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In this paper, we present a novel vision-based framework to track the 6-DoF pose
of an asteroid in real time with the 3D contour of the asteroid as a feature. During
pose tracking, at the beginning time of tracking, the tracking system is initialized
by a pose retrieval method. At each subsequent time instant, given the 3D mesh
model of an asteroid, with the initial pose and its covariance given by the square
root cubature Kalman Filter (SCKF), the 3D mesh segments constituting the 3D
asteroid contour are efficiently extracted from the 3D mesh model. Then, in the
input asteroid image, we search the image points corresponding to the extracted
3D segments within the searching range defined by the initial pose and its
covariance. After that, the asteroid pose is determined in real time by
minimizing the angles between the back-projection lines of the searched
image points and the projection planes of the corresponding 3D segments,
which is much more robust to the position change of the asteroid and
asteroid size. The covariance matrix of the pose is inferred from the Cartesian
noise model in the first order. Eventually, the SCKF is derived from the second-
order auto regression to generate the final pose estimate and give the initial pose
and its covariance for the next time instant. The synthetic trials quantitatively
validate the real-time performance, robustness, and accuracy of our algorithm in
dark space, different imaging distances, lighting conditions, image noise, model
error, and initial pose error, and meanwhile, the real trial qualitatively shows the
effectiveness of our method.
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1 Introduction

Asteroid exploration plays a fundamental role in many space missions, such as deep
space navigation and autonomous landing (Watanabe et al., 2017; Sugita et al., 2019; Golish
et al., 2020). It is essential for asteroid exploration to accurately determine the 6-degrees-of-
freedom (DoF) pose in real time. In recent decades, monocular 6-DoF pose tracking has
become increasingly significant and widely used in many space missions, such as landing,
docking, and rendezvous, thanks to its accuracy, speed, low energy cost, and cheapness
(Kelsey et al., 2006; Forshaw et al., 2016; Opromolla et al., 2017; Huo et al., 2020; Huang
et al., 2021a). However, it is still challenging to apply the monocular 6-DoF pose tracking
method to asteroids due to the highly irregular shape of asteroids and dramatic
illuminance variation.
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In general, monocular 6-DoF pose tracking methods rely on
feature point matching, machine learning, region segmentation, and
edge alignment. The feature-point-based methods predefine some
remarkable 3D feature points on the target 3D model a priori and
then match the 3D feature points against the corresponding image
points. The pose is solved from the 2D-3D matching by the
Perspective-n-Point (PnP) algorithm (Huo et al., 2020; Conway
et al.; Hu et al., 2021; Black et al., 2021; Leroy et al., 2001; Capuano
et al., 2020; Chen et al., 2019; Huang et al., 2021b; Stacey and
D’Amico, 2018; Liu and Hu, 2014; Peng et al., 2020; Crivellaro et al.,
2017; Meng et al., 2018; Rowell et al., 2015; Long and Hu, 2022; Liu
et al., 2020a; Christian, 2015; Li and Xu, 2018; Cassinis et al., 2022).
However, it is difficult to specify sufficient remarkable 3D feature
points on an asteroid since it is irregular and textureless (Huang
et al., 2020). Machine learning-based methods use some labeled
images to train a mapping from the image space to pose space a
priori, via convolution neural network (Rathinam et al., 2022;
Sharma et al., 2018; Sharma and D’Amico, 2020; Zhou et al.,
2021), image regression (Raytchev et al., 2011; Cao et al., 2016),
and similarity measurement (Zhang et al., 2018). During pose
determination, the trained system immediately provides a pose
estimate to asteroids according to the input image (Kelsey et al.,
2006; Liu et al., 2020a; Christian, 2015; Li and Xu, 2018; Rathinam
et al., 2022; Sharma et al., 2018; Sharma and D’Amico, 2020; Cao
et al., 2016; Raytchev et al., 2011; Zhang et al., 2018; Zhou et al., 2021;
Sattler et al., 2019; Rondao et al., 2021; Pugliatti and Topputo, 2022;
He et al., 2020). For accuracy, such a method requires considerable
labeled image samples and the sample space should cover the real
work range (Sattler et al., 2019). In fact, it is difficult to obtain many
labeled real images of asteroids. Furthermore, since the asteroid
tumbles in deep space, the asteroid image is largely related to the
viewpoint, illumination condition, and motion, which makes it
difficult to build a precise mapping between image space and 6-
DoF pose space. The region-based methods first employ a specific
color segmentation model to construct an energy function based on
posterior probability and then solve the pose from the best
consistency of energy functions of silhouette and rendering of the
CAD model (Brox et al., 2005; Bray et al., 2006; Dambreville et al.,
2008; Prisacariu et al., 2012; Prisacariu and Reid, 2012; Hexner and
Hagege, 2016; Tjaden and Schomer, 2017; Zhong et al., 2020; Stoiber
et al., 2022). They can deal with pose tracking under cluttered
backgrounds and motion blur properly (Stoiber et al., 2022).
However, they require a large interframe intersection of the
foreground for accuracy (Wang et al., 2023) and are not suitable
for heterogeneous configurations (both foreground and
background) and partial occlusions (Zhong et al., 2020).
Therefore, they are incapable of estimating the pose of asteroids
in deep space since a large area of self-occlusion may occur on
asteroids due to complicated illumination. In addition, frequent
rendering makes real-time implementation impossible. The edge-
based methods acquire the pose by aligning the edge of the rendered
CAD model with the image edges (Petit et al., 2012a; Petit et al.,
2012b; Kanani et al., 2012; Oumer et al., 2015; Lourakis and Zabulis,
2017; Marchand et al., 2019; Liu et al., 2020b; Comellini et al., 2020;
Huang et al., 2020; Lentaris et al., 2020). These methods are accurate
and robust in complex illumination conditions and particularly
suitable for smooth and poorly textured targets. However, they
lack robustness to the noise and cluttered background, and

rendering the CAD model will be time-consuming. Liu et al.
(2020b) track the 6-DoF pose of asteroids in real time by
minimizing the reprojection errors of the 3D contour of the
asteroid, without rendering the CAD model of the asteroid.
Despite the accuracy and efficiency, these methods are relatively
susceptible to the position change of asteroids.

