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Hall thrusters are susceptible to large-amplitude plasma oscillations that impact
thruster performance and lifetime and are also difficult to model. High-speed
cameras are a popular tool to study these dynamics due to their spatial resolution
and are a popular, nonintrusive complement to in situ probes. High-speed video of
thruster oscillations can be isolated (decomposed) into coherent structures
(modes) with algorithms that help us better understand the evolution and
interactions of each. This work provides an introduction, comparison, and
step-by-step tutorial on established Fourier and newer Proper Orthogonal
Decomposition (POD) algorithms as applied to high-speed video of the
unshielded H6 6-kW laboratory model Hall thruster. From this dataset, both
sets of algorithms identify and characterize m = 0 and m > 0 modes in the
discharge channel and cathode regions of the thruster plume, as well as mode
hopping between them = 3 andm = 4 rotating spokes in the channel. The Fourier
methods are ideal for characterizing linear modal structures and also provide
intuitive dispersion relationships. By contrast, the POD method tailors a basis set
using energy minimization techniques that better captures the nonlinear nature of
these structures and with a simpler implementation. Together, the Fourier and
POD methods provide a more complete toolkit for studying Hall thruster plasma
instabilities andmode dynamics. Specifically, we recommend first applying POD to
quickly identify the nature and location of global dynamics and then using Fourier
methods to isolate dispersion plots and other wave-based physics.
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1 Introduction

The Hall thruster (HT) is a standard spacecraft electric propulsion system that uses
crossed electric and magnetic fields (E × B) to ionize and accelerate propellant (Goebel and
Katz, 2008; Boeuf, 2017). Their high specific impulse and technological maturity make them
ideal for long duration satellite station keeping and time-insensitive missions, such as orbit
raising, with thousands currently in orbit and more planned. However, HTs experience
anomalous electron transport across their magnetic field that is not sufficiently understood
to permit fully predictive thruster models, motivating continued improvement of diagnostics
for model validation. This lack of validation is especially important for increased
qualification by simulation for new thruster designs at ever-higher power, such as the
N30 or X3 nested Hall thrusters, where full life qualification in a ground test facility would be
prohibitively expensive for 10–100 kW thrusters (Florenz et al., 2012; Hall et al., 2017).
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Anomalous electron transport has been strongly linked to
plasma oscillations in HTs (Choueiri, 2001) in both the thruster
discharge channel (Parker et al., 2010; McDonald and Gallimore,
2011a) and cathode regions (Jorns et al., 2020). Long-wavelength
azimuthal oscillations, the focus of this work, are typically
characterized in a Fourier representation with integer mode
numbers, m, including the azimuthally uniform m = 0
“breathing” modes in HT channels (Sekerak et al., 2016; Dale,
2019) and cathodes (Goebel et al., 2007; Georgin et al., 2019),
m > 0 azimuthally rotating “spoke” modes in the channel, and a
m = 1 counter rotating “anti-drift”modes around the cathode (Jorns
and Hofer, 2014). The rotating spoke channel modes, first observed
in an early Hall accelerator by Janes and Lowder (Janes and Lowder,
1966), are now known to be ubiquitous in unshielded thrusters
(McDonald and Gallimore, 2011b) though they may be less
common in magnetically shielded thrusters (Jorns and Hofer,
2014; Baird, 2020). Cathode m = 1 anti-drift modes have been
previously observed in both shielded and unshielded versions of the
H6 Hall thruster (Jorns and Hofer, 2014) (the unshielded H6 is
studied in this work). All of these modes are historically
characterized by one or more in situ diagnostics, but the
localized nature of these diagnostics both perturb the plasma and
make it difficult to relate individual measurements to global mode
structures.

High-speed imaging (HSI) has become a popular
complementary diagnostic to in situ probes and has proven itself
well suited to characterizing mode dynamics (Parker et al., 2010;
McDonald and Gallimore, 2013; Jorns and Hofer, 2014). Its
popularity is due to its ease of use, nonintrusive nature, high
speed (100 s of kHz), and fine spatial resolution of order
millimeters per pixel. HSI was first used on HTs to relate image
brightness to plasma density oscillations measured by electrical
probes (Darnon et al., 1997). This and later work has led to the
use of pixel light intensity as a proxy for discharge current (Hara
et al., 2014).

