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Introduction: Microgravity (MG) exposure causes motor deficits and decreased
neuronal activity, effects that resemble the ones observed in motor neuron
diseases such as amyotrophic lateral sclerosis (ALS). Several recent studies
have shown that exposure to MG and ALS also impacts the sensory systems.
Yet, the role of sensory impairment in this degenerative process of exposure toMG
and ALS remains unknown. In this study, we aimed at elucidating how the sensory
system is affected by exposure to MG and ALS.

Methods: To this end, we compared gene expression in the mouse lumbar dorsal
root ganglia (DRG) of MG-exposed animals with that of control animals that
remained under artificial gravity conditions. We then investigated the effects of the
human superoxide dismutase 1 (SOD1) G93A mutation in a mouse model of ALS
(SOD1G93A mice) on gene expression in the DRG.

Results: The overlap of genes with negatively correlated expression was greater
than thosewith positively correlated expression between theDRGofMG-exposed
and SOD1G93A mice. Additionally, genes related to Imoonglia (characteristics of
both immune and glial cells) and macrophage increased in response to MG
exposure, while satellite glial cell genes were expressed in response to
SOD1 mutation. Next, we examined genes related to sensory neuron subtypes
in the DRG. We found altered gene expression in genes related to proprioceptive
and mechanoreceptive neurons in the DRG of MG-exposed and SOD1G93A mice.
Remarkably, the expression of Atf3 and genes related to nociceptive neurons in
the DRG of SOD1G93A mice at postnatal day (P) 120 was considerably altered,
whereas MG-exposed and SOD1G93A mice at P30 presented little changes.

Discussion: These results indicate that exposure to MG and ALS affect gene
expression in genes related to neurons and non-neuronal cells in the DRG, with
significant differences between the effects of MG and the SOD1 mutation.
Elucidation of the impact of exposure to MG and ALS pathogenesis in the
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DRG, including identification of the molecular pathways that regulate DRG
dysfunction, will help better understand the differences in vulnerability and the
triggering processes of impaired motor function associated with MG and ALS.

KEYWORDS

microgravity, amyotrophic lateral sclerosis, dorsal root ganglion neuron, proprioceptor,
cutaneous low-threshold mechanoreceptor, nociceptor, satellite glial cell, Imoonglia

1 Introduction

Microgravity (MG) exposure and amyotrophic lateral sclerosis
(ALS) are characterized by common alterations in the skeletal
muscle, motor, nervous, vasculature, and immune systems, leading
to motor deficits, including muscle atrophy and loss of neuronal
activity (Vinsant et al., 2013a; Vinsant et al., 2013b; Clément and
Wood, 2014; Rizzo et al., 2014; Gunes et al., 2020; Yu et al., 2020;
Buoite Stella et al., 2021; Okada et al., 2021; Yoshikawa et al.,
2022a; Yoshikawa et al., 2022b). Exercise on the ground can reverse
motor neuron and muscle abnormalities caused by exposure to
MG, whereas the degeneration in ALS is irreversible and motor
neuron death cannot be recovered. Sensory neurons consist of
various subtypes of neurons that respond to external stimuli and
the internal state of bodies; these neurons are mediators of
nociception, mechanoreception, and proprioception (Meltzer
et al., 2021). Changes in gravity alter the sensory input from
the vestibular system, which consequently generates mismatches
between the expected and actual sensory vestibular inputs during
active movements (Carriot et al., 2021). Furthermore, studies have
shown that exposure to MG induces changes in structures and
neuronal gene expressions in the brain and spinal cord (Carriot
et al., 2021; Yoshikawa et al., 2022b; Holley et al., 2022;
Mammarella et al., 2022). However, the alterations occurring in
the sensorimotor system due to gravitational changes and the
adaptation of sensory neurons during spaceflight have not been
fully unraveled nor have the molecular mechanisms underlying
these effects.

