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For convenient comparison and clear physicalmeaning, the gravity on the surface
of a homogeneous cube and on spheres inside, outside, and intersecting about it
is calculated by polyhedral or harmonic expansion methods. In addition, the
gravity coefficients of a rectangle’s spherical harmonics are both derived
analytically and evaluated numerically, where only five terms are nontrivial up
to the order of 4, which is somewhat unexpected when we first obtained them.
There are some similarities of these coefficients to an ellipsoid for the terms
C20,C22,C42, but they are much different for the terms C40,C44. Thence, a few
special gravity characteristics are here revealed or visualized. For example, it is
shown as expected that the maximum gravity appears at the sphere intersecting
the cube, but maximum surface gravity at the center of the mid-plane of a
rectangle’s surface is different from the gravity on an ellipsoid at the end of its
short axis. Based on these results, an orbit around a cube is integrated by a
polyhedral method, and its secular motion analysis by averaging theory is
investigated where the numerical and analytic results fit very well. Finally, a
few special trajectories on a surface plane of a cube are simulated; the
physical meaning is quite clear, and some insights are shown, such as why a
natural celestial body in the shape of a rectangle with sharp corners is rarely found
due to its surface gravity distribution. All gravity calculations are visualized on 3D
figures both for cubes or rectangles. Additionally, examples of an asteroid and an
ellipsoid are shown so that the techniques discussed here can be adopted to
directly analyzing the gravity of other shapes.
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1 Introduction

A cube’s or a rectangle’s gravity is of interest to researchers in areas including the
theoretical analysis in the history of gravity research (MacMillan, 1958; Waldvogel, 1976;
Nagy, 1966; Banerjee and Buddhadeb, 1977; Michalodimitrakis and Bozis, 1985), mission
design around irregular bodies (Werner, 1994; Hu and Scheeres, 2002; Chappel and Abbott,
2012), and the application of satellite gravity tomission design or gradiometry (Venditti and
Prado, 2019; Liu et al., 2011; Parikh and Tewari, 2021). Much of this research addresses the
potential and gravity of rectangles, but little of it discusses the gravity on surface of a
rectangle, and very little calculates the gravity inside a rectangle.
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Modeling the gravity near a celestial body is an important issue
for spacecraft landing, taking off, and flying around it (Scheeres
et al., 1996; Hu and Scheeres, 2004; Hu and Scheeres, 2014; Herrera
et al., 2013; Hu, 2015), especially for irregular bodies (Mysen et al.,
2006; Fukushima, 2017; Pinson and Lu, 2019; Nikolaeva et al., 2019;
Valvano et al., 2022). The key issue in all this research is modeling
the gravity around irregular asteroids. While many methods have
been studied, the most efficient approaches are harmonic expansion
and polyhedral models, which are respectively fast and precise in
computation.

Just like an ellipsoid (Guibout and Scheeres, 2003; Dobrovolskis,
2019), a rectangle is also a basic element in the structure of gravity
research. A really complicated shape can be composed of these
elements, such as ellipsoids and rectangles. A cube could be used to
simulate some special asteroids whose shape is similar to a cube, or a
part of irregularly shaped asteroids. For example, the shape of
asteroid 4,769 Casterlia (Hudson and Ostro, 1994) is similar to a
rectangle, or, more accurately, it can be regarded as two connected
cubes with smooth corners. Extended discussion about this asteroid
is given at the end of this paper. The most important characteristic of
a cube’s gravity is that its physical meaning and pattern are clear,
such as the gravity distribution on its surface, which is helpful for
understanding the nature of near-central body gravity, including for
asteroids. Another example is the recently discovered mystery object
with many uncertainties, 1I/2017U1(Oumuamua) (Bannister et al.,
2019), which recently passed through our solar system. It is
remarkable not only because of its unique orbital eccentricity of
about 1.2 and its probably being an interstellar asteroid, but also due
to its very elongated shape with sharp edges and near planar surface.
Its extreme axis ratio is at least 6:1, and even probably up to 10:1
(400 × 40 ×40 m). A simple rectangular model with some analytical
solutions for its preliminary gravity analysis is definitely meaningful
and practicable here. It is well known that we cannot derive simple
analytical conclusions for complicated models such as high
dimensional polyhedral models with thousands of vertices
(Hudson and Ostro, 1994).

