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Several methodologies have been proposed to determine turn switches in alpine skiing.

A recent study using inertial measurement units (IMU) was able to accurately detect

turn switch points in controlled lab conditions. However, this method has yet to be

validated during actual skiing in the field. The aim of this study was to further develop

and validate this methodology to accurately detect turns in the field, where factors such

as slope conditions, velocity, turn length, and turn style can influence the recorded data.

A secondary aim was to identify runs. Different turn styles were performed (carving long,

short, drifted, and snowplow turns) and the performance of the turn detection algorithm

was assessed using the ratio, precision, and recall. Short carved turns showed values of

0.996 and 0.996, carving long 1.007 and 0.993, drifted 0.833 and 1.000 and snowplow

0.538 and 0.839 for ratio and precision, respectively. The results indicated that the

improved system was valid and accurate for detecting runs and carved turns. However,

for drifted turns, while all the turns detected were real, some real turns were missing.

Further development needs to be done to include snowplow skiing.

Keywords: carving, drifted turns, IMU, sensor, ski

INTRODUCTION

Turn detection in alpine skiing has been a topic of growing interest over the last 15 years.
Turns are the basic unit required for detailed analysis or interpretation of skiing data such as
edge angle, symmetry, or turn phases (Müller and Schwameder, 2003; Spörri et al., 2012; Supej
et al., 2013; Hébert-Losier et al., 2014). Thus, it is essential to determine when each turn begins
(Spörri et al., 2012). Several sensor configurations and methodologies have been proposed to define
turn switches. For example, the crossing point between the center of mass (CoM) and the ski
trajectories (Supej et al., 2003), the minimum ground reaction force (Nakazato et al., 2011), the
instant when the vertical distance of the right ankle joint and left ankle joint to CoM vectors are
equal (Fasel et al., 2016b) and the deflection point of the CoM trajectory (Gilgien et al., 2018).
Although those methodologies are useful for turn detection, they present some disadvantages
that make them not feasible for use on a regular basis. These methods require time consuming
preparation, labor-intensive post processing, or alterations in the athlete comfort that make them
disadvantageous for regular in-field use.
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Inertial measurement unit (IMU) sensor technology has been
proposed as a promising alternative approach (Gouwanda and
Senanayake, 2008; Fasel et al., 2016b; Yu et al., 2016; Martínez
et al., 2019). Smartphones are already used to collect, receive,
store, and analyze data collected by wireless sensors, which have
progressively become smaller and longer lasting (Kranz et al.,
2013; Bondaronek et al., 2018). Based on this development,
inquiries are no longer limited to single or double turns, a
limitation of some methodologies (Supej et al., 2003; Spörri
et al., 2012). Currently, it is possible to perform data collection
over longer runs, implementing IMU technologies into the
skier’s equipment.

Recently, there have been some studies proposing turn
detection systems based on simple IMU configurations. Those
methodologies are unobtrusive for the athlete avoiding possible
alterations in the data related to comfort or technique
modification. Yu et al. (2016) placed several IMUs on a single
elite skier during part of routine on-slope training for giant
slalom and 48 turns were assessed. They computed the angle
of each IMU roll axis relative to the vertical to count turns
and concluded that the best placements for the IMUs were the
pelvis, shank, and foot. Although the system was able to count
turns properly, they did not report the turn switch points. A
second method was developed with the goal of counting and
differentiating right and left turns. Jones et al. (2016) proposed
a machine learning approach. They placed a customized sensor
consisting on an accelerometer and a gyroscope below the skier’s
knee. After training the system,∼87% of the turns were detected.
Similar to the previous method, this approach aimed only to
count turns, not define turn switch point. Both methods were
only developed and tested on single skiers. Another methodology
was proposed by our research group (Martínez et al., 2019) and
was based on two IMUs, placed on the upper cuff of each ski
boot. The study was performed in a laboratory environment
using a ski-ergometer. The algorithm developed was based on the
gyroscope signal and detected turn switch points with a precision
of ± 0.03 s. It was hypothesized that this methodology would
work for all parallel skiing styles (i.e., carving and drifted turns
in all radii), while previous methodologies had focused mostly on
slalom or giant slalom race conditions (Supej et al., 2003; Ulrich
et al., 2015; Yu et al., 2016). However, this method has not been
validated during actual skiing in the field [with the exception of
the reported one participant pilot (Martínez et al., 2019)].