ALS is a neurodegenerative disease that causes muscle atrophy
and weakness associated with gradual motor neuron degeneration,
for which no clear explanation for ALS pathogenesis is available
thus far (Vinsant et al., 2013a). There is still no treatment to cure
ALS, and current treatments can only slow its progression and
improve the patient’s comfort. In humans, some forms of ALS are
caused by mutations in the superoxide dismutase 1 (SOD1) gene,
the transactive response DNA-binding protein 43-kDa (TDP-43)
gene, the fused in sarcoma (FUS) gene, and several other genes
(Chia et al., 2018; Kim et al., 2020). In animal models carrying a
mutant SOD1 gene, ALS develops because of the toxicity of the
mutant protein (Chia et al., 2018; Kim et al., 2020). Sensory
systems are considered less vulnerable than motor systems, and
potential sensory involvement is overlooked as a feature of ALS.
However, there have been reported cases of ALS patients with
sensory deficits and many patients experience pain (Iglesias et al.,
2015). Abnormalities in sensory nerve fibers and satellite glial cells
(SGCs) of sensory neurons in ALS animal models have also been
reported (Guo et al., 2009; Sábado et al., 2014; Ruiz-Soto et al.,
2020). Additionally, altered gene expression of solute carrier (SLC)
transporters, resulting in neurodegeneration, was observed in MG

and ALS mouse models (Hu et al., 2020; Paul et al., 2021; Latif and
Kang, 2022; Yoshikawa et al., 2022a; b). While exposure to MG and
ALS are characterized by commonly observed alterations in the
motor system, only a few reports have described the molecular
changes underlying sensory neuron dysfunction in ALS or after
exposure toMG (Nagatomo et al., 2014; Sábado et al., 2014; Iglesias
et al., 2015; Rubio et al., 2022). Moreover, changes in the gene
expression in peripheral nervous systems in this degenerative
process of exposure to MG and ALS remains unknown.
Therefore, to elucidate the sensory systems affected by exposure
to MG or ALS, we investigated the effects of exposure to MG and
mutant SOD1 on gene expression in the mouse dorsal root ganglia
(DRG). Altered gene expression in MG-exposed and ALS models
shows similarities and differences that could help to better
understand the triggering processes of the disease. Additionally,
most MG-exposure-resulting deficits seem to be reversible, which
may provide further input to understanding the mechanisms
underlying ALS and developing new therapeutics.

2 Materials and methods

2.1 Microgravity animals

All experiments were approved by the Institutional Animal Care
and Use Committee of the University of Tsukuba, JAXA, Explore
Biolabs, and NASA and were conducted according to the applicable
guidelines in Japan and the United States of America. The mice and
the treatments have been described in previous studies (Shiba et al.,
2017; Matsumura et al., 2019). Briefly, 12 male mice (8-week-old,
C57BL/6J) were singly housed for 35 days under MG (n = 6) or
artificial gravity (AG, n = 6) at 1 × g centrifugation in the
International Space Station. By comparing the effects of MG with
those of AG, we differentiated the effects of MG from other effects
such as radiation. Two days after splashing down, the 13-week-old
mice were euthanized and dissected in the laboratory for tissue
collection. For RNA-sequencing analysis (RNA-seq), three male
MG-exposed mice with decreased soleus/gastrocnemius muscle
weight and three male AG-exposed controls with maintained
muscle weight were compared to six male ground control mice
that were not exposed to either MG or AG (Shiba et al., 2017; Okada
et al., 2021).

2.2 Amyotrophic lateral sclerosis animals

All experiments conformed to the ARRIVE and National
Institutes of Health guidelines and were approved by the
Institutional Animal Care and Use Committee of the Nihon
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University School of Medicine. Wild type (WT) females and
SOD1G93A males [B6SJL-TgN(SOD1*G93A)1Gur], obtained from
The Jackson Laboratory (Bar Harbor, ME, USA), were bred to
generate SOD1G93A mice (Ludolph et al., 2010). Genotyping was
performed using standard primers against mutant SOD1. The
primers for mutant SOD1 were forward (oIMR0113) 5′-CAT
CAGCCCTAATCCATCTGA-3′ and reverse (oIMR0114) 5′-CGC
GACTAACAATCAAAGTGA-3′ and those for the internal control
were forward (oIMR7338) 5′-CTAGGCCACAGAATTGAAAGA
TCT-3′ and reverse (oIMR7339) 5′-GTAGGTGGAAATTCTAGC
ATCATCC-3′ (Gurney et al., 1994).