Unlike manufactured objects, asteroids are irregular, lacking
geometric structure and trackable features. The 3D contour of the
asteroid yields the asteroid silhouette in the image, which describes the
external outline of the asteroid in the image. Therefore, the 3D contour
is the most remarkable and reliable feature on asteroids and is quite
robust against lighting variation, self-occlusion, and viewpoint changes.
Accordingly, we propose a novel framework to track the 6-DoF pose in
real timewith the 3D contour of the asteroid. Given the 3Dmeshmodel
of an asteroid, at each tracking instant, the 3D mesh segments
constituting the 3D asteroid contour are automatically extracted
from the asteroid mesh model. After retrieving the 2D edge points
corresponding to extracted 3D segments from the input asteroid image,
we determine the asteroid pose in real time by minimizing the angles
between the back-projection lines of the retrieved 2D edge points and
the projection planes of the corresponding 3D segments (the plane
spanned by a 3D segment with camera optical center). After that, the
covariance of the pose is inferred in the first order. Based on this, the 2-
order auto regression-based (2nd-AR) SCKF is exploited to provide the
final unbiased estimate to pose and predict the pose for the next instant.
The pipeline of our method will be elaborated on in Section 2. The
proposed method exploits the image edge information to track the
asteroid’s pose. However, compared to the existing edge-based
methods, our method does not render the CAD model, thus it is
quite efficient. Furthermore, compared with the existing method using
2D reprojections, our method determines the pose of asteroids by
minimizing the line-to-plane angles, which is much more robust to the
size of asteroids and position change (Hu et al., 2021). This paper is a
great extension of our previous work (Liu et al., 2020b), but the
methodology in this paper is completely new: 1) we propose a
robust 2D-3D correspondence method based on the covariance of
the pose, 2) we determine the asteroid pose by minimizing the angles
between the projection planes of the extracted 3D contour segments and
the back-projection lines of the corresponding 2D edge points, 3) we
infer the covariance matrix of the estimated pose based on the first-
order optimality of the pose optimization, and 4) we use 2nd-AR-based
SCKF to give the final pose estimate and initialize the pose tracking at
the next time instant.

The rest of this paper is structured as follows. Section 2
introduces the overview of our proposed method. Section 3
focuses on the asteroid motion model used in this paper.
Section 4 presents the extraction of 3D contour segments and
finds the image data correspondence. Section 5 discusses the pose
determination in detail. Section 6 infers the covariance matrix of the
pose in the first order. Section 7 provides the final pose estimate by
2nd-AR-based SCKF. Section 8 evaluates the performance of the
proposed method. Finally, Section 9 draws a conclusion.

2 Algorithm overview

The proposed algorithm tracks the 6-DoF pose of an asteroid in
real time by aligning the silhouette of the asteroid with the projected
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3D contour of the asteroid. The pipeline of the pose tracking system
is showcased in Figure 1, where k denotes the time instant, Ik is an
asteroid image taken by a calibrated camera, and pk is the estimated
pose at the time instant of k. At the beginning of tracking (k = 0), the
tracking system is initialized by the pose retrieval method proposed
in (Liu et al., 2020b). This paper is focused on the real-time 6-DoF
pose tracking of asteroids, so the pose initialization strategy is
beyond the research scope of this paper. It is noteworthy that
there exist other methods available for the initialization (He
et al., 2020; Kobayashi et al., 2015; Phisannupawong et al., 2020;
Sonawani et al., 2020; Park and D’Amico, 2023; Proença and Gao,
2020). Given the 3D mesh model of the asteroid, at the time instant
of k > 0, with the initial pose pk0 and its covariance Sk0 provided by
the SCKF (see Section 7), the 3D mesh segments that construct the
3D contour of the asteroid are rapidly extracted from the asteroid
mesh model (see Section 4.1). Next, we search in Ik the 2D edge
points corresponding to the extracted 3D mesh segments within the
searching range defined by pk0 and Sk0 (see Section 4.2) and then
calculate the asteroid pose in real time by minimizing the angles
between the back-projection lines of the searched 2D edge points
and the projection planes of the corresponding 3D segments with
M-estimation (see Section 5). Subsequently, the covariance of the
pose is estimated via the first-order optimality condition of the pose
minimization (see Section 6). Eventually, based on this covariance,
the 2nd-AR-based SCKF generates the final pose estimate pk and,
meanwhile, predicts the pose pk+10 and its covariance Sk+10 for the
next time instant k+1 (see Section 7). In the following section, we
will elaborate on our work according to the pipeline shown
in Figure 1.

