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The measurement of spatiotemporal gait parameters is commonly utilized to assess

gait in healthy and injured individuals. The OptoGait system is a portable system and

can be mounted to a treadmill to collect data in a clinical, training, or research setting.

The purpose of this method comparison study was to examine the agreement of

spatiotemporal gait parameters calculated by the OptoGait compared to an instrumented

treadmill system during running. Thirty healthy runners ran on an instrumented treadmill

with the OptoGait 1-m system mounted along the treadmill platform. Spatiotemporal

running variables of step rate, step length, and contact time were calculated during

the final minute of treadmill running. The level of agreement between the OptoGait

and treadmill was analyzed using intraclass correlation coefficients [ICC (2,3)] for

step rate, step length, and contact time. Step rate and step length demonstrated

excellent agreement. Contact time demonstrated good agreement. Intraclass correlation

coefficients for spatiotemporal parameters ranged from 0.83 to 0.99. The OptoGait

demonstrated good to excellent agreement in the evaluation of running step rate, step

length, and contact time and should be considered for use in clinical, training, or

research settings.
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INTRODUCTION

The measurement of spatiotemporal gait parameters is commonly utilized to assess gait in healthy
(Hollman et al., 2011) and injured (Maffiuletti et al., 2009) individuals. More recently, running
retraining has received increased attention in the literature and clinical practice as a focused
intervention to reduce the biomechanical risk for injury. Spatiotemporal parameters during
running have been linked to biomechanical risk factors for running related injuries (Bredeweg et al.,
2013; Schubert et al., 2014). Previous studies have successfully altered lower extremity biomechanics
during running by altering step rate, step length, or contact time (Edwards et al., 2009; Heiderscheit
et al., 2011; Wellenkotter et al., 2014; Adams et al., 2018). Therefore, it is clinically important for
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clinicians to be able to feasibly and validly measure running
spatiotemporal parameters to inform treatment. Instrumented
treadmills are considered a valid measurement device for
assessing certain running parameters (Kluitenberg et al., 2012).
While valid, these treadmills are costly, require large custom
spaces for operation, trained personnel to operate, and in some
instances require custom code to calculate variables of interest,
making this method not ideal for clinical and training settings.

The OptoGait is a portable system and can be mounted
to a treadmill to collect data. OptoGait uses high-density
photoelectric cells between transmitting and receiving bars,
which detect interruption in light signals to automatically
calculate spatiotemporal parameters. The automatic calculation
of gait parameters is clinically desirable and efficient.

OptoGait has demonstrated excellent reliability for variables
of step rate, step length, and contact time during treadmill (Lee
M. et al., 2014) and over ground walking (Lienhard et al., 2013;
LeeM.M. et al., 2014) as well as good test-retest reliability (LeeM.
M. et al., 2014; Gomez Bernal et al., 2016) in healthy and injured
adults. To our knowledge, the level of agreement of the OptoGait
system during treadmill running compared to an instrumented
treadmill has not been published. Running mechanics differ from
walking to include increased step rate, increased step length,
and decreased contact time (Nuesch et al., 2018). The purpose
of this method comparison study was to examine the level of
agreement of spatiotemporal gait parameters calculated by the
OptoGait system compared to an instrumented treadmill system
during running.

METHODS

Participants
Thirty healthy recreational runners (mean age 30.8 ± 9.8 years;
24 males, 6 females; height 1.8 ± 0.1 meters; mass 80.0 ±

11.6 kg; mean weekly run distance 17.7 ± 17.4 km) volunteered
to participate in the study. All participants met the following
criteria: (1) Department of Defense Beneficiary (Active Duty
Soldier, Cadet, or military dependent) between the ages of 18–
60 years; (2) Run at least a 2.7 meters per second (m/s) pace for
5min; (3) No recent history of lower extremity or back injury
within the previous 3 months or surgery within the previous
6 months; (4) Not currently under a running restriction by a
medical provider; (5) Not currently pregnant or pregnant within
the previous 4 months; (6) Able to read and speak English to
give consent and follow study instructions. To eliminate double
limb support indicative of walking gait, a minimum pace of 2.7
m/s was used to define running gait. This pace is consistent with
previous treadmill running protocols (Asmussen et al., 2019).
The study protocol was approved by the Keller ArmyCommunity
Hospital Institutional Review Board, and written consent was
obtained prior to participation.

Procedures
All participants ran for 5min at a self-selected pace (mean 3.2 ±
0.3 m/s) on an instrumented treadmill (Bertec, Columbus, OH,
USA) with the OptoGait 1-meter system (OptoGait, Microgate,

Bolzano, Italy) mounted along the treadmill platform. Self-
selected pace was defined as a pace similar to a 2-mile run for
exercise (Queen et al., 2006). The Bertec instrumented treadmill
demonstrates comparable force traces to over ground running
(Asmussen et al., 2019) and thus was chosen as the gold standard.
The OptoGait consisted of a transmitting and receiving bar
with each bar containing 96 LED diodes that are positioned
1 centimeter (cm) apart and 3 millimeters (mm) above the
base. The OptoGait was calibrated according to manufacturer’s
guidance. The treadmill running test was selected from the
predefined OptoGait tests. The OptoGait user input the treadmill
speed into the OptoGait system based on the participant’s self-
selected pace.