Many have studied the gravity fields of asteroids as an example
of irregularly shaped bodies. Werner and Scheeres (1997) proposed
the application of polyhedral methods to evaluate the exterior
gravitational field on irregularly shaped asteroids; they calculated
and compared acceleration magnitudes mainly on different special
planes such as x � 0, y � 0 or z � 0. Takahashi et al. (2013)
calculated both exterior and interior spherical harmonic
coefficients to model the near surface gravity of an asteroid.
More recently, Sebera et al. (2016) evaluated the gravity field of
an asteroid by spheroidal models.

This study discusses the parallel gravity of an ellipsoid or an
asteroid to rectangles with the same objectives to reveal some
aspects of the basic nature in gravities of different shapes by
different methods, with some special analytical conclusions. The
remainder of this article is organized as follows. Section 2 briefly
introduces the definitions of harmonic expansion and the
polyhedral method, including the coordinate transformation of
derivatives. In Section 3, the 3D and 2D gravity distributions of
cubes are plotted, then the harmonic expansion coefficients up to
the sixth degree and order are calculated. For comparative
convenience, a rectangle’s surface gravity and harmonic
coefficients are assessed, including their analytical formulation.

Many examples of gravity accelerations both on surfaces on and
spheres around a cube are then calculated, including motion
examples and analysis, and many comparisons given. Finally,
Section 5 provides conclusions, explanations, and also some
extensions to an asteroid and an ellipsoid.

2 Gravity calculation method

2.1 Spherical harmonic expansion

The spherical harmonic gravity field is widely adopted with
coefficients associated with Legendre functions of degree n and order
m(Kaula, 1966).

U r,ϕ, λ( ) � GM

r
1 +∑∞

n�1

r0
r

( )n ∑n
m�0

Pnm sinϕ( ) × Cnm cos mλ( ) + Snm sin mλ( )[ ]⎡⎣ ⎤⎦
(1)

where r is a spacecraft’s radial position, ϕ is its latitude, λ is the
longitude, G is the gravitational constant, M is an asteroid’s total
mass, r0 is the reference radius, Pnm is the normalized associated
Legendre function of degree n and orderm, and Cnm and Snm are the
normalized spherical harmonic coefficients.

Cnm �
�������������

2δ l −m( )!
2l + 1( ) l +m( )!

√
1

Mrn0
∫∫∫

Vol
r′nPnm sin ϕ′( )( )cos mλ′( )dM

(2)

Snm �
�������������

2δ l −m( )!
2l + 1( ) l +m( )!

√
1

Mrn0
∫∫∫

Vol
r′nPnm sin ϕ′( )( )sin mλ′( )dM

(3)
where r′,ϕ′, λ′ are the radius, latitude, and longitude of a distributed
mass inside an asteroid. δ � 0 ifm � 0; δ � 1 ifm ≠ 0. r0 is the same
reference radius in Eq. 1. As we discuss the gravity on the surface and
inside or outside a cube, it is important to note that the reference
radius can be chosen arbitrarily, as usual, but here it is chosen as the

FIGURE 1
Gravitational potential on a sphere outside a cube. Note that the
potential unit in this paper can be normalized as any value by Eq. 4.
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mean radius of the asteroid—that is, the radius of a corresponding
sphere with same mass as the asteroid. This is closely related to the
convergence and divergence regions of the harmonic
expansion method.

Spherical harmonic expansion can only be used to calculate gravity
potential directly outside a celestial body, but it is not suited to evaluating
gravity on the surface and inside, or even near but outside, a celestial
body. Examples are given below. See Figure 1 as an example, which shows
the gravity potential on a sphere outside a cube. Note that the potential
unit in this paper can be normalized as any value. Here we pay more
attention to the relative value—the patterns of the gravity.