To isolate and characterize individual mode dynamics fromHSI,
various post-processing algorithms have been developed. Early work
subtracted the time-average from each pixel to reveal multiplem > 1
modes in the H6 Hall thruster channel (McDonald and Gallimore,
2011b). Later, Fourier techniques were used with azimuthal binning
to isolate the frequency spectrum associated with individual channel
modes (McDonald M. and Gallimore A., 2011). Fourier methods
have also been used to provide azimuthal dispersion plots within the
CHT (cylindrical Hall thruster) (Parker et al., 2010) and H6 17

thruster channels. A phase-based Fourier analysis was developed
to isolate the spatial structure of the m = 1 cathode mode on the
H6 thruster (Jorns and Hofer, 2014) andm > 0 channel and cathode
modes on the HERMeS thruster (Baird, 2020). An alternative
Fourier-based visualization method, Cross-Spectral-Density
(CSD), was developed on the CHT thruster (Romadanov et al.,
2019).

The Fourier methods remain the most established method for
isolating and analyzing Hall thruster plasma oscillations, but they
have several disadvantages. First, their linear sine/cosine bases are
not ideal for nonlinear features. Second, Fourier methods require
several preprocessing steps for high-speed video; this added
complexity requires additional computational overhead and
makes it more difficult to study multi-dimensional dynamics.

An alternative to Fourier methods are Singular Value
Decomposition (SVD) based algorithms (Brunton and Kutz,
2019). The chief advantage of SVD is that it creates a tailored set
of bases for each dataset based on the energy (i.e., amplitude) of each
coherent dynamic within the measurement instead of assuming a
basis (e.g., Fourier’s sines and cosines). This facilitates improved
characterization and reconstruction of nonlinear dynamics without
making any physical assumptions of the system. SVD also requires
minimal preprocessing compared with Fourier methods.

The most notable and likely simplest SVD algorithm is Proper
Orthogonal Decomposition (POD) which is extensively used in fluid
mechanics (Benner et al., 2015; Taira et al., 2017; Brunton and Kutz,
2019). A classic POD application is to decompose fluid vortex
shedding around a body (e.g., a cylinder) into discrete modes
(Noack et al., 2003; Oudheusden et al., 2005). POD has also been
used in plasma physics to characterize plasma oscillations (Dudok de
Wit et al., 1994; Levesque et al., 2013; vanMilligen et al., 2014; Hansen
et al., 2015; Kaptanoglu et al., 2021) but is often referred to as
Biorthogonal Decomposition (BD). Very recently, POD has been
used to characterize axial and azimuthal modes in Hall thruster high-
speed video (Désangles et al., 2020), azimuthal modes in a hollow
cathode plume (Becatti et al., 2021), and study mode coupling in an
annular hollow cathode plume (Brooks et al., 2022). More
sophisticated SVD algorithms exist, most notably DMD (Dynamic
Mode Decomposition) (Schmid, 2010; Tu et al., 2014) and have
applications in active control, linear dynamics, and plasma physics
(Taylor et al., 2018; Sasaki et al., 2019; Kaptanoglu et al., 2020).

The goal of this work is to compare Fourier and POD techniques
as applied to Hall thruster high-speed imaging in a tutorial format.
To this end, this work analyzes a high-speed video recording of the
unshielded H6 Hall thruster plume and provides a step-by-step
explanation of algorithm’s implementation and results. This work
starts by introducing the H6 thruster, high-speed video dataset, and
video preprocessing in Section 2. Section 3 discusses several
established Fourier mode analysis methods and, when applied to
the H6 dataset, identifies simultaneous cathode and channel modes
in addition to mode hopping within the channel. Section 4
introduces the SVD algorithm and its most common
implementation: Proper Orthogonal Decomposition (POD).
When applied to the H6 dataset, POD identifies the same mode
behavior and provide several improvements over the Fourier
methods. When used together, POD and Fourier methods
provide a more complete toolkit for identifying and the isolating
global mode dynamics. The code and dataset used for this work are
available online (Brooks, 2021).

2 Experimental setup

This section covers the experimental hardware (thruster, facility,
high-speed camera), the HSI dataset, and common HSI
prepossessing techniques.

2.1 Hardware and dataset

This work focuses on a single illustrative operating condition for
the unshielded H6 Hall thruster. The H6 is a laboratory model 6-kW
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thruster (see Figure 1) with a design operating point of 300 V and
20 mg/s (where 1 mg/s ≈ 1 A) on xenon. In this work, we focus on a
600 V and 10 mg/s condition that exhibits several simultaneous
modes, most prominently an m = 1 cathode spoke, a shared m = 0
mode between the channel and cathode regions, and mode-hopping
between m = 3 and m = 4 in the channel.

Recordings took place in the University of Michigan
Plasmadynamics and Electric Propulsion Laboratory’s Large
Vacuum Test Facility (LVTF) circa 2011. The LVTF is a
cylindrical chamber 9 m long and 6 m in diameter and at the
time was maintained at high vacuum by seven TM-1200
cryopumps with a combined pumping speed of 210,000 L/s on
xenon.