2.3 Dorsal root ganglia dissection

MG- and AG-exposed (13-week-old), SOD1G93A, and WT mice
(postnatal day 30 and 120; P30 and P120) mice were decapitated under
deep anesthesia using isoflurane (Escain, Pfizer, Tokyo, Japan) and their
lumbar spinal columns, including the DRG, were dissected. All lumbar
spinal column samples were stored at −80 °C until use. After freezing,
the samples were incubated overnight at 4°C in RNAlater (Sigma
Aldrich, St. Louis, MO, USA) to prevent RNA degradation during
tissue thawing. Individual DRG from lumbar 1 to 5 were extracted from
the intervertebral foramina.

2.4 RNA-Sequencing

RNA-sequencing was performed as previously described (Ikeda
et al., 2019; Matsumura et al., 2019). Briefly, lumbar DRG samples
from MG- and AG-exposed, SOD1G93A, and WT mice (n = 3,
respectively) were individually homogenized in RNAiso Plus
(Takara Bio, Shiga, Japan) using the BioMasher II (Nippi Inc.,
Tokyo, Japan) and QIAshredder (Qiagen, Hilden, Germany).
Pooled samples from each animal were processed separately for
sequencing. Total RNA was isolated using RNAiso Plus (Takara
Bio), according to the manufacturer’s protocol. RNA-seq libraries
were prepared using the NEBNext Ultra Directional RNA Library
Prep Kit (New England Biolabs, Ipswich, MA, USA) after rRNA
depletion using the NEBNext rRNA Depletion Kit (New England
Biolabs). Paired-end RNA-seq (2 × 36 bp) was then performed on a
NextSeq500 platform (Illumina Inc., San Diego, CA, USA) by
Tsukuba i-Laboratory LLP (Ibaraki, Japan). FASTQ files were
processed using the CLC Genomics Workbench (CLC-GW,
version 10.1.1; Qiagen). Sequence reads were imported, and
directly used for mapping to the mouse genome (mm10) and the
annotated genes were quantified. These processing steps were
performed using the default setting provided in CLC-GW as
described in user manual. Sequence trimming was not
performed, but low-quality score reads were discarded by CLC-
GW as file import option, and adaptor reads were minimal as library
was size-selected to avoid short or no insert reads. Gene expression
values were estimated as total counts normalized by transcripts per
million. Genes with 0 counts in any sample were excluded, and
differential expression was analyzed using the Empirical Analysis of
DGE tool (EDGE test) in the CLCMainWorkbench (version 21.0.3;
Qiagen). Differentially expressed genes were extracted among
conditions with FDR-corrected p < 0.05.

2.5 Gene ontology annotation analysis

Differentially expressed genes (DEGs) with an absolute fold change
of >2 and a t-test p-value of <0.05 were imported into the BaseSpace
Correlation Engine (Illumina). Gene ontology (GO) terms enriched for
the genes of interest in the DRG of MG-exposed and SOD1G93Amice
were determined using rank-based enrichment statistics and biomedical
ontologies using the BaseSpace Correlation Engine. The BaseSpace
Correlation Engine employs a ranked nonparametric analysis strategy
driven by a Fisher’s test algorithm. A p-value threshold for significance
of 0.0001 was used (Elcombe et al., 2022).

2.6 Cell-type-related differentially
expressed gene analysis

Using the BaseSpace Correlation Engine, we evaluated the
overlap among the DEGs of MG-exposed (compared with AG-
exposed) and SOD1G93A (compared with WT) mice at P30 and
P120 and cell-type-related marker genes from previous studies
(Usoskin et al., 2015; Li et al., 2016; Avraham et al., 2020; 2021;
Sharma et al., 2020; Huang et al., 2021; Wu et al., 2021).

2.7 Statistical analysis

All quantitative analyses were performed on three replicates of
AG-exposed, MG-exposed, WT, and SOD1G93A mice. For
sequencing data, DEGs were determined using the EDGE test
(p < 0.05, fold change with absolute value >2) in the CLC Main
Workbench (Ikeda et al., 2019). All statistical analyses were
performed in the BaseSpace Correction Engine; similarities
between any two datasets were evaluated as overlapping p-values
using the Running Fisher algorithm (Murano et al., 2019). The
Bonferroni correction was used to adjust the significance level
according to the number of dataset pairs (Murano et al., 2019).