Raw force data were collected from the instrumented treadmill
at 1,000 Hertz (Hz), low-pass Butterworth filtered at 35Hz,
and normalized to body weight. A 50 Newton (N) (Tirosh
and Sparrow, 2003) threshold was used to determine initial
contact and toe off for each step for the first 5 gait cycles
(5 right steps and 5 left steps). Therefore, stance and swing
portions of the gait cycle were determined when the vertical
ground reaction force surpassed or fell under the 50N threshold,
respectively (Heiderscheit et al., 2011). Spatiotemporal running
variables of step rate (steps per minute), step length (meters), and
contact time (seconds) were calculated using a custom Matlab
script (Mathworks Inc., Natick, MA, USA). Contact time was
determined from the stance portion of the gait cycle when the
foot is in contact with the ground. Step rate was calculated using
the total time to complete 5 gait cycle to yield the number of
steps per second, and then multiplied by 60 s to quantify the
number of steps/minute (Goss and Gross, 2013). Step length was
calculated by identifying the time difference (seconds) between
initial contact of the left and right foot and multiplying that
time by the treadmill speed (meters/second) to yield a step
length distance in meters. OptoGait collected data at 1,000Hz,
and all spatiotemporal running variables were automatically
calculated using OptoGait Version 1.11.1.0 software (Microgate,
Bolzano, Italy). Data collection start times were synchronized to
concurrently collect data from the OptoGait and instrumented
treadmill from three 10 s trials during the final minute of
running at a constant self-selected pace. Five consecutive right
steps from the force plate data were analyzed in Matlab and
compared to the right foot averages automatically calculated by
the OptoGait software.

Statistical Analyses
Data were input intoMicrosoft Excel, and the right foot data from
the three trials were averaged per variable and carried forward
for statistical analyses. Statistical analyses were completed using
R version 3.4.4 with alpha set at 0.05. The level of agreement
between the devices was analyzed using two-way random effects
intraclass correlation coefficients with averaged measures [ICC
(2,3)] for step rate, step length, and contact time. ICCs were
interpreted as excellent (>0.90), good (0.75–0.90), or poor
to moderate (<0.75) (Portney and Watkins, 2009). Absolute
agreement was expressed by coefficient of variation of method
error (CVME) (Portney and Watkins, 2009) and 95% limits of
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TABLE 1 | Means, standard deviations, and limits of agreement of running parameters using OptoGait and instrumented treadmill.

OptoGait Treadmill ICC (2,3)

(95% CI)

CVME (%) 95% LOA

Step rate (steps/min) 172.44 ± 8.78 172.01 ± 8.80 0.99

(0.97–0.99)

0.85 −3.62–4.49

Step length (m) 1.126 ± 0.109 1.128 ± 0.115 0.995

(0.990–0.998)

0.97 −0.03–0.03

Contact time (s) 0.27 ± 0.03 0.24 ± 0.02 0.83

(0.65–0.92)

5.66 −0.01–0.07

ICC, Intraclass Correlation Coefficient; CVME , Coefficient of variation of method error; LOA, Limits of Agreement.

FIGURE 1 | Scatterplot and Bland-Altman plot for the measurement of step rate (steps/minute) during running for the OptoGait vs. instrumented treadmill. The

Bland-Altman plot includes the bias (solid black line) and the upper and lower 95% limits of agreement (dashed lines).

agreement (LOA) using a Bland-Altman plot (Bland and Altman,
1986; Giavarina, 2015).

RESULTS

Means, standard deviations, and level of agreement are described
in Table 1. Compared to the instrumented treadmill, OptoGait
demonstrated excellent agreement for step rate [ICC = 0.99
(95% CI = 0.97–0.99)] and step length [ICC = 0.99 (95% CI
= 0.99–0.99)]. Longer contact times were calculated by the
OptoGait; however, good agreement [ICC = 0.83 (95% CI =

0.65–0.92)] between the OptoGait and instrumented treadmill
was demonstrated.

Coefficient of variation of method error (CVME) was
relatively small, ranging from (0.85 to 5.66%) with contact
time demonstrating the greatest CVME as shown in Table 1.
Scatterplots with lines of equality and Bland-Altman plots
describing 95% limits of agreement are shown in Figure 1

for step rate, Figure 2 for step length, and Figure 3 for
contact time. The scatterplot for contact time shows
a right-sided skewness with OptoGait overestimating
contact time. Bland-Altman plots and 95% LOA for step

rate and step length are distributed in a symmetrical
pattern; however, LOA for contact time are distributed in a
positive pattern.

DISCUSSION

The purpose of this study was to investigate the level of
agreement of the portable 1-meter OptoGait photoelectric
system compared to an instrumented treadmill during
treadmill running. The OptoGait demonstrates good
to excellent agreement for measuring step rate, step
length, and contact time during treadmill running for
healthy runners.