A Photron SA5 FASTCAM high-speed camera placed 6.5 m
axially downstream of the thruster exhaust imaged the plume
through a quartz window with 152 × 192 resolution in
monochrome (B&W) at a framerate of 175 kHz. The fastest
mode observed was a 80 kHz cathode spoke, just below the
87.5 kHz camera Nyquist frequency. The camera used a Nikon
ED AF Nikkor 80–200 mm lens at its maximum aperture of f/
2.8. The bright, central cathode saturates several pixels, and the
algorithms largely ignore these pixels.

In preparation for video processing, any high-speed video
dataset should be thought of as a 3D matrix of pixel
measurements, p(t, x, y), with dimensions of time, t, and
Cartesian space, x and y, and with lengths Nt, Nx, and Ny,
respectively (McDonald and Gallimore, 2013).

2.2 Video preprocessing

Before applying mode analysis algorithms, several preprocessing
steps should first be considered. This section outlines two prominent
steps: 1) spatial identification and normalization and 2) amplitude
normalization. Other preprocessing steps, not covered here, include
masking and filtering which are useful in isolating specific spatial

regions or dynamics, respectively. Please note that Fourier analysis
requires spatial identification as a precursor to converting to polar
coordinates. The other methods discussed here are useful, but not
required, for processing and analysis.

2.2.1 Spatial identification and scaling
This step identifies and the scales the spatial geometries in

preparation for converting to polar coordinates, a requirement
for Fourier analysis. This step is not required for POD. To
identify the thruster channel origin and radius, we fit an annular
Gaussian function

G x, y;x0, y0, r0, a, w, G0( )
� aexp −1

2
r x, y; x0, y0( ) − r0

w
( )2( ) + G0

(1)

to the time-average, �p(x, y), of the high-speed video. In this
equation, r0 is the radius of the channel, the radius at each pixel is

r x, y;x0, y0( ) � �����������������
x − x0( )2 + y − y0( )2√

, (2)

FIGURE 1
(A) The unshielded H6 Hall thruster. (B) End-on-view of the thruster and the plasma in its channel (annular ring) and the cathode (center dot). Figure
reproduced here with permission from the author (Brown, 2009).

FIGURE 2
An annular Gaussian function is fit to the time-averaged video
and identifies the channel origin and radius. The video’s coordinates
are then centered at the origin and normalized by the channel radius.
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x0 and y0 are the center (origin) of the channel, a is the amplitude, w
is related to the channel width, and G0 is an offset.

With these fit parameters solved, we next center and normalize
the spatial coordinates to the channel radius (i.e., xnorm = (x − x0)/r0
and ynorm = (y − y0)/r0). These normalized coordinates can then be
optionally multiplied by the dimensioned channel radius to provide
actual units to x and y. For this work, we remain with normalized
coordinates for convenience.

Figure 2 shows the results of this step as applied to the time-
averaged video, �p(x, y), of our H6 dataset. In this figure, the two
regions with the most plasma dynamics, the annular channel and
center cathode, are clearly visible. The pixel intensity has raw integer
units based on the camera’s 12 bit depth. The pixels associated with
the cathode’s center were allowed to saturate to better capture
dynamics in the channel, and the pixels adjacent to the saturated
pixels still capture the cathode’s dynamics. The channel radius, r0, as
identified by the Gaussian fit, is indicated with a black dashed line.
The channel edges, indicated with white dashed lines, are identified
as approximately at (r0 ± w)/r0. The x and y coordinates have been
centered and normalized to the channel radius as described above.

Alternatives to the annular Gaussian fit have been used in
previous Hall thruster work. McDonald (McDonald and
Gallimore, 2013) discussed both the Kasa (Kåsa, 1976) and
Taubin (Taubin, 1991) methods and recommended Taubin for
cases where the entire channel annulus is not visible. Another
option previously used (Romadanov et al., 2019) is a circle
detection algorithm called a Hough transform. While no one
method is obviously superior over the others, we recommend
using 1) the Gaussian fit presented here because the solved
parameters are directly relatable to physical dimensions or 2) the
Hough transform as it is available prewritten in many programming
languages.

2.2.2 Video amplitude scaling
This step scales the video’s arbitrary intensity measurements to a

more meaningful range and is optional for both Fourier and POD
methods. Common practice is to assume that oscillations in a video’s
amplitude is roughly linear with the plasma density oscillations
(Darnon et al., 1997) and that camera measurements are linear with
light emission (Vora et al., 1997). As we cannot scale the data to a
definitive physical value, this section instead discusses several data
normalization methods to provide better physical intuition of the
oscillations.