3 Results

3.1 Altered expression of genes related to
axonal injury, proprioceptive neurons,
immune cells, and glia observed in the dorsal
root ganglia of microgravity-exposed and
SOD1G93A mice

We performed whole transcriptome analysis on DRG samples from
MG- (n = 3) and AG-exposed mice (n = 3) and found 316 differentially
expressed genes (DEGs; 138 upregulated and 178 downregulated genes,
respectively; Supplementary Dataset S1). The expression of genes related
to mechanoreceptive neurons (Trpc5), nociceptive neurons (Zfhx2os,
Penk, Gad1, Trpc5), glia (Csl, Saa3, Mog, Grin2a, Gfap), neurotrophic
factors (Caps2, Fgf10), serotonergic neurons (Htr2c), GABA receptors
(Gabrd, Gabrr2), GABAergic neurons (Gad1), neuropeptide receptors
(Trhr), the SLC family (Slc39a12, Slc4a5), calcium voltage-gated channels
(Cacng3), axonal injury (Ecel1), and immune cells (Ulbp1, Pdyn, Trbc2)
increased in the DRG of MG-exposed mice compared with that of AG-
exposed mice (Supplementary Table S1). In contrast, the expression of
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genes related to proprioceptive neurons (Egr3, Cntn5), nociceptive
neurons (Csrp3, Ntsr1), glia (Fcrls), neurotrophic factors (Nrtn, Areg),
neuropeptide receptors (Vipr2, Ghsr), Eph family (Epha1), SLC family
(Slc12a3, Slc15a3, Slc25a31), axonal injury (Csrp3), heat shock proteins
(Hspa1b), epigenetics (Gnmt), and immune cells (Syk, Pou2f2, Cd37,
Cd180, Cd52, Cd79b, Aif1, Cd72, Batf, Fcrl5) decreased in the DRG of
MG-exposed mice (Supplementary Table S1). These results suggest that
sensory, glial, and immune system-related genes were altered by MG.

We performed the same analysis in ALS andWTmice and observed
367DEGs (173 upregulated and 194 downregulated) between SOD1G93A

(n = 3) and WT (n = 3) animals at P30 (Supplementary Dataset S1).
Neuromuscular junctions were denervated in the tibialis anterior (fast-
fatigable type) muscle in SOD1G93A mice at P30 (Vinsant et al., 2013b).
The expression of genes related to mechanoreceptive neurons (Trpc7,
Nrsn2), nociceptive neurons (Trpc7), neurotrophic factors (Vgf),
neuropeptides (Vip), neuropeptide receptors (Sstr3, Sstr2), SLC family
(Slc16a14), heat shock proteins (Hspb7, Hspa1l), potassium voltage-
gated channels (Kcna5, Kcnc3), axonal injury (Nfe2), and immune cells
(Foxp3, Trem3, Cd200r3, Cd209f, Cd51) increased in the DRG of
SOD1G93A mice compared with that of WT mice at P30
(Supplementary Table S2). In contrast, the expression of genes
related to nociceptive neurons (Esr2, Gad1, Mrgpra4, Mrgpra6), glia
(Gfap, Mog, Olig2), GABA receptors (Gabra4), GABAergic neurons
(Gad1), SLC family (Slc10a2, Slc1a2, Slc6a5, Slc16a8, Slc5a9, Slc18a3,
Slc6a16) and immune cells (Cd4, Rag1, Cd3e, Cd3g, Cd8b1, Cd7, Cd8a,
Cd6, Trbc2) decreased in the DRG of P30 SOD1G93A mice
(Supplementary Table S2). These results suggest that sensory, glial,
and immune system-related genes were altered by ALS.