3 Motion representation

This section will introduce the relative pose representation based
on the camera modeled by the pinhole. On the asteroid, there is an

asteroid coordinate system (ACS). Given the camera intrinsic matrix
K, the image x of a 3D point X in ACS can be calculated via Eq. 1

~x ~�K R t[ ] ~X, (1)
where � denotes the equality up to a scalar; ~X and ~x are the
homogeneous coordinate vectors of X and x, respectively; R and
t denote the rotation matrix and translation vector of ACS to the
camera coordinate system (CCS). We adopt Lie group and Lie
algebra in SO(3) to formulate the rigid motion of asteroids in the
homogeneous coordinate system since it can represent the motion
conveniently and without ambiguity. The rotation matrix R is
derived from the rotation vector Ω in SO(3) using the
Rodrigues formula

R � I3 + sin Ω‖ ‖ Ω[ ]x
Ω‖ ‖ + 1 − cos Ω‖ ‖( ) Ω[ ]x2

Ω‖ ‖2 , (2)

where I3 is the 3-order identity, and [Ω]x denotes the skew-
symmetric matrix formed by the components of Ω. Accordingly,
the pose is represented by p = [ΩT tT]T. It can be readily known from
Eq. 2 that Ω can be recovered from R via Eq. 3

Ω‖ ‖ � arccos trace R( ) − 1( )/2( ),
Ω[ ]x � Ω‖ ‖/ 2 sin Ω‖ ‖( ) R − RT( ). (3)

Throughout this paper, scalars are denoted by plain letters and
matrices by bold letters. A “~” symbolizes a homogeneous
coordinate vector.

4 3D contour extraction and data
correspondence

Given the 3Dmesh model of asteroids, at each time instant k > 0,
with the initial pose pk0 and its covariance Sk0 provided by the SCKF
(see Section 7), we will rapidly extract from the asteroid mesh model

FIGURE 1
Pipeline of our proposed tracking method.
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the 3D mesh segments which compose the 3D contour of the
asteroid (see the brown box in Figure 1) and then find the
correspondence between extracted 3D contour segments and 2D
edge points in the input asteroid image Ik (see the red box
in Figure 1).

4.1 3D contour extraction

In order to extract the 3D contour segments from the asteroid
mesh model, we first project all the 3D segments of the 3D mesh
model onto the image plane via the initial pose of pk0 so as to
generate numerous 2D segments. Since the 3D segments of the
asteroid mesh model are generally quite short, we can determine if a
3D segment can be considered a 3D contour segment only by the
midpoint of its 2D projection segment. Specifically, for a 3D
segment, if the back projection line of a midpoint of its 2D
projection segment is tangent to the mesh model (which can be
easily checked by ray tracing (Hearn and Baker, 2005)), then this 3D
segment will be considered a 3D contour segment, and on this
segment, the 3D point corresponding to the midpoint of its
projection segment will be taken as a control point, which will be
used for data correspondence in the next section. All the 3D contour
segments and the corresponding control points are denoted as {Lc}
and {Mc}, respectively.

4.2 Data correspondence

Given the asteroid image Ik, the 2D contour edge of the asteroid
is obtained by Suzuki and Abe (1985). The junction points and short
edge fragments are then removed from the contour edge map by the
method in (Liu and Hu, 2013). In the contour edge map, the normal
of each edge point is determined with the technique in (Liu et al.,
2023). Let mc be the projection of Mc onto the image plane and Cc

1

and Cc
2 be the two endpoints of Lc. The normal line of mc passes

through mc with the direction vector hc given in Eq. 4

hc � K22
−T 02[ ] R0

k Mc[ ]xN c + t0k[ ]xR0
kN c[ ], (4)

in which K22 is the upper left 2-order principal submatrix of K; Rk
0

and tk0 are the rotationmatrix and translation vector computed from

pk0; Nc = Cc
2-Cc

1. The edge point associated with Lc will be
searched along the normal line of each mc. Figure 2A
illustrates the data corresponding process, where the black line
denotes the projected Lc, and the gray pixels represent a part of
the 2D contour edge. Basically, assuming a 2D edge point pe (the
blue point in Figure 2A) lies on the normal line of mc (the red
point in Figure 2A), pe will be considered to correspond tomc if pe
is relatively close to mc, and the acute angle of their normal lines
is small enough. Accordingly, let a be the acute angle of the
normal lines of pe and mc, and d denotes the directed distance
from pe to mc. Supposing that pe matches mc, then we can think a
should follow a normal distribution ND(a) with zero mean and
standard deviation ac, and d is subject to a normal distribution
ND(d) with zero mean and standard deviation dc (see Figure 2A).
The probability of pe corresponding to mc can be then measured
by ND(a)ND(d), which is inversely proportional to -ln (ND(a)
ND(d)) and thereby to a2/ac

2+d2/dc
2. Let M(a,d) = a2/ac

2+d2/dc
2

(the 3D surface in Figure 2A). Then, given mc, we retrieve on the
normal line of mc the 2D edge points that satisfy M(a,d) ≤ 1.
Among all retrieved 2D edge points, the one with the minimum
M(a,d) will be associated with Lc.

The standard deviation dc is determined by the distance frommc

to the standard deviational ellipse of mc along the direction hc, as
illustrated in Figure 2A. The standard deviational ellipse is
computed by the covariance propagation of Sk0 [see (Liu and
Tang, 2023) for details]. As shown in Figure 2A, let βc ∈ [0,π) be
the angle between the horizontal axis of the image plane and hc, then
hc in Eq. 4 can be rewritten as hc = ||hc||2 [cosβc sinβc]T. Supposing βe
is the angle between the horizontal axis of the image plane and the
normal line of pe, then the acute angle a of the normal lines of pe and
mc can be yielded by a = βc-βe. As a result, the variance ac

2 of a is
computed by ac

2 = D (βc-βe) = D (βc), where D means variance.
Eventually, ac can be estimated by the covariance propagation of Sk0

in the first order as Eq. 5:

ac �
					
D βc( )√

�
										
∇pTβcS

0
k∇pβc

√
, (5)

where βc as well as ∇pβc can be computed by

βc � arctan e2
Thc/e1Thc( ),

∇pTβc � e2
T∇pThce1

Thc − e2
Thce1

T∇pThc( )/ hc‖ ‖22, (6)