Methods such as the aforementioned, allow for extended
data collection. As the amount of data collected grows, it
seems appropriate to differentiate not only between turns but
also between runs since skiing usually consists on multiple
sequences of turns. This would allow for a better organization and
classification of the data, and potentially for real time analysis. To
our knowledge, there is a lack of methodologies to automatically
segment ski runs based on non-obtrusive methodology.

The validation of the algorithm used in this study was based on
the accurate detection of each turn. Hence, the goals of this study
were 2-fold, (1) to further develop and validate the algorithm of
Martínez et al. (2019) in field conditions including different turn
styles and lengths, and (2) to automatically detect and segment
turn sequences.

MATERIALS AND METHODS

For the validation and development of the turn detection
algorithm, an experiment was designed where an IMU was
attached to each ski boot (Martínez et al., 2019) and a camera
placed on the chest to serve as a reference. The turn styles
assessed were: carving long, carving short, drifted turns and
snowplow steering. Participants were instructed to perform
long turns over an 8m corridor, approximately defined by
the width of two snow groomer tracks, and short turns
within a 4m corridor, approximately defined by one groomer
width. This provided a consistent reference for turn size,
without explicitly controlling or defining turn size or shape.
Each participant performed a turn sequence including at least
10 turns for each skiing style. The test slope was a red
slope (#1) at Mölltaler Glacier in Flattach, Austria, which is
steeper in the upper half and moderate in the lower half.
Two skiing styles were performed within each run. The first
run included carving short on the upper half and carving
long on the lower half; while the second run consisted on
drifted turns on the upper half and snowplow steering on the
lower half. The algorithm development process consisted of
several evaluation—development iterations where weaknesses
were evaluated, adjusted, and tested again.

Participants
Eleven male expert skiers (Mean ± SD: Age 26.2 ± 5.9
year; Height = 179.4 ± 5.9 cm; Mass = 77.0 ± 5.4 kg)
volunteered for the study. All participants were expert skiers,
with experience as ski racers or ski instructors. Before the
measurements were conducted, they were informed in detail
about the testing procedure, as well as possible benefits and risks
of the investigation prior to signing the consent form approved by
the local Ethics Committee (EK-GZ: 11/2018). The experiment
was conducted in accordance with the Declaration of Helsinki.

Instruments
An IMU (LSM6DS3, 2.5 × 3 × 0.83mm, ± 8 g and ± 500
dps full scale, STMicroelectonics, Amsterdam, Netherlands) was
placed in the back of the upper cuff of each boot (Hawx
130, Atomic, Altenmarkt, Austria). The X axis of the IMU
was aligned with the vertical axis of the boot (yaw) pointing
superiorly, the Y with the lateral axis (pitch) pointing to
the left, and the Z with the anterior-posterior axis (roll)
pointing posteriorly (Figure 1). The IMU was fixed using a
tight elastic strap and a customized rigid housing to avoid
movement or misalignments. Angular velocities from the
gyroscope signals were collected at 833Hz, analog and digital
low-pass filters were applied directly by the IMU after A/D
conversion, and the signal was forwarded via Bluetooth at
64Hz. The sensor data was collected and stored by an in-
house smartphone application (SkiSense App, Salzburg Research,
Salzburg, Austria).

In order to define reference turn switch points and determine
the proper detection of turns (e.g., real turns not detected
or turns erroneously detected), all runs were recorded with
a camera (Hero4 Session, GoPro, San Mateo, CA, USA) with
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FIGURE 1 | Definition of axes. The positive roll axis is parallel to the ski’s

surface pointing posteriorly.

a sampling rate of 25Hz. The camera was placed on the
skiers’ chests using an adjustable chest harness, and positioned
such that the field of view included both skis, boots and the
surrounding area.

Data Preparation
Video data was analyzed by experienced raters, labeling relevant
events or context, such as turn switch point, turn direction, or
jump. Turn switch points in the video analysis were defined as
the frames where the surfaces of the skis were flat on the ground.
Video and sensor data were synchronized using a jump event at
the beginning and end of each trial. The jumps were detected
in the vertical axis of the accelerometer and synchronized with
the frame at landing. For validation, the actual turns obtained
by the video analysis and the number of detected turns were
used. The detected turns were computed by applying the turn
detection algorithm (Martínez et al., 2019) to the sensor data
(see Figure 2).

