
Tip and vibration control of space
robots using estimated flexible
coordinates

Dhruvi Patel and Christopher J. Damaren*

Institute for Aerospace Studies, University of Toronto, Toronto, ON, Canada

This paper provides an extension to previous work on end-effector control of
flexible space manipulators. Those works considered the use of a special output
called the μ-tip rate for feedback control of desired end-effector trajectories with
simultaneous vibration control. Implementation of this special output requires
measurement of end-effector position or the use of flexible forward kinematics
to determine it. For the latter, one requires measurements of the joint angles and
flexible coordinates. The second of these is difficult to measure in space
scenarios, so this paper looks at the use of an estimation scheme to
approximate it and use it in a task-space control law. Multiple simulations are
conducted to investigate the use of these approximated elastic coordinates in
robustly controlling a one-link and two-link flexible manipulator with a payload
mass. The error between desired and actual trajectory is calculated, and the
results are juxtaposed with results from a joint-space feedback scheme. There is
an emphasis on comparing the estimated elastic coordinates with the actual
simulated coordinates. Using the estimated elastic coordinates to determine the
end-effector location via forward kinematics, yielded similar results to when the
actual elastic coordinates were used. Overall, the estimation equation used is
shown to provide reasonable end-effector tracking results with the end-effector
being able to track various types of trajectories.

KEYWORDS

flexible space manipulators, flexible coordinate estimation, tip control, vibration
suppression, task-space control

1 Introduction

The control of structurally flexible robot manipulators represents a significant challenge
when compared with that of their rigid counterparts. In the latter case, the desired motions
of the end-effector position and orientation are easily translated into a prescription for the
joint motions. The latter are typically collocated with torque actuation provided by motors.
This leads to the desirable property of passivity for the input-output mapping relating joint
torques to joint rates. The passivity theorem (Desoer and Vidyasagar, 1975) then guarantees
the stability provided by the negative feedback of strictly passive controllers such as
proportional-integral control applied to joint rates [i.e., proportional-derivative (PD)
control applied to the joint angle motions].

For structurally flexible manipulators, the passivity property of the joint torque to joint
rate mapping continues to hold given the collocation (Benhabib et al., 1981) but this is less
useful because control of the joint motions does not necessarily produce the correct motion
for the end-effector coordinates. However, it is fair to say that many researchers (Benosman
and Le Vey, 2004) have opted to control flexible manipulators by tracking desired joint
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trajectories (obtained from rigid inverse kinematics) coupled with
vibration suppression of the flexible coordinates. This is often
misguided because the inverse kinematical solution for a
prescribed end-effector motion does typically require some
deformations of the links as shown by Bayo et al. (1989).

Robust control is necessitated when there is a need for
stability despite model uncertainties and environmental
disturbances. For flexible manipulators, a specific issue arises
in terms of the model uncertainty created by uncertain vibration
frequencies and mode shapes as well as different numbers of
modes in the plant model used for design compared to those in
the actual structure. The vast majority of models consider each
link in the manipulator as a beam with a truncated set of modes.
In most cases, this truncation is not an issue and is seen to agree
well with experimental results, given an appropriate number of
modes have been included in the model. In a few exceptional
circumstances, however, cases of spillover instability have been
seen to arise as seen in Sayahkarajy and Mohamed (2014). With
the passivity theorem, simple controllers can be used to robustly
control systems when model uncertainty does not destroy the
passivity of the plant. Hence, if passivity is achievable, then the
manipulator could be robustly stabilized by a simple PD
controller despite having truncated numbers of modes in the
dynamics modelling.

In task-space control, actuator and sensor collocation is not
possible, and it has been shown in Pota and Vidyasagar (1991) that
the input-output mapping relating joint torque to tip-rate is not
passive for a single flexible link. This can be explained by the fact that
the transfer matrix for this mapping is nonminimum phase (hence
not positive real) as shown in Cannon Jr. and Schmitz (1984). With
the actual tip-rate output not being viable for task-space control of
flexible manipulators, past research has focused on finding
alternative task-space outputs that could perhaps achieve
passivity. Given the relative ease with which passive input-output
pairs can be stabilized, there has been some work done on
establishing passivity for systems whose output contains the end-
effector motion.