Before normalizing, the first step is to subtract the time-averaged
image (also known as AC coupling) from each frame of the raw
video dataset to better isolate the oscillations.

Next, we normalize the video amplitude in one of two ways:
pixel-wise normalization or channel-average normalization. The
first method divides each pixel by its standard deviation in time,
and this has the advantage of making the mode dynamics easier to
visualize after mode decomposition. Unfortunately, this method
artificially amplifies the oscillations at different spatial locations and
makes quantifying global mode amplitudes untenable. As an
alternative, the second option divides each pixel by the average
brightness within the channel, which allows the modes to be scaled
as a percentage of the average channel brightness. While both
methods are used in this work, channel-average normalization is
default.

Figure 3 shows the results of AC coupling and channel
normalization at two separate instances in time. At t = 22.9 ms
(Figure 3A), the normalized video snapshot reveals a dominant 3-
lobed azimuthal wave (m = 3 mode) in the channel. At t = 24.8 ms
(Figure 3B), a 4-lobed azimuthal wave (m = 4 mode) is dominant.
The amplitudes of both modes are around 10% of the average
channel brightness. Both snapshots also show an m = 1 azimuthal
wave around the cathode.

3 Fourier-based methods

Fourier based algorithms are the most established methods for
mode decomposition and identification in HT high-speed video
(McDonald et al., 2011; McDonald and Gallimore, 2013; Jorns and
Hofer, 2014; Romadanov et al., 2019). This is because Fourier series’
bases are periodic sines and cosines and are therefore ideal for
characterizing wave-like oscillations, such as plasma waves. In this
section, we use Fourier analysis to characterize simultaneous m = 0
andm > 0 modes associated with the thruster discharge channel and
cathode in addition to mode hopping between the m = 3 and m = 4
modes in the channel.

3.1 Detecting modes

Mode dynamics in Hall thruster plasmas are typically
characterized by oscillating waves with slowly evolving
amplitudes and frequencies. The easiest way to detect these
modes is to apply FFT and Welch-averaged FFT (Welch, 1967)
algorithms to diagnostic measurements of signal pixels of the high-
speed video. Figure 4 shows an example of this applied to three
signals from our dataset: the discharge current flowing from the

FIGURE 3
Two time snapshots, that have been AC coupled and normalized
by the average channel brightness, reveal prominent mode structures.
(A) At t = 22.9 ms, anm = 3mode is dominant in the channel. (B) At t =
24.8 ms, an m = 4 mode is dominant in the channel. Both
snapshots show an m = 1 mode around the cathode.
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anode to cathode, a high-speed pixel centered in the channel, and a
high-speed pixel adjacent to the cathode.

Figure 4A shows a 1 ms time window of the three signals and
that they have similar oscillatory behavior. Each signal has been AC
coupled and normalized by its standard deviation for ease of
comparison.

Figure 4B shows the Welch-averaged FFT of each signal over
100 ms, and the resulting power spectrum reveals prominent
frequency peaks with each. Most notable is a broad spectrum
peak at 20 kHz that is common to all three signals. Additional
peaks at 7.5 kHz and 80 kHz are unique to the channel and cathode
measurements, respectively; this uniqueness suggests that their
dynamics are isolated to their respective regions. The broader
width of the 20 kHz peak suggests that its frequency is more
erratic than the two narrower peaks. The remainder of this paper
will identify the modes associated with these three peaks and few less
pronounced peaks.

3.2 Azimuthal and radial binning

Waves around the channel and cathode of a Hall thruster are
primarily azimuthal (Choueiri, 2001) with the approximate Fourier
form

p t, θ( ) ~ ei mθ−ωt( ) (3)
where m is the integer azimuthal mode number, θ is the azimuthal
angle, and ω = 2πf is the angular frequency. After scaling the video’s
coordinates and amplitudes (Section 2.2), the next step is convert the
3D video, p(t, x, y), in Cartesian coordinates to a 2D video, p(t, θ), in
polar coordinates so that it matches Eq. 3. To do this, we first isolate
the channel region (i.e. 0.9 < r/r0 < 1.1) with radial masking and
discard the rest. The radial dependence within this narrow region is
assumed constant, and the radial coordinate is therefore dropped.

Next, we convert the unmasked x and y coordinates within the
channel to the azimuthal coordinate with a four-quadrant inverse

tangent function, θ(x, y) = arctan2(y, x). The resulting data is
azimuthally binned and averaged to provide a result with uniform
azimuthal spacing.