FIGURE 2
Data correspondence (A) and pose optimization (B).
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in which ei means the 2-dimensional unit vector whose ith
component is 1 and the other is 0. In Eq. 6, ∇pThc can be
produced from Eq. 4 as Eq. 7

∇pThc � K22
−T 02[ ] ∇ΩTR0

k Mc[ ]xN c ∇tT t0k[ ]xR0
kN c[ ]

� K22
−T 02[ ] −R0

k Mc[ ]xN c[ ]x + t0k[ ]xR0
k N c[ ]x( )D Ω0

k( )[
− R0

kN c[ ]x], (7)

where D (Ωk
0) can be calculated by

D Ω0
k( ) � Ω0

kΩ
0
kT

Ω0
k

���� ����2 − sin Ω0
k

���� ����
Ω0

k

���� ����3 Ω0
k[ ]x2 − 1 − cos Ω0

k

���� ����
Ω0

k

���� ����2 Ω0
k[ ]x. (8)

The derivation of Eq. 8 can be found in (Liu et al., 2020b; Liu and
Tang, 2023).

5 Pose determination

This section aimed to determine the 6-DoF pose of the asteroid
in real time via the data correspondence provided in Section 4.2 (see
the blue box in Figure 1). Compared to the existing edge-based
methods (Oumer et al., 2015; Marchand et al., 2019; Liu et al., 2020b;
Liu and Tang, 2023), which determine the pose by minimizing the
2D reprojection errors of the 3D features, our method tackles the
pose estimation by minimizing the angles between the projection
planes of 3D contour segments and the back-projection lines of the
corresponding 2D edge points. Such line-to-plane angle is always
confined within [0, π/2], which results in the robustness of our
method to the size of the target and the relative position of the target
to the camera (Huang et al., 2021b). Sufficient experiments verify the
outstanding performance of our pose determination method
compared to the existing methods (see Section 8 for details).

At instant k, supposing that there are n 3D contour segments {Lε,
ε = 1, 2, . . . , n}, respectively, corresponding to the 2D edge points
{xε, ε = 1, 2, . . . , n}, the back-projection line direction uε of each xε
can be computed by

uε � K−1~xε/ K−1~xε
���� ����2. (9)

The normal vector of the projection plane πε of Lε can be
calculated by Eq. 10

dε � R Ω( )C1
ε + t( ) × R Ω( )C2

ε + t( ) � R Ω( )φε + t[ ]xR Ω( )ϕε, (10)
where φε = Cε

1×Cε
2 and ϕε = Cε

2−Cε
1. Let αε be the angle between uε

and dε. Then, it is easily known from Figure 2B that minimizing the
angle between uε and πε is equivalent to minimizing |cos αε|, which
can be simply represented as Eq. 11

cos αε � dT
ε

dT
ε

���� ����uε � nT
ε uε. (11)

In order to overcome the outlier, we eventually determine the
pose p by minimizing the sum of the M-estimator ρ of cosαε

min
p

F p( ) � ∑n
ε�1
ρ cos αε/σ( ) � ∑n

ε�1
ρ nε

Tuε/σ( ), (12)

where σ is set as the median absolute deviation (MAD) of {cosαε}
with the initial pose pk0 given by the SCKF (see Section 7). In

this paper, the Tuckey estimator is used due to its high
robustness to outlier (Zhang, 1997). We employ the iterated
reweighted least square (IRLS) method to minimize the
problem in Eq. 12. Let p(s) be the pose obtained at iteration
step s, and cosαε

(s) denotes the cosine of αε computed from p(s).
Let v(s) = [cosα1

s) cosα2
s) . . . cosαn

(s)]T. Then, p(s+1) can be
updated by

p s+1( ) � p s( ) − J s( )TW s( )J s( ) + τI6( )−1
J s( )TW s( )v s( ), (13)

where τ is a non-negative factor for robustness; W(s) = diag
{. . .ω(cosαε

(s)/σ). . .}, in which ω(x) = ρ′(x)/x is the weight
function of Tuckey estimator (Zhang, 1997), and J(s) is the
Jacobian matrix of v(s) and expressed as

J s( ) � / ∇p cos α s( )
ε /[ ]T, (14)

in which ∇pT cos αε(p(s)) can be computed by Eq. 15

∇p cos α
s( )
ε � uT

ε ∇pTnε

∣∣∣∣p�p s( ), (15)

where ∇pTnε can be computed by

∇pTnε

∣∣∣∣p�p s( ) � 1

dε
j

���� ����I3 − nεnε
T⎛⎝ ⎞⎠∇pTdε

∣∣∣∣p�p s( )

� 1

dε
j

���� ����I3 − nεnε
T⎛⎝ ⎞⎠ −R s( ) φε[ ]x − t s( )[ ]

x
R s( ) ϕε[ ]x( )D Ω s( )( )[

− R s( )ϕε[ ]
x
], (16)

where R(s) and t(s) are the rotation matrix and translation vector
computed from p(s), and D (Ω(s)) has the form of Eq. 8.

6 Covariance estimation of pose

Supposing p* is the optimal solution of Eq. 12, this section
will estimate the covariance matrix V of p* in the first order,
which is used by the SCKF in Section 7 (see the green box in
Figure 1). Assuming �p is the true value of pose p and all edge
points have correct correspondence, we can express each of
{xε} as

xε � �xε + Δxε, (17)
where �xε means the true value of xε, and Δxε denotes a random
perturbation of the true value (Chernov, 2011). All {Δxε} are
supposed to be independent and follow an identical Gaussian
distribution (i.i.d.) with the expectation of zero and the
covariance matrix of φ2I2.