Wang and Vidyasagar (1992) were able to effectively realize
the passivity property for a single flexible link system by using a
reflected tip-rate output and with the assumption that the
moments of inertia produced by the link and payload are
much greater than the moment of inertia of the hub. These
results were extended in Damaren (1995) for a multi-degree-of-
freedom space manipulator attached to a rigid spacecraft and
with an end-effector payload. Damaren posed an modified tip-
rate output, _ρμ, with which passivity could be achieved. To
characterize this output, first the actual tip-rate _ρ must be
defined. Let the Cartesian end-effector (translational and
rotational) displacements be defined as ρ � F(θ, qe) where F
is the forward kinematics map, θ are the joint angles, and qe are
the elastic coordinates. Then the velocity kinematics are given by
the following:

_ρ � Jθ θ, qe( ) _θ + Je θ, qe( ) _qe (1)
where Jθ and Je are Jacobian matrices. The modified tip-rate output
can then be defined as the following:

_ρμ � Jθ _θ + μJe _qe (2)

where μ is a real parameter. The parameter μ can help characterize
the stability region, with a critical μ* representing the boundary for
which system stabilization can be achieved using simple PD laws.
Notably, μ* for a given system can be determined analytically and is
directly related to the payload-to-link mass ratio of the manipulator
(Damaren, 2000). As long as μ obeying 0≤ μ< μ* is used to compute
_ρμ, the joint-torque to _ρμ pairing can be shown to be passive, and a
PD law can be employed for control.

With large payloads, μ* → 1 and the modified output, _ρμ,
asymptotically approaches the true tip-rate, while still
maintaining passivity. This behaviour is due to the modal
properties of flexible manipulators. In Damaren (1995) it was
shown how the unconstrained mode shapes of the links
increasingly followed pinned-clamped behaviour as the mass of
the payload increased. This created a favourable node at the end-
effector, and vibrations were seen mainly along the length of the
links and not at the tip. The nonminimum phase property of the
task-space mapping was shown to be mitigated in this asymptotic
case of large payloads. With the use of _ρμ as an output, a task-space
control scheme utilizing the passivity property proven in Damaren
(1995) can be used to control flexible manipulators in space. In order
to obtain this modified output however, measurement or estimation
of the elastic coordinates is needed which motivates the
present study.

Obtaining the elastic coordinates through sensors has proven
difficult, historically. In some experimental papers the elastic
deflection of a flexible link is measured using optical sensors
such as cameras as seen in Wang and Vidyasagar (1992) or laser
diodes as seen in Tso et al. (2003). Notably, this was done for the
single-link manipulator in both Wang and Vidyasagar (1992) and
Tso et al. (2003). With multi-degree-of-freedommanipulators, these
optical systems would be more expensive and complicated to
implement and are less feasible. Another major problem with
these optical sensing systems is that they become unusable if an
object comes in between the camera and the manipulator. Another
strategy is to use resistive strain gauges, which was done in Stanway
et al. (1998) to obtain values for elastic coordinates experimentally.
Christoforou and Damaren (2000) used strain gauges to estimate
three flexible coordinates for each of two flexible links on a three-
link planar manipulator. This required calibration of the strain
gauges before each use of the manipulator system and was more
labour-intensive overall. Additionally, strain gauges have reliability
issues in the space environment due to thermal effects.