Figure 5 illustrates the azimuthal and radial binning for a single
time snapshot (t = 22.9 ms). Figure 5A shows the radial mask
isolating a narrow region within the channel and also the edges

FIGURE 4
Three signals are analyzed (a pixel in the thruster channel (r/r0 = 1), a pixel adjacent to the thruster cathode (r/r0 = 0.1), and the discharge current), and
their power spectrum reveals the existence of several prominent modes (peaks). (A) The three time-series signals over 1 ms. Each has been subtracted by
their mean and divided by their standard deviation. (B) Their power spectrums, calculated over 100 ms.

FIGURE 5
The azimuthal binning process for a single instant in time is
shown. (A) A radial mask isolates a narrow radial region within the
channel, and the Nθ=100 azimuthal bin boundaries are overlayed. (B)
The average of each azimuthal bin (red) overlays the raw (black)
data.
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of Nθ = 100 azimuthal bins; Figure 5B shows the unbinned values
(black) overlayed by the bin-averaged result (red). This shows a clear
m = 3 structure and also a few non-ideal features: a non-uniform
spacing between peaks, a steepened waveform, and a weak fourth
peak at 3π/4. This process is repeated for each time step within p(t, x,
y), and the result is the 2D dataset, p(t, θ), within the channel.

In this example, we applied the binning process to the channel
region. However, this same procedure could be applied to other
radial regions, including the region around the cathode (Jorns and
Hofer, 2014) or at radial slices between the cathode and channel.
Optionally, multiple radial slices could be made to provide a 3D
dataset, p(t, θ, r).

3.3 Azimuthal mode identification

With p(t, θ) solved and matching the assumed Fourier form (Eq.
3), we can next identify the azimuthal modes within the channel. To
do this, we apply a 2D FFT, F t,θ , in both time and θ to identify the
mode numbers and their characteristic frequencies. This provides
the 2D complex matrix,

P ω, m( )� F t,θ p t, θ( ){ }, (4)
with dimensions in angular frequency, ω, and azimuthal mode
number, m, and with dimensional lengths, Nt and Nθ,
respectively. Note that the coordinates ω = 2πf and m range
between their negative and positive Nyquist frequencies
(−87.5 kHz ≤f< 87.5 kHz and −Nθ/2 ≤ m < Nθ/2). Due to
symmetry, the negative frequencies can be truncated.

The absolute value of this result, |P(ω,m)|, is the azimuthal
dispersion relationship within the channel and is shown in Figure 6A.
It reveals a series of evenly-spaced discrete modes (2 ≤ m ≤ 5) and
what appears to be a continuous wave. Both the continuous wave and
the discrete modes are propagating clockwise (negative θ) and
therefore have negative wavenumbers. By convention, we present
the azimuthal modes and wave numbers as positive.

Figure 6B shows several slices of the dispersion relationship atm =
0, 2, 3, and 4 and more clearly identifies the peaks originally observed
in Figure 4B. From this plot, the m = 0 mode is the broad-spectrum
peak at 20 kHz, them = 3mode is the narrow peak at 7.5 kHz, and the
m = 4mode is the peak at 12.5 kHz. In addition, a weakm = 2mode is
observed at 2.5 kHz. Figure 6B shows that all three of the indicated
m > 0 modes have a roughly uniform spacing of 5 kHz. Figure 6A also
identifies anm = 6mode at roughly double them = 3 frequency which
makes it a harmonic of the m = 3 mode (Yamada et al., 2010). To
observe the 80 kHz peak in Figure 4B, the above analysis could be
applied to the region around the cathode instead of inside the channel.

3.4 Mode evolution

To capture the time evolution of each mode, we apply 1D FFT,
F θ , to each time step in the 2D dataset, p(t, θ), along the θ

dimension. The result is the 2D complex matrix,

P t,m( )� F θ p t, θ( ){ } (5)

with dimensions in time, t, and azimuthalmode number,m. Depending
on the FFT algorithm, p(t,m) then needs to be multiplied by a constant
to return the correct amplitude, typically 2/Nθ. Figure 7 plots the real
(cosine) component, the imaginary (sine) component, and the
amplitude of p(t, m) at m = 0, 3, and 4 and shows the time
evolution of each. Figure 7A reveals the m = 0 breathing mode to
have a mostly consistent amplitude around 10%–20% of the average
channel brightness. Figures 7B, C shows the m = 3 and m = 4 modes,
respectively, with amplitudes between 3% and 5%. These figures also
clearly identify repeated mode hopping between these two modes. In
them = 3 and 4 figures, the real component leads the real component by
roughly 90°, indicating that themodes are rotating clockwise. Them = 0
mode is not rotating, and therefore its imaginary component is zero.