2.2 Polyhedral method

For a polyhedral gravity field, the potential of a spacecraft at
position r is (Werner and Scheeres, 1997):

U r( ) � 1
2
Gσ ∑

e∈edges

re · Ee · re · Le − ∑
e∈faces

rf · Ff · rf · ωf
⎛⎝ ⎞⎠ (4)

where density σ is assumed to be constant. Suffixes e and f denote
the edge and face of the polyhedron. The face’s outward-pointing
normal vector is n̂f, and its dyad F̂f � n̂fn̂f and n̂f

e is outward edge
normal perpendicular to both n̂f and the edge. For the edge
connecting vertices i and j shared by face A and B, the edge
dyad is Êij � n̂An̂

A
ij + n̂Bn̂

B
ji, with other similar definitions of Ees.

If ri is the vector form spacecraft to polyhedron vertex Pi, ri is its
magnitude. eij is the length between vertices Pi and Pj; an edge
factor Le is defined

Le � ∫
e

1
r
� ∫Pj

Pi

1
r
ds � ln

ri + rj + eij
ri + rj − eij

. (5)

ωf is a dimensionless face factor bounded by the triangular face f:

ωf � ∫∫
triangle

Δz
r3

dS

� 2 arctan
ri · rj × rk

rirjrk + ri rj · rk( ) + rj rk · ri( ) + rk ri · rj( ). (6)

as the spacecraft’s gravitational acceleration is generally no
longer on the radius directions for a non-spherical central body.
In these calculations, some transformations are needed from
spherical coordinates to Cartesian coordinates: tan θ � y/x,
sin ϕ � z/r, r � ����������

x2 + y2 + z2
√

.
The polyhedral method can calculate gravity outside a celestial

body, and it can also be used to calculate gravity near the surface on a
celestial body; however, here we try to apply it to calculate the gravity on
and inside the surface of a celestial body without much modification of
its algorithm. This is one of themajor contributions of this paper. Many
examples and analysis will be given below.

3 Gravity field calculations around a
cube or a rectangle

Unlike most existing literature, which gives gravitational
comparisons between polyhedral and harmonic expansion

methods by calculating the gravity on a cross-sectional plane,
such as x � 0, y � 0, or z � 0 (Werner and Scheeres, 1997)
without the gravity inside the celestial bodies, this study
calculates the gravity on a sphere. The reasons for this are that,
firstly, that it is easy for comparative purposes, then for many
practical missions whose orbit is near circular, such as gravity
gradiometry satellites, and also for some algorithms such as the
estimation of spherical harmonic coefficients. In this section, the
calculation can be much simplified on a sphere.

For a homogenous cube whose dimension is 200 × 200 ×
200 units of length, three spheres are special and typical both in
geometry and gravity with radiuses of R � 100, R � 100

�
2

√
, and

R � 100
�
3

√
. There are figures in later sections, but here is a brief

introduction. For the sphere R � 100
�
2

√
intersecting the cube and

also tangents to the eight edges of a cube, the parts of the cube near
the eight corners of the cube are outside the sphere, and the other
parts near the centers of the planes are inside the sphere. For the
sphere R � 100

�
3

√
, the gravity examples can be seen in following

section. It intersects the eight corner peaks of the cube and is also the
smallest sphere completely outside the cube. The overall gravity
patterns on the other larger spheres are quite similar. The sphere
R � 100 is tangential to the six flat surfaces at their centers, and it is
also the largest sphere which is completely inside the cube. The
gravities on these special spheres are calculated in this section, giving
insights into the nature of the gravity around a cube. Before the
calculation of gravity on these spheres, for convenience of
comparison, the spherical harmonics coefficients of a cube and
the gravity on its surface are calculated first.

Note that the acceleration unit in this paper can be normalized
as any value. For example, if the length unit is kilometers, the density
is about 1g/cm3 and the acceleration unit is mm/s2. We pay more
attention to the relative value, which is the acceleration pattern and
distribution about a cube.