Since p* is the optimal solution of Eq. 12, p* must hold
the first-order optimality condition of the object function in
Eq. 12

∇pF p( )∣∣∣∣p* � ∑n
ε�1
ω cos α*ε/σ( )∇pn

pT
ε U εn

*
ε � 06, (18)

where Uε = uεuεT, nε* = nε|p=p*, cosαε* = uεTnε*, and ∇pnε*T can be
computed by Eq. 16. We can expand nε*, Uε*, and ω(cosαε*) within
the vicinity of �p and �xε as
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n*
ε � �nε + ∇pT �nεΔp* + O Δp*( )2,

U ε � �U ε + ∇xεT
�U ε Δx*ε ⊗ I3( ) + O Δx*ε( )2,

ω
cos α*ε
σ

( ) � ω
cos �αε
σ

( ) + ω′ cos �αε
σ

( )
× ∇pT

cos �αε
σ

( )Δp* + ∇xεT
cos �αε
σ

( )Δx*ε( )
+ O Δp*,Δx*ε( )2, (19)

where the symbol “-” on the top of a variable means the value of the
variable computed from ground truth; �U ε � �uε�uεT, cos �αε � �nTε �uε ,
Δp* � p*-�p, Δxε � x*ε − �xε; ⊗ denotes Kronecker product, and O(x)2

denotes the terms of order 2 or higher in x. In Eq. 19, the computation
of ∇pT �nε can be found in Eq. 16, and ∇xεT

�U ε can be calculated as

∇xεT
�U ε � ∇xεT�uε I2 ⊗ �uε

T( ) + �uε∇xεT�uε
T, (20)

in which ∇xεT�uε can be computed from Eq. 9 as Eq. 7

∇xεT�uε � I3 − �U ε( ) K22
−1

02
T[ ]/ K−1 �̃xε‖2.

���� (21)

It can be easily noticed that �nTε �uε � 0. Accordingly, after substituting
(19) into (18) and ignoring the higher items, we obtain Eq. 22

06 � ∑n
ε�1
ω

cos �αε
σ

( ) ∇p�nε
T + O Δp*( )( ) �U ε∇pT �nεΔp* + ∇xεT

�U ε Δx*ε ⊗ I3( )�nε( )
≈ ∑n

ε�1
ω

cos �αε

σ
( )∇p�nε

T �U ε∇pT �nεΔp* + ∇xεT
�U ε Δx*ε ⊗ I3( )�nε( ),

(22)

as a result of which, Δp* can be obtained by Eq. 23

Δp* � −Q−1∑n
ε�1
ω

cos �αε
σ

( )∇p�n
T
ε ∇xεT

�U ε Δxε ⊗ I3( )�nε, (23)

where Q can be calculated by Eq. 24

Q � ∑n
ε�1
ω

cos �αε
σ

( )∇p�n
T
ε
�U ε∇pT �nε. (24)

Since {Δxε} are i. i.d., then the covariance matrix V of Δp* is
thereby estimated in the first order as Eq. 25

V � E Δp*Δp*T( ) � Q−1∑n
ε�1
∑n
ς�1

ω
cos �αε

σ
( )ω cos �ας

σ
( )∇p �n

T
ε(

∇xεT
�U εE ΔxεΔxTς ⊗ �nε�n

T
ς }∇xς

�UT
ς ∇pT �nς)Q−1{

� φ2Q−1∑n
ε�1
ω

cos �αε
σ

( )2

∇p �n
T
ε ∇xεT

�U ε I2 ⊗ �nε�n
T
ε )∇xε

�UT
ε ∇pT �nεQ

−1(

� φ2Q−1 ∑n
ε�1
ω

cos �αε

σ
( )2

∇p �nε ∇x1ε
�U ε �nε�n

T
ε ∇x1ε

�UT
ε + ∇x2ε

�U ε �nε�n
T
ε ∇x2ε

�UT
ε( )∇pT �nε

⎛⎝ ⎞⎠Q−1 ,

(25)

where xε1 and xε2 are the two components of xε. It can be noticed
from Eq. 20 that ∇xiε

�U ε�nε � �uεeiTK−T/‖K−1 �̃xε‖, i = 1, 2, in which ei
denotes the 3-dimensional unit vector whose all components are
0 except the ith component. Therefore, (25) can be rewritten into

V � φ2Q−1 ∑
ε∈G

ω
cos �αε
σ

( )2

∇p�n
T
ε N εN

T
ε ∇pT �nε/ K−1 �̃xε

���� ����22⎛⎝ ⎞⎠Q−1, (26)

where Nε � [�uεe1TK−T�nε �uεe2TK−T�nε]. Eq. 26 provides a
theoretical closed-form estimation for the covariance matrix of p*
and cannot be directly used in practice since the true values �p and
{�xε} are involved, and all 2D contour points are assumed to have
correct correspondence. Actually, p* is a good approximation to �p.
In addition, given the pose p*, let lε* be the projection of the ray of xε
on the projection plane πε of Lε (see Figure 2B). Then, the
intersection point Xε* of lε* with Lε can be computed by Eq. 27

Xε* � Cε
1* − u*

ε × n*
ε( )TCε

1*

u*
ε × n*

ε( )T Cε
2* − Cε

1*( ) Cε
2* − Cε

1*( ), (27)

where Cε
1* and Cε

2* are the coordinate vectors of the endpoints of Lε
in CCS under the pose p*. The projection point x̂ε* of Xε* can be
considered a reasonable approximation to �xε. As a result, in practice,
the covariance matrix V of p* can be approximated reasonably by
substituting {cos �αε} in Eq. 26 with {cosαε*} and replacing �p and {�xε}
in Eq. 26 with the p* and {x̂ε*}, respectively. According to normal
distribution, the unbiased estimate to φ in Eq. 26 can be obtained by
the MAD of all the components of all the {xε-x̂ε*}, as shown in Eq. 28

φ � 1.4826Median
ε,j,i

xiε − x̂iε*
∣∣∣∣ ∣∣∣∣( ), (28)

where the subscript imeans the ith component of the specific vector.