Evaluation Design
In order to validate the turn detection algorithm, three
performance metrics were implemented: (1) ratio, (2) turn count
precision, and (3) recall (see below). All steps of evaluation
(i.e., data acquisition, video analysis, signal evaluation) were
conducted in a blinded procedure.

• Ratio: the quotient between the number of turns detected by
the algorithm and the number of turns labeled in the video
data (see Figure 2). If the ratio is >1, the turn detection
algorithm overestimates the number of actual turns, and vice
versa. A ratio of one means that the number of detected turns
and actual turns are the same, indicating a good performance
of the turn detection. However, it does not indicate if all the

FIGURE 2 | Data flow from field measurements to data used for the validation

and performance metrics. Determination of the ratio between the number of

turns detected and actual turns and computation of the metrics used to

calculate precision and recall.

detected turns were real turns, since only the number of turns
is evaluated.

• Turn count precision (P): the proportion of turns detected by
the algorithm that are actual turns (see Equation 1).

• Recall (R): the proportion of actual turns detected by the turn
detection algorithm (see Equation 2).

In all metrics a value of 1 means a perfect performance.
To calculate the turn count precision and recall values, the

following metric were determined (Figure 2):

• True positives are determined by a detected turn that was
an actual turn (based on video). A correct detection is
characterized by the correct turn direction (either left or right
turn) and by the difference in time between the detected and
the actual timestamp. If the time difference is smaller than
half the mean duration of actual turns (for a run), it is a
true positive.

• False positives reflect the number of detected turns that are not
actual turns.
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FIGURE 3 | Two examples of the roll signal ωroll (gray) and decision signal ωds (black) of ski runs with several carving turns (A) and short turns (B). The markers show

local extrema; the black circles represent turn switches and the red squares are artifacts to be recognized and discarded.

• False negatives are the number of actual turns that are not
detected by the turn detection algorithm.

P = TP • (TP + FP)−1 (1)

R = TP • (TP + FN)−1 (2)

Where P is the turn count precision, TP the true positives, FP the
false positives, R the recall and FN the false negatives.

Algorithm Development
The purpose of the following algorithm was to determinate
turn switches and sequences of parallel skiing turns. To keep
the algorithm simple, it was assumed that a turn switch is a
single point in time where both skis change from the uphill to
downhill set of edges simultaneously. The performance metrics
and video recordings were used to evaluate the performance of
the current algorithm iteration (see section Evaluation design)
and detect weaknesses.

The starting point was the evaluation of the algorithm
developed under laboratory conditions by Martínez et al. (2019).
Matlab (R2017B, MathWorks, Natick, MA, USA) and R (3.5.1,
R Core Team, Auckland, New Zealand) were used to test and
develop the algorithm. The roll axis (z) of the gyroscope signal
from the left leg ωl

roll
and right leg ωr

roll
[rad/s] were used as

input signal to calculate the turn switch points (Figure 1). High
rotation rates (angular velocity) in the roll axis can have different
causes (e.g., turning or skating). To restrict high rates to parallel
turns, the arithmetic mean of both sides ωroll smooths unilateral
rotations. In the next step, a fourth-order zero-lag 0.5Hz low-
pass Butterworth (BW) (Martínez et al., 2019) was applied to
produce a decision signal (ωds) that describes the rotation rate
in the roll axis (Figure 3).

Figure 3 shows the local extrema in the two exemplary
decision signals ωds = BW0.5(−ωroll). The left graph shows a
sequence of nine carving turns (mean ± SD; turn duration of
2.97 ± 0.43 s), the right graph a sequence of 16 short turns (turn

duration 1.04 ± 0.41 s). The minus before ωroll flips the positive
direction to anterior in agreement with the movement direction.
The extrema indicate possible turn switches, whereby the sign of
a value in ωds determines the turn direction. As Figure 3 shows,
local extrema are not necessarily caused by turn switches (red
dots). There are other causes, especially when the signal oscillates
with small amplitudes around zero after the skier has stopped.
Furthermore, the constant cut-off frequency of 0.5Hz is a trade
off between damping the rotation rate of short turns too much
and fostering artifacts (red dots/local extrema within turns) in
long turns. Thus, as a next step, the algorithm goes through
the sequence of all local extrema and labels each local extrema
(Figure 4):

• Switch: This kind of local extrema indicates actual turn
switches from left to right or right to left.