3.1 The spherical harmonic coefficients
around a rectangle

Due to the symmetry in a rectangle’s shape, the gravitational
coefficients of its spherical harmonic expansion taken about its
center of mass have a relatively simple form. First of all, Slm
coefficients are identically equal to zero. Secondly, all coefficients
Clm are such that either l or m are odd and are also equal to zero.
Thus, the only non-zero gravity coefficients are those of the form
C2l,2m, l, m � 0, 1, 2, . . .. Some explicit formula for the rectangle’s
gravitational field coefficients are derived here, and the first few with
the dimension 2a × 2b × 2c terms without normalization are
specified as:

C20 � 1
6r20

2c2 − a2 − b2( ) (7)

C22 � 1
r20

a2 − b2( ) (8)

C40 � 1
15r40

9a4 + 9b4 + 24c4 + 10a2b2 − 40a2c2 − 40b2c2( ) (9)

C42 � 1
2r40

a2 − b2( ) 10c2 − 3a2 − 3b2( ) (10)
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C44 � 7
r40

3a2 − b2( ) a2 − 3b2( ) (11)

We can find that there is a similarity of the gravitational coefficients
between a rectangle and an ellipsoid (Balmino, 1994; Scheeres,
2012), especially about C20 � (2γ2 − (α2 + β2))/(10r20), C22 � (α2 −
β2)/(20r20) in the form of its semi-axis(α≥ β≥ γ). But other
coefficients are different, there being no simple relation
like C40 � 15/7(C2

20 + 2C2
22), C42 � 5/7C20C22, C44 � 5/28C2

22 for
an ellipsoid. It is obvious that for a cube(a � b � c), C20 � C22 �
C42 � 0.

One simple way to calculate the spherical harmonic coefficients
is to evaluate the gravity potential by Eq. 1 on a sphere outside the
irregular central body using the polyhedral method. Then, by a usual
least square algorithm, the coefficients can be obtained. See the
compact form of the linear Eq. 12 about the coefficients. Since the r
in Eq. 1 is here a constant on a sphere, the calculation is simplified.
This is one of the important reasons that we use spheres as
calculating examples here–see the potential example on an
exterior sphere in Figure 1. The larger potential (yellow) parts
are directly above the center of the planes, and smaller potential
(blue) parts are above the corners of the cube. The patterns show
that the physical meaning is quite clear, which can justify the
algorithm and the code to some degree. This is one reason why a
cube has been chosen first for calculating examples in this paper.
One drawback of this method is that outliers may appear in the
results. For example, S32 � −0.1777 is not trivial when calculating
6 × 6 coefficients, but S54 � 2.0173 appears when calculating 8 × 8
coefficients, and other coefficients are the same as in Table 1. It is
unexpected that only one outlier exists for each of these two cases;
however, because of this, it is easy to remove the outlier from the
data. Luckily, the drawback of the results by this algorithm gives us a
special strategy to remove the outlier.

. . .

U r, ϕi, λi( )
GM

− 1
r

. . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

. . . P10 sin ϕi( ) . . .

. . . P11 sin ϕi( )cos λi( ) . . .

. . . P11 sin ϕi( )sin λi( ) . . .

. . . P20 sin ϕi( )sinϕi . . .

. . . P21 sin ϕi( )cos λi( ) . . .

. . . P21 sin ϕi( )sin λi( ) . . .

. . . P22 sin ϕi( )cos 2λi( ) . . .

. . . P22 sin ϕi( )sin 2λi( ) . . .

. . . . . . . . .

. . . Pnm sinϕi( )cos mλi( ) . . .