With the difficulty in measuring elastic coordinates directly, the
next best solution would be to find a way to reliably estimate these
coordinates. Then, ρ can be computed using ρ̂ � F(θ, q̂e) where q̂e
is the estimated qe. Classical state estimation schemes, such as the
Kalman filter or reduced-order observers, being linear, are
unsuitable to handle estimation for the highly nonlinear
manipulator systems. In Moallem (1996) a nonlinear observer
was developed for a two-link manipulator. This observer used
three measurements, however: joint rates and angles, along with
elastic coordinate measurements from strain gauges. Only the elastic
coordinate rates were unmeasured and to be estimated. While
suitable for a nonlinear problem, this solution still had the issue
of strain gauges, which cannot be used in space, and was overall very
complex to design and implement. More sophisticated techniques
for designing observers for nonlinear systems were put forward in
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Bernard (2017). Its route of action was to normalize the given
nonlinear system into a standard form with normalized coordinates,
observe these normalized coordinates, and then inversely map them
back to the original system to determine the original coordinates.
This process can be computationally expensive for controllers,
however, and real-time implementation has to be tested. The
normalizing process for a multi-degree-of-freedom flexible
manipulator has also not been done in literature and a suitable
transformation and change of coordinates is not guaranteed to exist.
Another non-linear estimation scheme was seen in Fenili (2013)
which used a state-dependent Riccati equation-based estimator to
estimate the elastic coordinates of a flexible-link manipulator. This
estimation scheme is complex and requires that one find an observer
gain L through trial and error. Additionally, even with an acceptable
gain chosen, the estimator had large overshoots in the results
presented in Fenili (2013).

More recently, virtual sensor theory has been used to estimate
the generalized elastic coordinates and find the end-effector position
of flexible manipulators. This was done in Bengoa et al. (2017) very
successfully though with a note on the computational load required
for real-time implementation. In Adel et al. (2022) virtual sensor
theory was combined with function approximation schemes found
in machine learning literature. Results were also promising with this
method although the computational load was still high, albeit lower
than in Bengoa et al. (2017).

Overall, sensor solutions to measure elastic coordinates are
lacking with current technology. Furthermore, most observer
schemes to estimate these coordinates are either highly complex,
so requiring a large computation load, or are not feasible for
nonlinear systems in a space setting. In contrast, Damaren (1995)
offers a closed-form estimation formula, valid for flexible
manipulators with large payloads. It is given by

Keeq̂e t( ) � −JTe J−Tθ τ t( ) (3)
where Kee is the elastic portion of the stiffness matrix and τ are the
joint torques.

The present paper looks at the simulated behaviour of flexible
robots in response to a task-space controller that uses the above
estimate of the flexible coordinates to determine ρμ. Planar one-link
and two-link manipulators with flexible links are studied. In the
second section of this paper, the methods employed to model a
flexible manipulator are laid out. Additionally, the task-space
control scheme utilized in subsequent simulations is defined. The
third section presents the results obtained from simulating multiple
end-effector trajectories with the given control scheme. A discussion
on these results is also included. The final section includes
concluding thoughts from the results and summarizes key findings.

2 Methods

In this paper, a space robot comprised of a topological chain of
N linearly elastic flexible bodies was considered. The bodies were
connected by revolute joints with joint angles θ ∈ RN. The flexibility
was limited to the links and assumed to be only in the direction
traverse to the link length, with no longitudinal motions or out-of-
plane deflections. The totality of the flexible coordinates can be given

by qe ∈ RNe , generated using clamped-free modelling for the
deflections of each link. Let q � col{θ, qe} be the column matrix
of generalized coordinates. Additionally, there was an inertia Ihub

FIGURE 1
One-link flexible manipulator.

FIGURE 2
Two-link flexible manipulator.

TABLE 1 Sizing parameters and control gains used in one-link manipulator
simulations.

Parameter Value

Link length, L 1m

Link stiffness, EI 5.4N ·m2

Mass per unit length, σ 0.25 kg/m

Hub inertia, Ihub 0.01 kg ·m2

Control gain Value

Kp 3.3

Kd 7
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assigned to the hub and a point tip mass mtip at the end-effector.
Particularly for this investigation, planar one-link and two-link
manipulators were the subject of study. Figures 1, 2 show a
visual representation of the one-link and two-link manipulators,
respectively. In the one-link case, the tip position ρ translates to the
arc length traversed from the initial position of θ � 0. In the two-link
case, the tip position is expressed in the traditional Cartesian inertial
frame, in x and y.