• Noise: Local extrema that happen within a turn are called
noise. If a skier performs turns with longer duration (e.g.,
slowly skidded parallel turns or carving turns with a long stable
edge angle), the decision signal ωds shows some artifacts as
saddle points or small counter oscillations (Figure 4, green
dots). These artifacts result in local extrema which are “within
a turn” and do not indicate an actual turn switch.

• Eliminated: All other local extrema must be eliminated from
the algorithm. These extrema are “outside a turn” and caused
by small oscillations when the skier is not turning. For
example, waiting, walking, or skiing straight downhill. The
eliminated extrema are used to define the beginning and end
of turn sequences.

Several heuristic rules were used for the labeling process:

1) Switch: Look at each pair of two consecutive local extrema:
If two consecutive local maxima have a high rotation rate in
abs(ωds), opposite sign and a time distance >0.3 s and smaller
than 5.0 s then label both as switch.

2) Noise: Look at each sequence of four consecutive local
extrema: If both outer extrema fulfill rule 1 and both inner
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local extrema not and if the rotation rates in abs(ωds) of the
inner are smaller than the outer then label both inner as noise.

3) Eliminated:

(a) Look at each local extrema: If it is not labeled as switch or
noise and if the rotation rate is smaller than a threshold
then label as eliminated.

(b) Look at each local extrema: If it is not labeled as switch,
noise or eliminated and if it has the same sign in ωds as its
predecessor then label as eliminated.

(c) Look at each local extrema: If it is not labeled as switch,
noise, or eliminated apply a decision tree (see below) to
label it as eliminated or not.

(d) Look at each local extrema: If it is not labeled as switch,
noise or eliminated and if the predecessor and successor
are eliminated then label as eliminated.

4) Remaining: Look at each local extrema: If it is not labeled as
switch, noise, or eliminated then label as switch.

Decision tree (3c): the goal of the machine learning task was to
obtain a simple rule that removes all remaining local extrema
outside a turn sequence because these local extrema should have
the label eliminated. If we do not have such a rule, rule 4 cannot
be applied. A decision tree was trained by means of machine
learning. The intent of the decision tree was to discriminate for
each local extrema between the classes within a turn sequence or
not-eliminated and outside a turn sequence or eliminated. Data
were labeled by manually defining the time ranges of the turn
sequences, and a cross-validation was used to avoid overfitting
the decision tree. Obvious features as ωr

roll
, ωl

roll
, ωroll, ωds,

ωds (change in angular velocity between two consecutive local
extrema), its absolute values abs (ωds) and t were used to search
the most expressive features. The result was the decision tree:
abs (ωds) ≤ θ1 ∧ t ≤ θ2 → eliminated. That means that the
absolute value ωds and the t (time between two consecutive local
extrema) were identified by the machine learning task as most
expressive. The variables θ1 and θ2 are the modeling parameters
of the machine learning model thresholds.

The result of the previous step is a turn sequence (TS)
of labeled local extrema TSds,n((tn,ωds(tn), ln))n∈N. Next, the
algorithm derives the turns (tstart , tend, d, s) from the sequence
TSds,n. The timestamps tstart and tend are the start and the end of
a turn (turn switch points), the value d ∈ {left, right} indicates
turn direction and s∈ N is the number of the turn sequence
to which the turn belongs (Figure 5). The value of d depends
on the orientation of positive roll axis. Figure 1 shows a right-
handed coordinate system with positive roll axis in the posterior
direction. Thus, local maxima (positive rotation) indicate turn
switches from left to right and local minima (negative rotation)
from right to left. A continuous alternating sequence of turns is
given, if tend,i−1 = tstart,i respectively if the end of turn i − 1
is the start of turn i, then si = si−1. If tend,i−1 6= tstart,i, then
turn i starts a new turn sequence and si = si−1 + 1 (Figure 5).
The start value of s1 is 1. To determine the sequence of turns
Tds,m((tstart,m, tend,m, dm, sm))m∈N (m < n), the algorithm iterates
through the sequence and merges consecutive extrema with label
switch to a turn if and only if they are no interruptions from local