. . . Pnm sinϕi( )sin mλi( ) . . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

r0
r2
C10

r0
r2
C11

r0
r2
S11

r20
r3
C20

r20
r3
C21

r20
r3
S21

r20
r3
C22

r20
r3
S22

. . .

rn0
rn+1

Cnm

rn0
rn+1

Snm
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(12)

The normalized spherical harmonic coefficient(6 × 6), Cnm,
shown in Table 1 together for comparison, are Snm from 0 to the

order 6 by calculating a cube with a dimension 100 × 100 × 100
length scale, and rectangles with the dimension 100 × 200 × 200 and
100 × 200 × 300, and also an ellipsoid whose semi-axes are
100 × 200 × 300. It is interesting to see that only
C00,C40, C44,C60,C64 are not negligible for a cube (200 × 200 × 200),
C20 appear also for a rectangle (200 × 400 × 400), and C22, C42,C62

appear also for a rectangle (200 × 400 × 600), which can be validated by
Eqs 7–11. It is evident that the number of a cube’s nontrivial
coefficients is minimum except for a sphere. On the other hand, it
also reveals the physical meaning of C40, C44, C60, C64, etc., which
represent the shape of a cube. Interested readers can also see a
comparison of these coefficients to those of an ellipsoid with
semi-axis (100 × 200 × 300) length scale.

3.2 Gravity on the surface of a cube and
a rectangle

Figures 2 and 3 visualize the total polyhedral gravity
magnitudes on the surfaces of a cube and a rectangle. In
Figure 3, one unexpected result is that the maximum gravity
appears at a center of the mid-planes with the dimension
200 × 600. This conclusion differs from the well-known result
for an ellipsoid, whose maximum surface gravity appears at the
end of its short axis while its minimum surface gravity is at the
ends of its long axis (Guibout and Scheeres, 2003; Dobrovolskis,
2019). Figure 4 shows gravity on a cube in its surface direction,
which could be helpful for understanding dust motion on surface.
It is evident that near the edge, gravity is high but that it is zero at
the center of the plane. The careful reader can find the largest
tangential gravities appearing near the center of the edge. This
gives some clue that a natural cube is rare in the celestial realm.
All dust has a tendency to move to its surface center and
accumulate to become a sphere. Some trajectory analysis is
given in Section 4.2.

3.3 Gravity on an intersecting sphere around
the cube

Attention can be given to the special sphere with the radius
R � 141.4 of a cube with the dimension 200 × 200 × 200. In
Figure 5, part of the sphere is tangential to the edge, and part
of it is inside the corner or outside the plane center of the cube.
Figure 6 shows the 2D map of the gravity of the cube on a sphere
whose radius R � 141.4 corresponds to the 3D Figure 5. Special
attention should be given to the maxim gravity at the boundary
line, which is both on the surface of the sphere and the cube. In
this figure, the larger value appears at the middle of each edge of
the cube, tangential to the sphere. The yellow boundary around
the corners of the cube is also on its surface. Inside the boundary
near the corners, the gravity is inside the corners of the cube,
which is smaller than the corresponding boundary with same
radius on the surface. This is physically correct. This also shows
that the polyhedron algorithm works well for all these different
cases. Hence, we visualize the gravity inside the cube, which could
be helpful for understanding internal structure and the evolution
of a celestial body. This sphere includes parts both inside the
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corner and outside the central plane of the cube. It is obvious for
the outside parts of the sphere above the planes of the cube that its
gravity is also smaller than the gravity on the boundary both on
the surface of the cube and of the sphere. This is good example of
how the polyhedral method is not only valid for the gravitational
calculation outside a solid body but also works well for the place
inside or on its surface; relatively very few researchers have done
it this way. The harmonic expansion method only works for the
spheres far enough from its central body. Again, we note that the
acceleration unit in this paper can be normalized as any value.
For example, if the length unit is kilometers, density is about 1g/
cm3 and the acceleration unit is mm/s2. Here, we pay more

attention to the relative value–the acceleration pattern and
distribution about a cube.