7 Square root cubature Kalman Filter

In this section, the SCKF will provide the final estimation for the
pose p and, meanwhile, predict the pose and its covariance for
subsequent time instants (see the dashed line box in Figure 1). The
predicted pose is the maximum posterior probability estimation
(MAP) to the true pose of the next instant via the history of the
measurements, and thereby good enough to initialize the subsequent
tracking. Furthermore, the final pose updated by SCKF is the MAP
to the true pose under the condition of the new and past
measurements, thus robust to the influence of illuminance
variation, self-occlusion, and image noise. The SCKF is based on
the uniform velocity dynamic model, which considers the
acceleration of the translation and rotation as random with zero
expectation and constant standard deviation. For accuracy, we
develop the state model of the SCKF with a 2nd-order auto-
regression process, which uses the pose vectors pk = [Ωk tk]T and
pk-1 = [Ωk-1 tk-1] T to predict the pose vector pk+1 = [Ωk+1 tk+1]T at
time instant k+1. Let sk = [Ωk

T tkT Ωk-1
T tk-1T] T be the state vector of

the SCKF at time instant k (we consider p-1 = p0). Then, the state
model can be formulated by

Ωk+1 � logSO 3( ) RkRk−1−1Rk( ) + Γk,
tk+1 � RkRk−1−1 tk − tk−1( ) + tk +Ψk,
Ωk � Ωk + ηk,
tk � tk + κk,

(29)

where logSO3(R) represents the Ω solved from R via (3); Γk, Ψk, ηk,
and κk represent the prediction error of the rotation vector and
translation vector. All of them are considered Gaussian noise vectors
with expectation of zero and variances of τ2I3, υ2I3, χ2I3, and ξ2I3,
respectively. The measurement model of the SCKF can be
expressed as
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zk � I6 O6[ ]sk + εk, (30)

where εk denotes the measurement error with zero expectation and
covariance matrix Vk. At the time instant of k, zk is determined by
the pose determination method in Section 5, and Vk can be directly
computed by Eq. 26.

The SCKF is based on Bayesian estimation and Cubature
transformation (Arasaratnam and Haykin, 2009). The biggest
advantage of SCKF is that it does not make a linear
approximation to the non-linear state model in Eq. 29. Thus, the
SCKF can effectively improve the accuracy of pose estimation.When
k > 0, the corrector and predictor will generate the final pose
estimate pk and the pose prediction, respectively, for the next
time instant through the procedures in (Arasaratnam and
Haykin, 2009). The pose prediction will be used as the initial
value for the subsequent tracking.

8 Experiments

In this section, sufficient synthetic and real trials are performed
to validate the proposed method quantitatively and qualitatively on
a desktop with a 4.2 GHz CPU, 4 cores, and 16 GB RAM. All
algorithms are implemented in MATLAB, except for the data
correspondence, which is coded by C++ due to its numerous
loops. The 3D models of the asteroids used in the trials are all
downloaded from the website (Asteroid, 2024).

8.1 Experimental design

In the synthetic trial, the intrinsic matrix of the simulated CCD
camera has a focal length of 700 pixels, an aspect ratio of 1, a skew
factor of 0, and an image resolution of 640 × 480 pixels. The
asteroids of Kleopatra, Golevka, and HW1 are employed to test
our method, whose 3D mesh models are demonstrated in Figures
3A–C. The synthetic trial includes a dark space test, distance test,
light test, noise test, model precision test, and initial perturbation
test. The dark space test comprehensively examines the performance
of our method in a dark environment. In this test, for each asteroid, a
sequence of 1,201 image frames is synthesized under sunlight with
the Sun phase angle of 45° and Sun attitude angle of 135°. The

definition of Sun phase angle and Sun attitude angle is demonstrated
in Figure 3D (Zhang et al., 2018; Zhang et al., 2013; Zhang et al.,
2015). Kleopatra, Golevka, and HW1 tumble in deep space relative
to the CCS with an angular velocity of 0.3° per frame and move away
from the camera with the linear velocity of 201.1200 m, 1.3916 m,
and 10.0495 m per frame, respectively. The distance test will
investigate the robustness of the proposed tracking method to the
imaging distance of the asteroid (the distance between the camera
and the asteroid). The imaging distance of Kleopatra gradually
increases from 380 m to 620 m, the imaging distance of Golevka
grows from 1.7 m to 2.8 m, and the imaging distance of HW1 varies
from 18 m to 30 m. At each distance level, a sequence of 1,201 image
frames is simulated with the angular velocity and the lighting
condition used for the dark space test but without linear velocity.
Due to the different sizes of the asteroids, the performance is
measured with the ratio of the imaging distance of an asteroid to
its average radius. The distance-to-radius ratio varies from 6 to
12 with an interval of 1. The light test examines the robustness of the
lighting condition. The Sun phase angle gradually changes from 0° to
90° with an interval of 10°. At each phase angle, four image sequences
are synthesized with the attitude angles of 0°, 60°, 120°, and 180°,
respectively, and the distance-to-radius ratio of 8. The noise test
evaluates the robustness of the proposedmethod to image noise. The
zero-mean Gaussian noise is added to the intensities of the image
sequence of the distance-to-radius ratio of 8 in the distance test, with
the noise level (standard deviation) gradually growing from 2 to
12 with an interval of 2. The intensity value belongs to [0, 255]. The
model precision test investigates the influence of the mesh model
precision on the proposed trackingmethod.We gradually reduce the
number of the original 3D mesh model facets to 90%, 80%, . . ., 40%.
With each simplified 3D mesh model, we assess the performance of
our tracking method with the image sequences of the distance-to-
radius ratio of 8 in the distance test. The initial perturbation test
assesses the impact of the error of the initial pose on the tracking
method with the image sequence of the distance-to-radius ratio of
8 in the distance test. We first perturb the rotation matrix of the
initial pose at the beginning of tracking with the rotation error
whose MAE gradually increases from 0° to 25° with an interval of 5°