FIGURE 4 | The graph shows the proposed three types of labels for local

extrema. Local extrema which are labeled as switch are black circles and

additionally highlighted by the gray vertical line. The red squares represent

local extrema with label eliminated and the green rhomboids outlines those

with label noise. The average turn duration in this example is 2.97s and is

longer than in Figure 3.

extrema with label eliminated. This rule produces a continuous
turn sequence with tend,i−1 = tstart,i. Local extrema with label
noise (per definition “within turn”) were ignored because they
do not interrupt a turn. Eliminated local extrema (per definition
“outside turn”) indicate an interruption of a consecutive turn
sequence and causes tend,i−1 6= tstart,i and si = si−1 + 1.
The previous heuristic rules ensure that in a turn sequence
each switch is followed by a switch with opposite sign, even in
case were local extrema with label noise are between. A strict
alternation of the sign is necessary because otherwise there is no
alternation of left and right turns, which is not obvious.

The decision signal is a strongly smoothed signal. The
rotation rates represent the general rotation behavior of (parallel)
turning during skiing. The degree of smoothing between raw
and decision signal can be observed in Figures 4, 6A. To
determine the turn switches more accurately, a higher cut-
off frequency seems to be more advisable. As shown in
the study of Martínez et al. (2019), fc = 3.0 Hz is a
proper cut-off frequency to perform such a “fine tuning.”
Therefore, a new fine tuning signal is defined by ωft =

BW3.0(−ωroll) (Figure 6A). Then the algorithm searches for
each

(

ti,ωds(ti), li
)

the global maximum or minimum in ωft in
a time window (an asymmetric ε neighborhood) around the
turn switch timestamp ti. The algorithm “fine tunes” only local
extrema labeled as switch and defines the global maximum or
minimum ωft(t

′

i) at t
′

i as the new “fine tuned” turn switch. A
percentage value or factor p ∈ [0, 1] defines the size of the
asymmetric ε neighborhood (Figure 6B): [ti − p (ti − ti−1) , ti +
p(ti+1 − ti)].

For the succeeding evaluation we use 60% for the ε

neighborhood, thus p = 0.6. Finally, the fine tuned turn
switches, turns and turn sequences are based on the sequence
TSft,n((t

′

n,ωft(t
′

n), ln))n∈N. Finally, the new sequence of fine tuned
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FIGURE 5 | The lower part shows an exemplary decision signal ωds with local extrema of type switch, noise and eliminated. The corresponding derived turns and turn

sequences are shown above.

FIGURE 6 | (A) Comparison of the raw signal −ωroll (gray), the filtered decision signal ωds (black, 0.5Hz) and fine tuning signal ωft (blue, 3.0Hz). The vertical blue and

black lines show the effect of fine tuning, and the small shift in time. (B) The graph outlines (in gray) the definition of ε neighborhood graphically. A p of 0.6 defines a ε

neighborhood (gray) where 60% of the distance to predecessor and successor extremum are part.

turns Tft,m((t
′

start,m, t
′

end,m, dm, sm))m∈N
is given by substituting all

t in Tds,m with t
′
.

RESULTS

The results of the turn detection evaluation for each skiing style
(short and long carved, drifted, and snowplow turns) are shown
in Table 1. The ratio between the detected and the actual carved
turns (long and short turns pooled together) was 0.997, the
best value of the different skiing styles analyzed (drifted 0.833,
snowplow 0.538). A ratio of 0.997 indicates that the number
of actual carving turns was slightly underestimated by the turn
detection algorithm.

Investigating the turn precision measures of the algorithm
for carved turns, almost all detected turns were correctly
detected (turn precision was higher than 0.993 for both turn
sequences). The recall measures were also high with values

>0.990, which indicates that almost all actual turns were detected
by the algorithm.

DISCUSSION

The purpose of this study was to develop and validate a turn
detection algorithm for parallel alpine skiing turns in the field.
The assumption that a turn switch is a single point in time where
the edge changes simultaneously for both skis is not too critical
if the turns have seamless transitions, and the skier performs
parallel styles. Conversely, the algorithm is not able to count all
turn styles accurately. For example, snowplow and drifted turns
with low dynamics or straight piste crossings cause problems.
However, the proposed methodology was aimed at continuous
turn sequences of parallel style turns, as carved turns are usually
the main subject of interest.

