
xA comparison. On one hand, xA only accounts for the direct
pass before a shot even though the more important pass might
have been the one to initiate the attack. As mentioned above, the
receiver metric SGrec does not give any insights on how well the
controlled space is used, i.e., the decision-making or the cognitive
and physical skills after receiving the ball. On the other hand,
xG neglects the amount of defensive pressure; hence, shots can
have a high value even though the attacker is well covered by
the defenders.

5.2. Game Analyses
In this section, we aim to sketch an application of our
contribution to the data-driven analysis of games. The central
idea is to identify dangerous passes and the corresponding pass
givers and receivers and to aggregate this information over
historic data. Clearly, there are additional factors for players
to decide where to pass the ball, such as technical skills and
crowded passing lanes. Hence, as a pass receiver, it is important
to not only generate space but also ensure a positioning that
actually allows to receive the ball. Figure 11 compares the average
space quality created by three players for all their passes (left)
and received balls (right). The midfielders in the first two
rows show clear areas of high quality on the left and right
wings, respectively. In particular, player 19 has the highest
average space quality as a pass receiver. When receiving the
ball, he creates space much closer to the area in front of the
penalty box than player 11 although both usually control space
next to the center-line. As a pass receiver, he creates space
everywhere in the opponent’s half and is particularly difficult
to defend.

For a more detailed view, we choose this player number 6
(cmp. Figure 11 bottom row) because of his widely distributed
space generation pattern and his high SGpas = 0.71 and SGrec =

1.315 scores. We focus on his receiving qualities and aim to

8We use xG and xA values from https://fbref.com, provided by StatsBomb.

understand where these passes come from and, optimally, from
which locations and/or player. Figure 12 (left) shows aggregates
of all passes to player 6 in that game, summarized by his
teammates. Displayed are also the number of passes by arrow
width and the average SGrec values by color. The color legend
ranges from light blue (low SGrec) to dark red (high SGrec). The
figure clearly singles out player 13 as the teammate who creates
space of high value by his passes to player 6. Although the overall
SGpas metric for player 13 is only average, his passes to player 6
are exceptional.

Figure 12 (right) zooms in on this particular connection
between the two player. All ten passes from player 13 to 6 are
shown by arrows where the color is drawn from the legend before,
especially two long passes along the sideline result in very high SG
values. Also, the third long ball generates space above average.
Based on this brief analysis, long passes from 13 to 6 must be
prevented by the opposing team to decrease the dangerousness
of striker 6. Particularly when both players are acting on the right
side of the pitch, the other team needs to prevent long balls along
the sline.

Using the proposed concepts, analyses like this one
could be automated and computed automatically before
a game. By doing so, dangerous opponent players can
be easily identified and, together with video footage,
dangerous episodes shown to the team. The system
also proposes a way to decrease the dangerousness of
these players by preventing the right passes, and also,
these could be automatically retrieved from videos for a
team briefing.

6. CONCLUSIONS

We incorporated data-driven movement models into measures
of space and control that have been originally proposed
by Fernandez and Bornn (2018). We highlighted differences
between their original and our proposed approach and provided
empirical evidence for the usefulness of our approach: using
player movement models as the underlying influence of the
player distinguished from by spatially clearly confined areas
and significant correlations with quantifiable metrics such
as xG. On this basis, we devised a novel space generation
measure that allowed to credit generated space to either the
pass giver or pass receiver. Both could play an important
role when it comes to opponent analysis and analyzing
games. As an example, we showed that the new measure
can be used to automatically identify key players and to
provide insights on how key passes to these players could
be prevented.
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A. APPENDIX

Last but not least, we study the impact of space generation
on the market value of players. We use market values of
the 2017/18 season as a quality indicator for the players
gathered from an online platform9 that have been shown to
correlate with actual transfer fees and even with the outcome
of soccer tournaments (Franck and Nüesch, 2012; Bryson et al.,
2013; Gerhards et al., 2014). We use a standard ordinary
least squares (OLS) linear regression analysis to understand
the relationship between market values (response variable)
and space generation measurements (independent variables).
Usually in soccer, teams within the same league have very
different financial resources, and therefore, some teams can
afford buying and paying players with higher market values
than others. So, we factor in the team name as fixed effects
into the model. As both response and independent variables
are exponentially distributed, we need to log-transform them
before fitting the models to meet the basic assumptions of the
OLS model.

Table A1 summarizes the results. For the summed up passing
and receiving space generation metrics SGtotal, the model
coefficient suggests that market value of a player is 6.5% higher if

9www.transfermarkt.de accessed at February 2nd, 2021.

the player is able to increase his performance in this category by
10%, i.e., the player with the median value of EUR 7.5 m would
be worth almost EUR 8 m. We observe a similar effect when
considering SGrec alone. Here, a 10% increase in the receiver
metric would account for a 3.4% increase in market value. For
the passing metric SGpas, we find a significant relationship only
for midfielders. Nevertheless, the influence this metric has on
the market value is the highest as market value would be 9.3%
higher if the SGpas metric increases by 10%. This observation also
matches with the traditional role for midfield players who usually
need to have good play-making abilities. Although many other
parameters are factored into the estimation of market value, the
ability to create high-quality space as passer or pass receiver is
something that is of great interest for soccer teams and clearly
results in corresponding market values.

TABLE A1 | Linear model results for relationship between market values and SG

metrics.

Formula Coefficient p-value

log(market value) ∼ log(SGtotal )+ team 0.65 0.013

log(market value) ∼ log(SGrec)+ team 0.35 0.029

log(market value) ∼ log(SGpas)+ team

(only midfield players)

0.94 0.035
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