3.4 Gravity on a sphere outside the cube

For this, see Figures 7–9. For even larger spheres outside the cube,
their overall gravitational patterns are all similar. Interested readers can
compare Figure 7 to Figure 1, in that the place (above corner of the cube)
on the sphere of larger gravity corresponds to the place with smaller
potential, whereas the place (above the center of a plane) of smaller gravity
corresponds to the place with larger potential on the sphere. Thus, the

TABLE 1 Calculated normalized spherical harmonic gravity coefficients of a cube and rectangles to the order 6 × 6.

cube (1 × 1 × 1) rectangle (1 × 2 × 2) rectangle (1 × 2 × 3) ellipsoid (1 × 2 × 3)

n m Cnm Snm Cnm Snm Cnm Snm Cnm Snm

0 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0

1 0 0.0000 0 0.0000 0 0.0000 0 −0.0000 0

1 1 0.0000 0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000

2 0 0.0000 0 −0.1153 0 −0.1613 0 −0.1486 0

2 1 0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000

2 2 0.0000 −0.0000 0.0000 −0.0000 0.1270 −0.0000 0.1171 0.0000

3 0 0.0000 0 0.0000 0 −0.0000 0 −0.0000 0

3 1 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000

3 2 −0.0000 0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000

3 3 −0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

4 0 −0.0328 0 0.0281 0 0.0792 0 0.0871 0

4 1 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000

4 2 0.0000 0.0000 0.0000 0.0000 −0.0697 0.0000 −0.0802 0.0000

4 3 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

4 4 −0.0277 0.0000 −0.0699 0.0000 −0.0439 0.0000 0.0483 0.0000

5 0 −0.0000 0 −0.0000 0 0.0000 0 0.0000 0

5 1 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

5 2 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 3 −0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 −0.0000

5 4 0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000

5 5 0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000

6 0 0.0072 0 0.0052 0 −0.0415 0 −0.0794 0

6 1 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000

6 2 0.0000 0.0000 0.0000 0.0000 0.0411 −0.0000 0.0840 −0.0000

6 3 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

6 4 −0.0192 −0.0000 0.0239 −0.0000 0.0287 −0.0000 −0.0498 0.0000

6 5 0.0000 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000

6 6 0.0000 0.0000 0.0000 0.0000 −0.1206 0.0000 0.0306 0.0000
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place on the sphere with larger potential is at the same place with smaller
gravity, and vice versa is compatible with the general definitions of
potential and gravity. Particularly in Figure 9, the overall error is
acceptable, and largest errors appear near the corner of the cube at

about 10%. The error in the large yellow part is very small. The accuracies
can be improved even further by adding more spherical harmonic terms
in the model, such as C60,C64, C80,C84,C88.

3.5 Gravity inside the cube

The polyhedral method is again applied to investigate the
gravity inside a celestial body, which is closely related to the
internal stress and strain. This kind of research is helpful for
analyzing the internal structure and evolution of an asteroid. The
gravity on a sphere r � 100, which is just inside the cube, is
calculated. See Figure 10 and compare with Figure 2 ,which is
similar in overall pattern; the maximum value appears just at the
center of each plane of the cube. For other even smaller spheres,
the gravitational configurations on them are all similar. However,
the errors calculated by spherical harmonics are all too large,

FIGURE 2
Total surface gravity.

FIGURE 3
3D surface gravity of a homogeneous rectangle by the
polyhedral method.

FIGURE 4
Gravity in surface direction.

FIGURE 5
3D gravity of a cube on a sphere with radius R � 141.4.

FIGURE 6
2D contour map of gravity in Fig.5, longitude vs. latitude (deg).
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especially near the corners (Figures 11, 12). We see that the errors
are totally unacceptable for the spherical harmonic expansion
method, especially near the corners of the cube. The relativity is
up to 200–300%. Interior spherical harmonic coefficients are
needed (Takahashi et al., 2013). With this situation, some special
modifications for this method should be given (Takahashi et al.,
2013; Scheeres, 2012; Pearl et al., 2018; Arora and Russell, 2012).