3.5 The modes’ spatial structures

To isolate the spatial structure associated with each mode, we
first apply 1D Fourier analysis,

P f, x, y( )� F t p t, x, y( ){ }, (6)

to each pixel in the 3D video, p(t, x, y), with respect to time. Next, we
index the resulting matrix, p(f, x, y), at the frequencies associated
with eachmode as identified in Figure 6. Figure 8 shows the resulting
real (cosine) and imaginary (sine) component of each mode, which
reveals the spatial extent and phase of each. The number of peaks
and troughs of each structure accurately corresponds to its mode
number. This approach is a computationally efficient alternative to
bandpass-filtering each pixel as done previously (McDonald and
Gallimore, 2013). These plots are also nearly identical to plots in

FIGURE 6
(A) The azimuthal dispersion plot within the channel (not around
the cathode). A continuous wave and series of azimuthal mode
numbers are identified and travel counter-clockwise (i.e., are
negative). (B) The power spectrum of select mode numbers
within the channel helps to identify their characteristic frequency.
Please note that the frequency axes are trimmed to ≈ 50 kHz because
no dynamics in the channel were present at higher frequencies.
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previous works (Jorns and Hofer, 2014; Baird, 2020) with the
difference being that the past works plot the phase, atan (imag./
real), of each mode instead of the real and imaginary components.

For better visualization, each pixel in p(t, x, y) can optionally be
normalized by its standard deviation before applying Eq. 6. Figure 9
shows an example of this for the m = 3 mode. This figure reveals

improved spatial detail within the channel and also suggests mode
structure outside the channel as well.

3.6 Fourier methods conclusion

In this section, we applied the Fourier mode decomposition and
identification methods to our H6 high-speed video dataset. First, the
FFT of individual pixels was able to identify the presence of coherent
mode dynamics in the channel and cathode regions. After radially
and azimuthally binning the data within the channel, a 2D FFT
provided an azimuthal dispersion plot and helped relate mode
numbers to their characteristic frequency. A 1D FFT was then
used to isolate the temporal evolution of each mode and most
notably identified mode hopping between the m = 3 and m = 4
modes in the channel. Finally, a 1D FFT was applied to the original
video, and plotting the frequencies associated with each provided the
mode’s spatial structure. While these methods were only applied to
the channel region in this work, this process can be applied to any
radial region including around the cathode.

FIGURE 7
Time evolution of the m = 0, 3 and 4 modes as captured by the 1D FFT in θ. Repeated mode hopping is observed between the m = 3 and m = 4
modes. The signals are normalized by the average channel brightness.

FIGURE 8
Fourier analysis (Eq. 6) reveals the spatial structure of several
dominant modes in the channel. The amplitude is spectral density (au)
with each subfigure having a different scaling.

FIGURE 9
Pre-normalizing each pixel in p (t, x, y) by its standard deviation
instead of by the average channel brightness provides better
visualization of the mode structure. Amplitude is spectral density (au).
These plots are directly comparable to the m = 3 subplots in
Figure 8 where the channel normalization is used.
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4 SVD-based methods

Matrix factorization-based methods, based on the SVD
(Singular Value Decomposition) algorithm (Golub and Reinsch,
1970), are an alternative approach to decomposing and identifying
modes from high-speed video and provide several advantages over
Fourier methods. Below, we first detail the SVD algorithm, discuss
the simplest SVD-based mode analysis method (the POD
algorithm), and apply it to the present dataset.

4.1 The SVD algorithm

The SVD algorithm is the foundation for POD and for more
advanced algorithms. This section discusses the SVD algorithm and
its implementation.

The most notable feature of SVD is that it does not presume
spatial or temporal bases (e.g., Fourier sines and cosines) when
decomposing coherent structures. Instead, SVD provides a tailored,
orthonormal basis for a particular video dataset by minimizing the
L2 norm (error) between the original video and the video
reconstructed from the new SVD bases (Brunton and Kutz,
2019). SVD also orders each basis from the highest to lowest
contribution (amplitude) so that the strongest coherent structure
appears first, then the second strongest, etc. In contrast, Fourier
orders its bases by increasing frequency or wavenumber. A downside
to SVD’s ordering is that post-processing (either visually or
algorithmically) is often required to associate each identified SVD
structure with its Fourier counterpart. Examples of this are provided
later in this paper. An advantage of SVD is that it does not require
any preprocessing, most notably conversion to a particular
coordinate system (e.g., converting the Cartesian video to polar).
More details on the SVD algorithm can be found in the extensive
literature on the subject (Golub and Reinsch, 1970; Golub and Loan,
1996; Woolfe et al., 2008; Brunton and Kutz, 2019).