For validation, tests were performed by several subjects
with diverse techniques, turn lengths, and snow conditions.
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TABLE 1 | Evaluation metrics for each skiing style and group of styles in number

of turns; ratio, turn count precision, and recall of each adapted confusion matrix.

Turn Sequence AT TP FP FN Ratio Precision Recall

Short carved turns 231 230 1 2 0.996 0.996 0.991

Long carved turns 143 143 1 0 1.007 0.993 1

Drifted turns 132 109 0 22 0.833 1 0.833

Snowplow 104 47 9 57 0.538 0.839 0.452

TURN SEQUENCE GROUPED

Carved 374 373 2 2 0.997 0.995 0.995

Parallel 506 482 2 24 0.953 0.996 0.953

All 610 529 11 81 0.867 0.980 0.867

AT, actual turns; TP, true positives; FP, false positives; FN, false negatives; Precision, turn

count precision. Carved includes short and long carved turns. Parallel includes carved

and drifted turns. All includes parallel and snowplow.

FIGURE 7 | Schematic representation of the beginning of a turn sequence

and three different options for the first detected turn. Option 2 was the desired

outcome.

The instructions for the different turn lengths aimed to define
different types of turns (e.g., short and long) while allowing the
participants to perform slightly different turns. We believe that
not having an exact turn length adds an extra variability that
is beneficial to develop a more robust algorithm. The natural
variation in snow conditions across the 4 days of testing provided
an additional layer of variability, adding to the robustness of the
algorithm. The results of 374 carved turns (0.997 ratio, 0.995
precision, and 0.995 recall) prove the validity and robustness
of this turn detection algorithm for this particular turning
technique.Misdetections during carved turns were only observed
at the beginning of the turn sequences; however, they weremostly
counted correctly. The three different options observed for the
initial turn detected in a turn sequence are shown in Figure 7.
From 32 parallel turn sequences analyzed in this study, five were
not properly detected. The system aimed to detect the first edge
change out of the fall line (option 2 in Figure 7) and this first
turn switch of each run was ignored and not included. Out of
the five turn sequences not properly detected, two counted an

extra turn (FP, option 1 in Figure 7) and three failed to count
one turn (FN option 3 in Figure 7). Besides this issue with the
beginning of the turn sequences, for carved turns, there were
no other misdetections, all the turns within sequences were
properly detected.

Ratio and recall for drifted turns (0.833 both values) were
lower than for carved turns. The turn detection algorithmworked
properly for all participants but four. For those participants, the
missing turns were not isolated but consecutive (e.g., 2, 4, 6,
and 9 consecutive turns). All those turns had some common
characteristics. They were longer slow turns, which produced a
less dynamic movement, and consequently were more affected
by the snow conditions, in those cases, bumpy surfaces. The
algorithm is prepared to recognize and cancel some noise (see
Figure 5); however, when there is too much noise (e.g., more
than two extra local maxima are detected between turns) the
turn sequence is finalized. If there are several turns under those
conditions, it does not report multiple sequences with single
turns, but rather discards most of the turns since the first turn
of every sequence is discarded. The possible misdetection of
the first turn and the long low dynamic turns were the causes
of some misdetection of turn sequences. When turn detection
worked accurately, the sequences were properly defined and
cut. Discriminating the signal depending on how dynamic the
movement is could help to further develop the algorithm and
overcome those missing turns.

Although the algorithm was developed for parallel turns,
the performance during snowplow steering was also evaluated.
While the turn count precision was acceptable, ratio and recall
were unacceptably low (0.839, 0.538, and 0.452, respectively).
As expected, most of the detected turns were actual turns, but
many real turns were not detected. The snowplow turning style
is completely different than drifted or carved turns. The legs
do not have synchronized rotation rates in roll axis. The main
movement does not rotate around the anterior-posterior axis,
but around the vertical axis. Consequently, an algorithm that
only takes into consideration the anterior-posterior axis might
not be the most effective approach. However, snowplow turns are
usually turns during learning and they are not used very often in
everyday skiing. Thus, the focus on parallel turns is obvious, at
least from a practical perspective. Further development, probably
including a combination of more than one axis or a turn style
detection system, would be needed for the automatic detection of
snowplow turns.