Excellent agreement between the OptoGait and the
instrumented treadmill was observed for step rate and step
length during treadmill running. Previous studies have reported
excellent OptoGait agreement for step rate and step length
during walking (ICC = 0.93–0.99) (Lienhard et al., 2013; Lee M.
et al., 2014; Lee M. M. et al., 2014; Gomez Bernal et al., 2016),
which was consistent with the results for running gait. Clinical
intervention focused on increasing step rate or decreasing
step length by 5–10% may reduce biomechanical risk of injury
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FIGURE 2 | Scatterplot and Bland-Altman plot for the measurement of step length (meters) during running for the OptoGait vs. instrumented treadmill. The

Bland-Altman plot includes the bias (solid black line) and the upper and lower 95% limits of agreement (dashed lines).

FIGURE 3 | Scatterplot and Bland-Altman plot for the measurement of contact time (seconds) during running for the OptoGait vs. instrumented treadmill. The

Bland-Altman plot includes the bias (solid black line) and the upper and lower 95% limits of agreement (dashed lines).

(Edwards et al., 2009; Schubert et al., 2014; Adams et al., 2018).
Additionally, interventions with primary or secondary aims of
increasing step rate and/or decreasing step length have been
used in patient populations with a history of patellofemoral
pain syndrome (Davis et al., 2020), anterior cruciate ligament
reconstruction (Bowersock et al., 2017), iliotibial band syndrome
(Allen, 2014), and chronic exertional compartment syndrome
(Helmhout et al., 2015) with observed levels of decreased
joint loading, decreased pain levels, and improvements in
self-reported outcomes. With the observed high level of
accuracy of the OptoGait in calculating step rate and step
length, clinicians could implement the OptoGait to objectively

monitor changes in these gait parameters in response to gait
retraining interventions.

Contact time demonstrated good agreement between the
OptoGait and treadmill; however, the scatterplot reveals that
contact time was overestimated for 29 out of 30 subjects on
the OptoGait (Figure 3). This systematic bias may be attributed
to the OptoGait photoelectric cells being 3mm above the
treadmill belt, suggesting OptoGait could detect a foot strike
from disruption of light signals prior to the foot contacting
the treadmill. The influence of this offset may be exacerbated
by the 50N force threshold used to determine initial contact
and toe off on the instrumented treadmill. Although threshold
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ranges between 10 and 50N can be used to define initial contact,
lower thresholds may be more acceptable for lower walking
speeds on embedded force plates (Tirosh and Sparrow, 2003).
To reduce false foot strikes from the inherent noise of the
moving treadmill belt (Zeni et al., 2008) at running speeds, a
higher threshold for defining initial contact was used. Contact
time on the OptoGait has demonstrated good to excellent
agreement (ICC’s = 0.85–0.99) for treadmill and over ground
walking (Lienhard et al., 2013; Lee M. et al., 2014; Lee M. M.
et al., 2014; Alvarez et al., 2017) with longer contact times
reported by the OptoGait being attributed to the 3mm offset
(Lienhard et al., 2013). However, initial pressure threshold for
foot strike was not defined by the authors in previous studies
for the reference devices (Lienhard et al., 2013; Lee M. et al.,
2014; Lee M. M. et al., 2014). For the present study, OptoGait
recorded a 14.3% longer contact time, which is likely attributed
to the 3mm offset and the threshold for initial contact on the
instrumented treadmill. Therefore, caution is warranted when
comparing contact times between the two devices with OptoGait
reporting longer contact times.

Limitations
Although this study did not address OptoGait reliability,
others have demonstrated good to excellent intra-rater and
inter-rater reliability for spatiotemporal parameters of running
gait (Jaén-Carrillo et al., 2020). Limitations of our study
include self-selection of shoes and device filtering settings.
The diodes may detect thick heel soles prior to exceeding the
force threshold needed for initial contact on an instrumented
treadmill. Individuals in traditional shoes (18 participants),
defined as a heel to toe drop >8mm, demonstrated an
overestimated contact time by 15.7%, and individuals in
minimalist or partial-minimalist shoes (12 participants) by
12.0%. These changes may have been more pronounced if
further classification of partial minimalist and minimalist
was defined.

Filter setting options in OptoGait are available to increase
the minimum number of interrupted LED diodes for the start
contact time (GaitR IN) and the completion of contact time
(GaitR OUT). The predefined treadmill test utilized had a
default filter setting of 0 LED. Although some studies have
suggested using a filter option for optimizing spatiotemporal
outcomes, the recommended number of LED filters is still
debatable (Garcia-Pinillos et al., 2019; Healy et al., 2019). Further
studies are needed to validate the need for filter settings for
running gait.

CONCLUSION

The present study demonstrates the agreement of the OptoGait
as a method for analyzing spatiotemporal parameters of running
gait. Manipulation of spatiotemporal parameters during running
gait is a technique utilized to reduce biomechanical injury risk
(Edwards et al., 2009; Heiderscheit et al., 2011; Schubert et al.,
2014;Wellenkotter et al., 2014; Adams et al., 2018). The OptoGait
may be utilized to objectively monitor changes in response to
training program or gait retraining interventions. The OptoGait
demonstrated good to excellent agreement in the evaluation of
running step rate, step length, and contact time and should be
considered for use in clinical, training, and research settings.
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