4 Application examples

4.1 Near circular orbit

With the polyhedral model, spacecraft landing and ascending
trajectories can be calculated, but more interesting theoretical results

FIGURE 7
Gravity of polyhedron model for a cube at a sphere of
radiusR = 175.

FIGURE 8
Gravitational field of 4th degree and order spherical harmonic
expansion for cube on a sphere of radius 175, which is just outside
the cube.

FIGURE 9
Comparison of the gravity between spherical harmonics and
polyhedral model, (Gsh − Gpoly)/Gpoly when R � 175.

FIGURE 10
Gravitational acceleration of polyhedral model for cube at R �
100 distance.

FIGURE 11
Gravitational field of 4th degree and order spherical harmonic
expansion on sphere with radius 100 which is just completely inside
the cube.
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can be obtained if secular motion is studied. The secular motion of
periapsis in the orbital tori is similar to the well-known Mercury
apsidal secular perturbation motion around the Sun. See Figures 13
and 14 and consider an initial circular orbit e � 0 in the equatorial
plane i � 0; it can be seen that the semi-major axis a, eccentricity e,
and inclination i are constant on average, the longitudinal of the
ascending node Ω increases, and the argument of periapsis ω

decreases by averaging the true anomaly ]. The Ω’s rate is just
twice the rate of ω, which can be explained by Eqs 13;–;16; the
corresponding curves are on Figure 14. The orbit moves 16 periods,
whereas the longitude processes only one period in about 350 time
units. This can be derived without difficulty for the averaged
equation of six elements using classical averaging theory
(Kaula, 1966):

_a � _e � _i � 0 (13)
_Ω � −35C40n cos i

8p4
6/7 + 9/7e2( ) − 3/2 + 9/4e2( )sin2 i[ ], (14)

_ω � 35C40n

8p4
12/7 + 27/14e2( ) − 93/14 + 27/4e2( )sin2 i[ (15)

+sin4 i 21/4 + 81/16e2( )].
Short period oscillation is mainly due to the term C44, C64. In

Figure 14, from top to bottom, the calculated classical six elements
for the orbit in Figure 13 are semi-major axis a, eccentricity e,
inclination i, longitude of ascending node Ω, argument of periapsis
ω, and true anomaly ]. The unit for angles are degrees. More
attention should be paid to the trend of variation.Other
researchers are also interested in the orbital motion around a
cube (Liu et al., 2011), which shows a few families of periodic orbits.

4.2 Motion on a surface

Figure 15 shows three examples of motion: a particle moving
without friction in a straight line (green), a circle (red), and a general
tori trajectory (blue) on a surface of a cube via polyhedral gravity
calculations. When there is no initial lateral velocity, the dust or a
cart’s motion is on a straight line (green line), like a spring’s
harmonic motion. With the proper choice of lateral velocity, the
motion can be in a periodic trajectory, similar to a circle (red circle).
A random velocity normally leads to a tori trajectory (blue
trajectory). The only forces acting on the particle are the gravity

from the cube and the supporting force out of the surface. No
friction is assumed here.

For a cube with dimension 2 × 2 × 2 unit length, the motion is
simple with initial condition x0 � 0.9, z0 � 0 in the plane y0 � 1.
Even for this simple case, a complete proof is also tedious as too
many terms should be included. A simplified analysis is here
given. In gravity, these kinds of terms appear by simple
formulation.

ri �
����������
x2 + 2x + 6

√
(16)

rj �
����������
x2 − 2x + 6

√
(17)

k � − ri + rj

rirj ri + rj( )2 − 4( ) (18)

b � − ri − rj

rirj ri + rj( )2 − 4( ) (19)

€x � kx + b (20)

FIGURE 12
Comparison of gravity between spherical harmonics and
polyhedral model, (Gsh − Gpoly)/Gpoly when R � 100.

FIGURE 13
Example orbit around a cube with initial orbit in equatorial plane,
calculated by polyhedral model.