In order to apply the SVD algorithm to a video dataset, p(t, x, y), we
first convert it from3D to 2D.Wedo this by stacking the data associated
with the two spatial dimensions into a single spatial dimension, z =
stack(x, y) to get the 2D p(t, z) dataset with dimensions in time and
space and with sizes Nt and Nz = NxNy, respectively. This process is the
3D equivalent of stacking columns in a 2Dmatrix to get a 1D array. The
Python data structure xarray has built-in functions (stack and unstack)
that make stacking and unstacking very convenient. By convention, we
also transpose p(t, z) to p(z, t) so that the spatial dimension is ordered
before the temporal dimension. For our high-speed video dataset, Nz >
Nt, so p (z, t) is a “tall-skinny” matrix.

When applied to p(z, t), the SVD algorithm outputs three real
matrices: U(z, n), Σ(n, n), and V(t,n)T. Here, we are using n to
represent the SVD basis numbers to distinguish them from the
Fourier mode numbers, m. First, U(z, n) is a non-square, 2D matrix
associated with the spatial bases (called the topos, i.e., “shapes”) with
dimensions of space, z, and mode number, n, and lengths Nz and
Nn = Nt, respectively. Σ(n, n) is a square 2D diagonal matrix
associated with the basis energies (these diagonal values are
referred to as the singular values) with dimensions n by n each
with length Nn. Finally, the transposed matrix, V(t,n)T, is a square
2D matrix that contains the temporal evolution of the bases (called
the chronos, i.e., “times”) with dimensions of n and t, each with

length, Nn = Nt. For example, many SVD algorithms return Σ(n, n)
as 1D array of its diagonal elements.

Multiplying these three matrices together,

U z, n( )Σ n, n( )V t, n( )T

�
| | |
u1 u2 . . . uN

| | |
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ σ1

1
σN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ | | |
v1 v2 . . . vN
| | |

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
T

� σ1u1vT1 + σ2u2vT2 +/ + σNuNvTN
≈ p z, t( ),

(7)

reconstructs p(z, t) with remarkable accuracy, owing to the
orthonormality of the un and vn and the ordering of bases from
strongest to weakest. Related to this, another major advantage of
SVD over Fourier is its ability to reconstruct data (like this high-
speed video) with fewer bases. In this equation, un, σn, and vn, are the
topo, singular value (energy), and chrono associated with the nth
basis, which are ordered from highest contribution (energy) to
lowest. In Eq. 7, the multiplication of unvTn is an outer product.
As a final note, we refer to σn as the energy because our measurement
is light intensity. However, it is common in the literature to measure
the velocity or magnetic field and therefore refer to σ2n as the energy.

4.2 Proper orthogonal decomposition (POD)

The PODmethod, also referred to as Biorthogonal Decomposition
(BD), has been used extensively for plasma physics datasets (Dudok de
Wit et al., 1994) but has only been very recently introduced to Hall
thruster and hollow cathode high-speed video (Désangles et al., 2020;
Becatti et al., 2021). The POD algorithm is nearly identical to the SVD
algorithmwith themain distinction being that theU,Σ, andVTmatrices
are often trimmed to retain a smaller set of bases (e.g., n < 30).

After applying the POD algorithm (Section 4.1) to our dataset,
we inspect each of theU, Σ, and VTmatrices to identify and interpret
the dynamics associated with each mode. First, the energy for each
basis, σn, is plotted in Figure 10. This highlights that the lower
numbered bases capture the majority of the dynamics of the video
and are therefore the focus of this section.

To visualize the spatial bases (topos), we unstack the z
dimension in U(z, n) to get U(x, y, n). Figure 11 shows the first
10 topos, un, and each reveals anm = 0 orm > 0 azimuthal structure
in the channel or around the cathode. The bases associated withm >
0 rotating modes each have a near-duplicate (but rotated) topo that

FIGURE 10
The SVD algorithmorders its bases from highest to lowest energy
(i.e., their total contribution to the reconstructed video), and therefore
the lower numbered bases are more likely to contain the most
prominent dynamics.
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represents an effective sine-cosine pairing. For example, the n = 2
and 3 bases are effectively the Fourier sine and cosine (real and
imaginary) components of the m = 3 rotating mode in the
channel and therefore well matches the modes in Figure 8.
Note that the POD bases associated with the m = 2 Fourier
mode is not shown in Figure 11 despite being present (as shown
by Figure 8). This is because its energy contribution is lower than
the first 10 POD bases.

Each of these topos has an associated time evolution,
i.e., chronos, associated with it. Several select chronos, σnvTn , are
plotted in Figure 12. Referring back to Figure 11, we see that their
corresponding topos are roughly equivalent to the m = 0, 3, and
4 Fourier modes in the channel. Therefore, it is not a surprise that
their chronos in Figure 12 are nearly identical to the Fourier-solved
mode evolution shown in Figure 7.