2.1 Equations of motion

The modelling techniques from Damaren (1995), Wong (2006),
and Fraser and Daniel (1991) were used to develop the equations of

motion. For a general flexible manipulator, these equations are
as follows:

M q( )€q + c q, _q( ) + Kq � Bτ (4)
where M is the mass matrix, K is the stiffness matrix, B is the input
matrix, and τ ∈ RN are the joint torques:

M � Mθθ Mθe

MT
θe Mee

[ ], K � O O
O Kee

[ ], B � 1
O

[ ] (5)

for the above matrices, the matrix structure is consistent with
q � col{θ, qe}. The elastic portion of the stiffness matrix can be
defined as Kee � diag{Kee, 1, . . . , Kee, Ne}, where Kee, n �
EI∫L

0
ψn″

2dx as per Chen et al. (2023). The nonlinear inertial
terms are c(q, _q), which are quadratic in _q, and are given by
the following:

c q, _q( )i � eTi ∑N+Ne

j�1
_qj
∂M
∂qj

_q − 1
2
_qT
∂M
∂qi

_q

where ei is a unit vector, non-zero in the ith degree of freedom.
Notably for the one-link case, the nonlinear term collapses to zero.

2.2 Control scheme

With the equations of motion defined, a task-space control
scheme can be implemented. This control scheme utilized the
approximated elastic coordinates to determine the modified task-
space output, _ρμ and is defined as follows:

τ � Mθθ θd, 0( )€θd + c θd, 0( ), _θd, 0( )( )
− JTθ KP ρ̂μ − ρd[ ] +KD _̂ρμ − _ρd[ ][ ] (6)

where Mθθ(θd, 0) is an approximation of the mass matrix,
c((θd, 0), ( _θd, 0)) is the matrix of nonlinear terms, Jθ is the rigid
Jacobian, KP, KD are the proportional and derivative control gains,
respectively, and ρd, _ρd are the desired end-effector positions and
rates, respectively. The desired joint variables, θd, _θd, and €θd are all
obtained from the rigid inverse kinematic solution of ρd. The
motivation for the feedforward in Equation 6 is described by
Stanway et al. (1998).

The modified tip-rate output is as follows:

_ρμ � Jθ _θ + μJe _qe + μJθ _θ − μJθ _θ � μ Jθ _θ + Je _qe( ) + 1 − μ( )Jθ _θ
� μ _ρ + 1 − μ( )Jθ _θ (7)

the above equation assumes the true end-effector rate _ρ is known, as
to bypass the need to approximate _qe.

If the Jacobian is approximated by Jθ ≈ Jθ(θ, 0), then the integral
of Equation 7 gives the following:

ρμ � ∫ _ρμdt � ∫ μ _ρ + 1 − μ( )Jθ _θ( )dt � μρ + 1 − μ( )F θ, 0( ) (8)

hence, for μ � 1, ρμ � ρ is the true tip position and for μ � 0, ρμ �
F r(θ) �Δ F(θ, 0) is the rigid forward kinematics solution. To obtain
ρ, the forward kinematics map with the approximated flexible
coordinates can be used. Then Equation 8 becomes the following:

FIGURE 3
Trajectory tracking of one-link manipulator, mtip/mlink � 20 and
μ � 0.9.

FIGURE 4
Error between true tip-position and desired position of one-link
manipulator, mtip/mlink � 20 and μ � 0.9.
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ρ̂μ � 1 − μ( )F θ, 0( ) + μρ̂ � 1 − μ( )F θ, 0( ) + μF θ, q̂e( ) (9)

additionally, it is to be noted that to use Equation 7, the rigid
Jacobian is needed. In multi-degree-of-freedom manipulators, this

Jacobian is a function of elastic coordinates and so the
approximation must be used for computation of the term. Then
Equation 7 can be rewritten as the following:

_ρμ � μ _ρ + 1 − μ( )̂Jθ _θ (10)

FIGURE 5
Comparison of approximated generalized elastic coordinates with actual, simulated values, mtip/mlink � 20 and μfinal � 0.9.