and then perturb the translation vector by the translation error with
RPE gradually increasing from 0% to 5% with an interval of 0.5%.
For each error level of rotation error (translation error), the pose
tracking will be performed 10 times. At each time, the tracking

FIGURE 3
3D mesh models of (A) Kleopatra, (B) Golevka, and (C) HW1; (D) the demonstration of the sun phase and sun attitude angle.
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system is initialized with an initial pose perturbed by the random
rotation error (translation error) with the specific error level. For
comparison, Wang’s method (Wang et al., 2023), Tjaden’s method
(Tjaden and Schomer, 2017), Marchand’s method (Marchand et al.,
2019), and Liu’s method (Liu et al., 2020b) are adopted as reference
methods. All these reference methods use image edges to track the 6-
DoF pose of the target, thus highly relevant to our proposed
methods. All tracking methods are initialized by the method in
(Liu et al., 2020b) for the sake of fairness.

In the real trials, our method will be tested by the 3D-printed
physical models of the asteroid Mithra. A calibrated Canon IXUS
65 camera with 30 fps and image resolution of 480 × 640 pixels is
adopted to simulate the onboard camera. The Mithra model is
placed upon the black backdrop and illuminated by the directional
light source so as to simulate the asteroid under a dark space
environment. We manually take the video of 1,240 frames for
Mithra at different viewpoints. The real trial is tougher than real
space missions and synthetic trials due to the random jitter caused
by human body shaking.

8.2 Results and analysis

In the synthesis trials, the performance of the tracking method is
measured by mean absolute error (MAE), relative position error
(RPE), and average CPU runtime. Let RE and tE be the estimated
rotation matrix and translation of the asteroid, whose true values are
RT and tT, respectively, and ax, ay, and az be the three Euler angles
recovered from RERT

T with “XYZ” as the order of Euler angle
rotations. Then, we define RPE = ||tE-tT||2/||tT||2 × 100% and
MAE=(|ax|+|ay|+|az|)/3.

In the dark space test, the performance of all tracking methods is
plotted in Figure 4. It can be seen that throughout the tracking
process, the pose errors of our method are invariably much lower
than Wang’s method, Tjaden’s method, and Marchand’s method,
which fail to track the asteroids after the frame of approximately 200.
In comparison with Liu’s method, although the performance of our
method and Liu’s method are similar, it can be still noticed that the
pose errors of our method are lower than that of Liu’s method
almost at each frame. During tracking, the largest MAE and RPE of
our method for all asteroids are approximately 4.09° and 5.48%,
respectively. Table 1 lists the average MAE (AMAE) and average
RPE (ARPE) of all methods under the dark space test. It can be
found that for each asteroid, the AMAE and ARPE of our method
are significantly lower than all the reference methods, several times
smaller than that of the second-best method—Liu’s method.
Figure 5 shows the percentage of frames with MAE and RPE at
less than 1° and 1%, respectively, for all test methods in the dark
space test. As seen, for our method, there are at least 85% of frames
withMAE less than 1° and RPE less than 1% for all the asteroids, and
for each asteroid, the frame percentage achieved by our method is
noticeably higher than that of Liu’s method - the second-best
method. The CPU runtime of all methods in dark space is listed
in Table 2. It is obvious that our tracking method, which is at least
10 times faster than all the reference methods, can estimate the pose
from a frame within several milliseconds for all the asteroids. Some
example results of our method in the dark space test are
demonstrated in Figure 6, where the red lines highlight the
projections of the 3D contour segments by the pose estimated by
our method, and the number at the upper left corner is the time
instant. As revealed, the projections of 3D contour segments are
always highly consistent with the asteroids, which qualitatively

FIGURE 4
MAEs and RPEs of all tracking methods for all asteroids in the dark space test.
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verifies the accuracy of our proposed method. Due to the fact that
our method significantly outperforms all the reference methods in
the dark space test, we therefore only test our method in the
following tests.

Figure 7A shows the average pose error of all our methods for all
asteroids with the distance-to-radius ratio increasing from 6 to 12 in
the distance test. As observed, there is a gentle upward trend on the
pose errors of our method with the distance-to-radius ratio rising.
This is expected since the asteroid image becomes increasingly small
with the distance-to-radius ratio rising. Despite this, the largest
AMAE and ARPE of our method for all asteroids are less than
approximately 1.5° and 1.8%, respectively. Accordingly, this test

validates the robustness of our tracking method to the imaging
distance of the asteroids.

Figure 7B demonstrates the average pose error of our method
with the Sun phase angle varying. It can be seen that the tracking
errors of Golevka show a noticeable growth with the Sun phase
angle. This is perhaps because Golevka looks like a sphere more than
the others, which shows that the pose tracking of Golevka is more
easily influenced by Sun phase angle. By contrast, the pose errors of
HW1 and Kleopatra show some fluctuation as the phase angle
increases, which is attributed to the relatively irregular shape of
HW1 and Kleopatra. Despite this, our tracking method still achieves
acceptable pose accuracy for all the asteroids, with the largest AMAE
of approximately 0.9° and the largest APRE of 1.4%, which indicates
the satisfactory robustness of our method to illumination.