Finally, the Welch-averaged FFT of select POD chronos are
shown in Figure 13. Note that only a single basis from a sine-cosine
pair is presented as their power spectrums of each are nearly
identical. Many of the peaks in Figure 13 are the same peaks as
identified in the raw data (Figure 4B) and the Fourier mode analysis
(Figure 6B). A new structure is revealed by the n = 4 basis, related to
the Fourierm = 1 cathode mode, which has two peaks around 38 and
80 kHz. From this analysis alone, it is not clear if the m = 1 cathode
mode truly has two characteristic frequencies, if this basis is the
combination of two Fourier modes, or if there is another
explanation.

Comparing the results of the POD bases (Figures 11–13) to the
Fourier modes (Figures 6–8) reveals a near one-to-one mapping as is
indicated in Table 1. This is not too surprising as there are already
established scenarios in which POD modes reduce to Fourier modes
(Holmes et al., 2012).

4.3 SVD methods conclusion

The primary advantage of the SVD-based methods is that they do
not presume a universal basis, Fourier or otherwise, and instead create

FIGURE 11
The POD topos for the first 10 bases show m = 0 or m > 0
azimuthal structures in the channel or around the cathode. Amplitude
units are arbitrary. By inspection, topos correspond to Fourier sine/
cosine pairs as shown in Table 1.

FIGURE 12
The POD chronos for the n = 1, 2, 3, 5 and 6 bases. These bases are roughly equivalent to the time evolutions of them = 0, 3, and 4 Fourier modes in
Figure 7.
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tailored bases which optimally capture particular features of the
dynamics. In addition, these methods require less preconditioning
of the video, e.g., radial binning and converting the pixel coordinates
to polar, and therefore they can provide detailed images of the spatial
structures of each basis or mode (Figure 11). The most basic SVD
method, POD, is easier to implement than the Fourier methods, does
not require a linear assumption, and produces very similar results.
More advanced SVD methods, such as DMD, have potential for Hall
thruster modal analysis but require more development.

5 Conclusion

This work provided a survey of existing Fourier and new SVD-based
mode decomposition techniques for high-speed Hall thruster video data.
To highlight the implementation of these methods, they were each
applied to the same H6 dataset which contained simultaneous modes
associatedwith the channel and cathode. Both Fourier andPODmethods
were able to characterize the spatial and temporal evolution of eachmode,
including mode hopping between the m = 3 and m = 4 channel modes.
Both methods also had their various strengths and weaknesses.

Fourier methods are well suited for characterizing linear wave
dynamics and therefore excel at identifying both discrete mode and
continuous wave dynamics in the various regions of the Hall thruster
plasma. A notable feature of the Fourier methods are their ability to
naturally provide dispersion relationships. However, Fourier
methods require preprocessing, e.g., converting the video to polar
coordinates, which adds computational complexity.

POD, an alternative to Fourier, does not introduce new physical
information; instead it represents the dynamics in an alternative
format that provides several advantages. The first advantage is that
PODproduces a tailored set of orthogonal bases for eachdataset that
areorderedby their relativeamplitudes (high to low), and thesebases
donot presume any form (e.g., sines and cosines in Fourier). Second,
the PODmethod is relatively simple to implement as preprocessing,
most notably coordinate conversion, is optional. Third, POD can
naturally identify mode structures and their associated spatial
locations and can therefore be more easily combined with
techniques such as bicoherence analysis to study coupling
between dynamics (Brooks et al., 2022).

Together, Fourier and POD methods provide for a more
complete toolkit for studying global Hall thruster dynamics as
captured by high-speed imaging. Moving forward, we recommend
first applying POD to a dataset in order to identify its major
dynamics and the spatial locations of each. With this information,
Fourier methods can then be intelligently targeted to extract
dispersion relationships or other select modal information. The
code and data used in this work are made are available online
(Brooks, 2021) to assist future researchers.
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FIGURE 13
TheWelch-averaged FFT of select POD chronos helps in identifying
the presence of a coherent mode structure and their characteristic
frequencies. This figure is directly comparable to the Fourier results in
Figure 6B with the exception that this figures includes dynamics
from both the anode and cathode regions and Figure 6B only contains
dynamics within the channel (and therefore no notable signal at 80 kHz).

TABLE 1 The POD bases and Fourier modes show a near one-to-one mapping.

POD basis, n Fourier mode, m Location

1 0 Channel

2, 3 3, sine and cosine Channel

4 0 Cathode

5, 6 4, sine and cosine Channel

7, 8 1, sine and cosine Cathode
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