FIGURE 6
Generalized elastic coordinate estimation error on (A) normal scale and (B) logarithmic scale for varying ratios of mtip/mlink, done using μ � 0.6.
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where Ĵθ is the rigid Jacobian, calculated using the estimated
elastic coordinates. Note that in Equation 10 _ρ is needed. This
rate can be taken as a measurement with an accelerometer
attached to the end-effector. The approximation of the elastic
coordinates, used to compute ρ̂μ and _̂ρμ, is slightly changed from
Equation 3 as follows:

q̂e t( ) � −K−1
ee J

T
e J

−1
θ τ t − k( ) (11)

where k is the time between consecutive time steps. It should be
noted that as the joint torques τ(t) are not immediately available,
the values from the previous time-step of the simulation are used to
estimate the elastic coordinate values for the current time-step. This
approximation came forth in Damaren (1995) as a result of
assuming a state of static equilibrium for the manipulator. This is
noticeably the reason for the mass matrix not appearing in the
approximation, as system acceleration is assumed to be zero.
Therefore, the use of the approximation during highly dynamic
modes of the manipulator is one of the objects of interest for the
simulations done in this paper.

3 Results and discussion

3.1 One-link

Multiple simulations were done in MATLAB implementing the
control scheme given by Equation 6. Table 1 below lists the sizing
parameters and control gains used in all one-link simulations.

A sinusoidal trajectory was simulated for the one-link
manipulator. Results are shown in Figure 3. The worst tracking
occurred in the initial few seconds of the simulation. This follows
from the fact that the approximation given by Equation 11 is derived
assuming a quasi-static state, whilst the period when the
manipulator is first moved from rest is highly dynamic. Figure 3
includes results from an appropriate joint-space control scheme as
well, for easier comparison. The following joint-space control
scheme was used:

τ � Mθθ θd, 0( )€θd − KP θ − θd[ ] + KD
_θ − _θd[ ]( ) (12)

Note that the desired joint angle, rate, and acceleration used in the
joint-space scheme were obtained from the rigid inverse kinematic
solution of the desired end-effector trajectory. The task-space
scheme using the elastic coordinate approximation fared much
better than the joint-space scheme as seen in the simulation
results in Figure 3. The proportional and derivative gains, Kp

and Kd, were kept identical in both the task-space and joint-
space control laws.

Figure 4 shows the tracking error for this same simulation. The
two graphs of ρ − ρd and ρ̂ − ρd almost coincide, signaling that
subpar performance in Figure 3 is most likely not due to the elastic
coordinate approximation being inaccurate. This also suggests that
performance can be improved with finer tuning of the control gains
and/or μ. Additionally, the approximate generalized elastic
coordinates were plotted against the actual coordinates,
determined from simulation. This is seen in Figure 5 and results
show the approximate coordinates closely followed the actual
coordinates.

The following equation was used to calculate the error between
the actual elastic coordinates and the estimated ones:

Eqe �

��������������������∫T

0
q̂e − qe( )T q̂e − qe( ) dt∫T

0
qTe qe dt

√√
(13)

This error was calculated for multiple simulations, across which,
the trajectory followed and the μ used was kept identical (μ � 0.6)
and only the size of payload mass at the end-effector was changed.
This allowed the creation of Figure 6 which plots the error between
qe and q̂e for varying payload masses. There was a downward trend
noted in error as the payload mass increased, and from the
logarithmic plot it is clear that this downward trend was
algebraic. These results suggest that Equation 11 is more accurate
as mtip/mlink increases. This can be extended by saying that the
approximation becomes better as the value of μ* increases. In the
asymptotic case of μ* → 1, not only is the task-space output almost
exactly the real tip-rate, the elastic coordinate approximation is also
the most accurate.