Figure 7C depicts the average pose errors of our method with the
image noise level increasing. As seen, there are almost no increases
in the pose errors of Kleopatra and Golevka as the noise level grows.
The AMAE and APRE of Kleopatra almost level off at approximately
0.45° and 0.7%, respectively, and the AMAE and APRE of Golevka
stay at approximately 0.3° and 0.8%, respectively. By comparison,
there exists a slight rise in the pose errors of HW1. This is because
the shape of HW1 is more irregular than the others, whichmakes the
pose tracking of HW1 relatively more sensitive to image noise.
Nonetheless, the AMAE and APRE of HW1 are still less than

TABLE 1 Average pose error of all methods under the dark space.

Kleopatra Golevka HW1

AMAE (degree) ARPE (%) AMAE (degree) ARPE (%) AMAE (degree) ARPE (%)

Our method 0.4393 0.7981 0.3809 0.3660 0.5855 0.7547

Liu 1.2003 1.2809 0.4791 0.9525 2.1423 1.8440

Wang 152.7197 274.9322 50.5808 10.3383 35.9188 10.6404

Tjaden 3.5186 3.2402 38.6431 17.4039 74.3414 20.8873

Marchand 7.5071 6.8916 17.0813 101.7189 40.0219 47.6480

FIGURE 5
The percentage of frames with MAE and RPE less than 1° and 1% under dark space.

TABLE 2 Average CPU runtime of all tracking methods for all asteroids
under the dark space. (s/frame).

Kleopatra Golevka HW1

Our method 0.0039 0.0057 0.0038

Liu 0.0310 0.0338 0.0286

Wang 5.3471 2.7018 4.0245

Tjaden 0.3932 0.7835 0.2726

Marchand 0.5809 0.5246 0.3899

Frontiers in Space Technologies frontiersin.org09

Tang et al. 10.3389/frspt.2024.1337262

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2024.1337262


FIGURE 6
Example results of our method in the dark space test for Kleopatra (the top row), Golevka (the middle row), and HW1 (the bottom row).

FIGURE 7
Average MAEs and average RPEs of our method in the distance test (A), light test (B), noise test (C), and model precision test (D).

FIGURE 8
Average pose errors of our method in the initial pose error test.
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approximately 1° and 1.1%, respectively. Therefore, it can be
concluded that the proposed tracking method is fairly robust to
the noise in the asteroid image.

Figure 7D illustrates the average pose errors of the proposed
method as model precision increases. It is obvious that the pose
errors of all asteroids show a noticeable drop with the model
precision rising. This is expected since the precise model can
reduce the mismatching between the extracted 3D contour
segments and the 2D edge points. It should be noticed that for
all asteroids, the tracking errors are still small enough even though
the facets of the mesh models are reduced to 40%, whose
corresponding AMAE and APRE are smaller than 1.6° and 1.6%,
respectively. In consequence, this test verifies the good robustness of
the proposed tracking method to mesh model precision.

Figure 8 shows the AMAE and ARPE of the proposed method
with the initial pose error increasing. As seen, the pose errors of all
the asteroids show a slight growth when the initial rotation error
increases from 0° to 15°, and soar thereafter. Similarly, the pose
errors of all the asteroids show a gentle fluctuation as the initial
translation error increases from 0 to approximately 3.5%, and surges
after that. This is expected since a large initial pose error may lead to
more serious 2D-3Dmismatching. Despite this, it is noteworthy that
the AMAE and ARPE of all the asteroids are smaller than
approximately 2° and 2%, respectively, when the rotation error
level and the translation error level are less than around 15° and
3.5%, respectively. Accordingly, this trial indicates that the initial
pose error with RPE less than 3.5% and MAE less than 15° has little
impact on the proposed method.

The real trial will validate the proposed method
qualitatively in reality because the ground truth of the pose is
unknown. Figure 9 displays some example results of pose
tracking, where the magenta numbers indicate the time
instants and green lines represent the projected 3D contour
segments via the estimated pose. The consistency between the
projected contour and the target external silhouette validates
the efficacy of our tracking method in real scenes. The CPU

runtime for Mithra is 0.0058 s/frame, which accords with the
CPU runtime reported in Table 2. Consequently, this real trial
confirms the prominent accuracy and efficiency of our method
in reality. Supplementary Video S1 demonstrates the whole
tracking of Mithra.

9 Conclusion

In this paper, we propose a monocular framework to track the
6-DoF pose of asteroids in real time using the 3D contour of the
asteroid. Given the 3Dmeshmodel of the asteroid, at the beginning
time instant of the pose tracking, the tracking system is initialized
by a pose retrieval method. At each subsequent instant, with the
initial pose and its covariance given by the SCKF, the 3D segments
constituting the 3D contour of the asteroid are extracted from the
3D mesh model. Then in the input image, the 2D edge points
corresponding to the 3D contour segments are retrieved within the
range decided by the initial pose and its covariance. The asteroid
pose is then determined in real time by minimizing the angles
between the back-projection lines of the 2D edge points and the
projection planes of the corresponding 3D contour segments with
M-estimation. Subsequently, the first-order covariance of the
estimated pose is computed, and eventually, by means of this
covariance matrix, the 2nd-AR-based SCKF generates the final
pose estimate and predicts the initial pose and its covariance for
the next instant. Sufficient synthetic and real trials have validated
that the proposed method outperforms the existing methods in
terms of accuracy and efficiency.
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FIGURE 9
Example results of our method for Mithra in the real trial.
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