FIGURE 14
From top to bottom, calculated classical six elements for the
orbit in Figure 13: a, e, i, Ω, ω, ]. The unit for angles are deg. Pay more
attention to the trend of variation.
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Where the length of the cube is 2, ri, rj is the distance from the
attracted mass point to the corners of the adjacent corners i, j of
the related edge. It is easy to show that |b/k| ≪ 1 (less than 10%)
and k is almost a constant when −1<x< 1. It is only near the edge
that a little nonlinear property appears. The motion is then
similar to mass spring harmonic motion. These accelerations
can also be seen in the arrow representations in Figure 3 for both
direction and magnitude.

When friction exists, the tori and circle motion become spiral.
The linear oscillation’s amplitude will dwindle. Finally, all the
motions will be stopped at the center of the plane. This could be
an explanation of why in the natural world a pure cube celestial body
with sharp corners is rare.

5 Discussion and Conclusion

There is already some literature discussing the gravity of Asteroid
4,769Castalia, original data of which can be found inHudson andOstro
(1994). Here we show a different figure (Figure 16) which calculates and
visualizes the surface gravity without centrifugal force resulting from
rotation for theoretical comparison. More practical calculations about
this irregularly shaped asteroid’s surface gravity, internal gravity, and
slope with rotation can be found in our newly published paper (Hu
et al., 2024). To theoretically understand the nature of gravity of
different shapes by different methods, gravitational calculations are
performed for a cube, but on its surface and different spheres around it
by polyhedron and harmonic expansion methods for different cases. In
these examples, a few different perspectives of thesemethods and results
are revealed, such as the maximum gravity being at the plane’s centers
and the minimum at the corners on the surface. For a sphere that
intersects the cube, the maximum gravity is on the intersection between
the cube and the sphere. This means that on the sphere, the gravities
inside and outside the cube are smaller than the gravity on the
intersection—that on the surface of the cube. If high-order
coefficients of harmonic expansion are calculated for a cube,
nontrivial terms are such as C40, C44, C60, C64, C80, C84, C88,
C100, C104, C108. From another point of view, this reveals the
physical meaning of these terms in spherical harmonic expansions.
These analyses are extended to rectangles; for a general rectangle, the
maximum gravity appears at the center of its mid-plane, and for its
harmonic expansion coefficients such as C20, C22, C42, C62,
C66, C82, C86, C102, C106, C1010, terms also appear.

It can be seen in Figure 16 that the asteroid can be approximated
to two connected cubes with smooth corners. The local maximum
surface gravity appears near the centers of the planes, and local
minimum gravity is at the corners of the cube, which is compatible
with the analysis of a rectangle’s gravity here.

FIGURE 15
Particle on surface moving without friction in a straight line
(green), a circle (red), a general tori trajectory (blue).

FIGURE 16
Gravitational acceleration on surface of asteroid 4,769 Castalia
without rotation, unit:10−2mm/s2.

FIGURE 17
Effective gravity slope (deg) on rotating ellipsoid with angular
velocity increasing from left to right and then from top to bottom, as
the sequence subplot 1-8.
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Hence, in this study a cube’s gravity is focused, as its gravity
acceleration distribution is regular, simple, and fundamental. These
results could be interesting for readers in widely different research
areas, just like an ellipsoid’s gravity which is also convenient for
comparison—see the effective surface gravity slope in Figure 17,
which differs from Figure 10 in Dobrovolskis (2019). In this paper,
ωab <ωac <ωbc, which seems more reasonable. The definition of the
effective gravity slope is the same—the angle from minus normal of
the surface to its local effective gravitational direction. Especially
note that if the gravity slope at some spot is larger than 90° then dust
on it is flying off or shedding away from the ellipsoid, just as at the
end of the long axis in subplot 8. The ellipsoid in subplot 1 does not
rotate. In subplot 2, its angular velocity is ωab; for subplot 5, ωac;
subplot 7, ωbc, as defined in Dobrovolskis (2019); that is, ω1 �
0<ω2 � ωab <ω3 <ω4 <ω5 � ωac <ω6 <ω7 � ωbc <ω8.
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