Notably, the elastic component of the link’s displacement was
modelled using only two basic functions in all results thus far,

FIGURE 7
One-link tracking for different modes in plant and controller for
mtip/mlink � 20, μfinal � 0.9, Ne,plant � 5, Ne,controller � 2.

TABLE 2 Sizing parameters and control gains used in two-link manipulator
simulations.

Parameter Value

Link length, L 1m

Link stiffness, EI 5.4N ·m2

Mass per unit length, σ 0.25 kg/m

Hub inertia, Ihub 0.01 kg · textrmm2

Elbow mass, me 0.5 kg

Control gain Value

Kp 3.3

Kd 7
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hence the two elastic coordinates generated in Figure 5. As one
issue with controlling flexible structures is their infinite elastic
degrees of freedom, it is important to investigate if truncating
these degrees of freedom to elastic modes caused a loss
of stability.

To check this, a simulation was done where the number of
degrees of freedom in the controller was set to be different from
the number in the plant. All terms in Equation 6 were calculated
using a truncated model of two flexible degrees of freedom,
Ne, controller � 2, while the plant was programmed to have five

FIGURE 8
Sinusoidal trajectory tracking of two-link manipulator for mtip/mlink � 20 and μ � 0.9.

FIGURE 9
Pick-and-place trajectory tracking of two-link manipulator for mtip/mlink � 20 and μ � 0.9.
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degrees, Ne, plant � 5. With higher numbers of elastic modes, a
numerical degeneracy was seen in Wong (2006) for the Rayleigh-
Ritz Method. To prevent this from occurring in the investigation,
the highest number of modes were capped to Ne, plant � 5 for the

plant. From Figure 7 it can be seen that stability was still
preserved in such a case. Moreover, there was no
significant loss in performance, and accurate tracking was still
maintained.

FIGURE 10
Error between true tip-position and desired position for a two-link manipulator, sinusoidal trajectory, mtip/mlink � 20 and μ � 0.9.

FIGURE 11
Error between true tip-position and desired position for a two-link manipulator, quintic trajectory, mtip/mlink � 20 and μ � 0.9.
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FIGURE 12
Comparison of approximated generalized elastic coordinates with actual, simulated values for two-link manipulator, sinusoidal trajectory,
mtip/mlink � 20 and μ � 0.9.

FIGURE 13
Comparison of approximated generalized elastic coordinates with actual, simulated values for two-link manipulator, quintic trajectory,mtip/mlink �
20 and μ � 0.9.
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3.2 Two-link

Simulations for the two-link case were also done similarily.
Table 2 lists the parameters used in the simulations along with the
control gains.Figure 8 shows the task-space tracking as compared to
a joint-space scheme for a sinusoidal trajectory. Figure 9 shows the
equivalent for a pick-and-place trajectory generated using a quintic
polynomial. The performance with the task-space scheme proved to
be considerably better than its joint-space counterpart for both
trajectory types. The joint-space scheme used in Figures 8, 9 is
as follows:

τ � Mθθ θd, 0( )€θd + c θd, 0( ), _θd, 0( )( ) − KP θ − θd[ ] +KD
_θ − _θd[ ]( )

(14)

As tracking performance for the two-link case was slightly worse than
the one-link case, especially for the sinusoidal trajectory, an
investigation was done to see how much of this performance loss
was due to the elastic coordinates being estimated rather thanmeasured.
Figures 10, 11 show the tracking error for both the sinusoidal and pick-
and-place trajectories, respectively. As one can see, the graphs of ρ − ρd
and ρ̂ − ρd almost coincide, and so subpar performance is most likely
not due to the elastic coordinate approximation being inaccurate. It is
also possible that the frequency of the desired sinusoidal trajectory is
simply faster than the time it takes for the actuation wave to reach the
end of the links. With such long, flexible links, there is naturally time
needed for the actuation at the joints to traverse the length of the link to
reach the end-effector. Only trajectories that are slower than the period
of this wave can be realistically achieved by the manipulator with any
degree of accuracy.