Over the different iterations of the development process,
modifications were included in the algorithm. These
modifications were needed in order to cope with signal
features that differed between in-lab (Martínez et al., 2019) and
real skiing conditions. Due to the variable snow conditions,
styles, turn lengths, and skiers, the signals recorded during
skiing had more variability and some recurrent differences when
compared to simulated turns on a ski glider. To confront this
issue, some recurrent misdetections that did not corresponded
with turn switch points (e.g., noise within turns or artifacts after
stopping) were corrected, adding new rules to the algorithm
and thus making it less simple. One of the additions was the
decision tree. This decision tree is easy to implement by a
single if condition. Thus, we preferred to use just a simple
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machine learning model, which is still human interpretable and
implementable, to provide an additional heuristic rule. Such a
simpler problem statement needs fewer data. However, it would
be possible to generate a decision tree that is able to replace all
the rules from 1 to 4. Such a decision tree would need more
labeled data and the input for learning data would have to be
more complex. It would be necessary to analyze at least a short
sequence of local extrema. In our case, we looked only on the
local extremum and its predecessor. This could be an approach
for further optimization and automatization. However, for our
proposed algorithm, machine learning was applied to provide
final heuristic rule for the remaining local extrema. Furthermore,
we limited the use of machine learning approaches in order
to keep computational cost low, as this algorithm could be
implemented in a smartphone app.

During the development process, some algorithm rules, and
parameters were manually optimized to fine tune the algorithm.
However, the algorithm presented in this publication is fully
automatic, and does not require manual input. The results could
however be influenced by IMU specifications such as sensitivity,
sampling rate, and orientation.

For the validation of the turn detection algorithm, events
such as falls were excluded from the study. One of the subjects
fell during one trial, and two turns were detected based on this
fall. Thus, in case of a fall, the algorithm might detect some
extra turns.

The present methodology presents some advantages when
compared to previously proposed methods. Yu et al. (2016)
successfully counted turns using a single IMU. However, they
only assessed one participant during a single giant slalom race
trial, and the method was based on the angle with respect
to the vertical. To properly calculate the orientation of the
sensor, integration and drift correction computation procedures
are needed (Seel et al., 2014; Fasel et al., 2018). This type of
computation usually requires post-processing the data andmakes
it more difficult to perform analysis in real time and potentially
limits the applications of this method. It is also important to
consider that their goal was to count turns, therefore they did
not report the turn switch points. The limitations of using video
recording during skiing are well-known. There is limited capture
volume (Supej et al., 2003; Fasel et al., 2016a), and it requires
time consuming preparation and post processing (Reid, 2010).
Furthermore, recent work from our research group showed that
even in ideal lab conditions, the determination of the turn
switch point using video recordings as a reference is challenging.
Different raters, even with the same instructions, select different
frames as the turn switch point (the reported range between raters
was 51.4ms; Martínez et al., 2019). For this reason, precision in
the field was not measured in this study, but we can reasonably
assume similar precision to that observed in the lab (± 0.03 s).
Since the nature of the movement on the ski-ergometer and
during real skiing both follow our model of pendular movement,
the basic features identified as turn switch points within the
signals should be similar on the ski-ergometer and in the field.
As such, the turn switch point determined by video analysis was
only used as a reference to determine if the measured turn switch
point corresponded to an actual turn switch.

CONCLUSION

In conclusion, the developed turn detection system is a valid,
robust, and generally simple tool to detect parallel turns (carved
and drifted) in alpine skiing with an accuracy of 95.3%. For
carving turns, the algorithm is able to accurately detect 99.7%
of actual carving turns. The algorithm is based only on a single
axis of gyroscope data. Simple IMUs, securely mounted on both
ski boots, provide sufficient data for the segmentation of time
series signals into both turn sequences and single turns. Both
are very convenient data structures for further analysis tasks. The
approach is applicable for in-field studies because the devices do
not disturb skiing and the algorithm is fully automated. Further
research is needed to assess the performance of the system for
skiers with different skill levels, or to include the detection of
other turn styles, such as snowplow turns.
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