The slight oscillations visible in Figure 10 at the beginning of the
simulation can be explained by the assumptions behind the
approximation equation, namely that it was derived in Damaren
(1995) assuming a quasi-static state of the manipulator. When the
manipulator is first moved from rest, it is highly dynamic and the
approximation equation is not able to estimate the elastic
coordinates as accurately in this initial highly dynamic period.
This explains the deviations present at the beginning of Figure 10.

As the Jaocbians in the two-link case are a function of qe, the
simulations in this case required that the Jacobians be calculated
using q̂e from the previous time step. These Jacobians could then be
used to calculate the current q̂e as follows:

q̂e t( ) � −K−1
ee Ĵe θ t( ), q̂e t − k( )( )[ ]T Ĵθ θ t( ), q̂e t − k( )( )[ ]−Tτ t − k( )

(15)
To bypass the need to use the approximated elastic coordinates

of the previous time-step in the calculation of the current q̂e, the use
of a modified approximation of coordinates was investigated. In this
modified approximation, the Jacobians were calculated using only
the measured rigid degrees of freedom, and qe was set to 0 as follows:̂̂qe t( ) � −K−1

ee Je θ, 0( )[ ]T Jθ θ, 0( )[ ]−Tτ t − k( ) (16)

Equations 1, 2, 4, 5, 9, 12-15 summarize the kinematics,
dynamics, and control. In Figures 12, 13, corresponding to the
sinusoidal and pick-and-place trajectories, respectively, the
approximate elastic coordinates, q̂e were compared with the real
coordinates, qe, which were obtained from simulation. Additionally,
the modified approximation, ̂̂qe from Equation 16 was also plotted
in both figures. It is apparent, especially in the pick-and-place
trajectory, that the approximation q̂e followed the real values
more closely than the approximation ̂̂qe. Figures 14, 15 show the
joint actuator torques for the sinusoidal and pick-and-place
trajectories, respectively. For both cases, torques were relatively
low and stayed within a reasonable range.

Lastly, simulations were done with a different number of modes
for the plant and controller to check if truncating the dynamics to a
finite dimension caused instability. Results showed no spillover
effects as shown in Figure 16 below. The total number of elastic
modes used were Ne, controller � 4 and Ne, plant � 8, with the modes
divided equally between the two links.

FIGURE 14
Joint Torques for two-link manipulator, sinusoidal trajectory,
mtip/mlink � 20 and μ � 0.9.

FIGURE 15
Joint Torques for two-link manipulator, quintic trajectory,
mtip/mlink � 20 and μ � 0.9.
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4 Conclusion

In this work, one-link and two-link flexible manipulators
were modelled and a task-space control scheme that utilized the
passivity theorem was implemented for end-effector trajectory
tracking. This tracking was accomplished using the elastic
coordinate approximation given by Equation 11. In all cases,
the qe approximation was used successfully to track various end-
effector trajectories. The largest discrepancies between the
approximated and actual elastic coordinate values were
found to be during the initial few seconds of simulation when
the manipulator was at its most dynamic. This follows
from the fact that Equation 11 is derived assuming a quasi-
static state.

In the one-link results, it was seen that the elastic coordinate
approximation given by Equation 11 was more accurate as the ratio
of mtip/mlink increased. The one-link and two-link results showed
that even when the plant was modelled with more elastic degrees of
freedom than the controller assumed, the results were still stable.
Overall, it can be seen that the approximation given by Equation 11
is a powerful tool and advantageous in the fact that it provides a
closed-form analytical method to estimate the generalized elastic
coordinates.
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FIGURE 16
Two-link tracking for different modes in plant and controller for mtip/mlink � 20, μ � 0.9, Ne.plant � 8, Ne,controller � 4.
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