Finally, we analyzed differences in gene expression in ALS and
control mice at P120. SOD1G93A mice show progressive paralysis from
~P90 and die at ~ P135 with 50% motor neuron loss (Vinsant et al.,
2013a).We found 1514DEGs between SOD1G93A (n= 3) andWT (n= 3)
mice, with 686 genes upregulated and 828 downregulated
(Supplementary Dataset S1). The expression of genes related to
proprioceptive neurons (Aldh1a3), mechanoreceptive neurons (Itga2,
Rftn1, Cxcr2, Trpv4), nociceptive neurons (Mrgpra6, Osm, Alk, Osmr,
Gpx3, Trpv4), glia (Trem2, Saa1, Cd163l1, Cd68, Il7r, Runx2, Saa3, Apod,
Cebpd, Cd200r1,Ms4a14,Vim,Apoe, Emp1,Gfra1), neurotrophic factors
(Gdnf, Igfbpl1, Areg, Artn, Nell1, Fgf3, Vgf, Bdnf), neurotrophic receptors
(Met, Gfra1), neuropeptide (Npy, Gal), neuropeptide receptors (Npy4r,
Npy1r), serotonergic neurons (Htr2b), Eph family (Epha5), SLC family
(Slc6a4, Slc7a11, Slc10a6, Slc15a3, Slc37a2, Slc11a1), potassium voltage-
gated channels (Kcnh4, Kcna5, Kcnq1 Kcnk6), voltage-gated sodium
channels (Scn4a), neurogenesis (Gadd45a, Gadd45g), axonal injury
(Sprr1a, Atf3, Ecel1, Runx2, Sox11, Csf2rb2, Jun, Eif4ebp1, Adcyap1)
and immune cells (Gpnmb, Cd28, Lgals3, Cd68, Il7r, Itgax, Cd4,
Cd300a, Cd300lf, Batf, Cd48, Cd300c2, Cd7, Cd22, Cd36, Cd38)
increased in the DRG of SOD1G93A mice compared with WT mice at
P120 (Supplementary Table S3). In contrast, the expression of genes
related to proprioceptive neurons (Cntn5, Pvalb), mechanoreceptive
neurons (Mafa), nociceptive neurons (Csrp3), glia (Prx, Mpz, Mag,
Ephb1, Mbp, Mog), neurotrophic factors (Fgfbp1, Igfbp2, Fgf4),
serotonergic neurons (Htr3a, Htr7), Eph family (Epha10, Efnb3,
Ephb1), GABA receptors (Gabra2, Gabrg1), SLC family (Slc25a13,
Slc2a10, Slc6a1, Slc25a18, Slc6a20a, Slc30a10, Slc7a11, Slc13a3, Slc38a5,
Slc6a9, Slc2a12, Slc36a2, Slc38a3, Slc22a6, Slc2a5, Slc12a5, Slc6a11,
Slc22a8, Slc22a2, Slc22a22, Slc6a5, Slc30a3, Slc36a1os, Slc18a3, Slc26a3,
Slc6a21), heat shock proteins (Hspa1l, Dnah7c, Hspb3, Dnajb8),

potassium voltage-gated channels (Kcnj8, Kcnc1, Kcnk2, Kcns1,
Kcnj11, Kcnc3, Kcnk9, Kcna7), voltage-gated sodium channels (Scn4a),
calcium voltage-gated channels (Cacna1s, Cacng6), Wnt family (Wnt4,
Wnt5b,Wnt7b,Wnt7a), axonal injury (Csrp3) and immune cells (Cd74,
Htr7,Cd79a,Aif1l,Cd19, Rag1) decreased in the DRG of P120 SOD1G93A

mice (Supplementary Table S3). These results suggest that genes related
to multiple systems, including sensory, glial, and immune systems, were
altered by ALS.

3.2 Gene ontology term analysis showed
different enrichment patterns in
differentially expressed genes of the dorsal
root ganglia of between microgravity-
exposed and SOD1G93A Mice

To investigate the role of DEGs in the DRG of MG-exposed
(compared with AG-exposed) and SOD1G93A (compared with WT)
mice, we performed GO analysis using the BaseSpace Correlation
Engine (Murano et al., 2017; 2019). First, we compared DEGs of the
DRG of MG- and AG-exposed mice and found that
“transmembrane transporter complex (upregulated),” “proximal/
distal pattern formation (upregulated),” “ion channel activity
(upregulated),” “leukocyte activation (downregulated),”
“lymphocyte activation (downregulated),” and “receptor complex
(downregulated)” were highly enriched in the DEGs of MG-exposed
DRG compared to AG-exposed ones (Figure 1).

Next, we compared our ALS model with the WT control and
observed the GO terms. “oxygen binding (upregulated),”
“transcription factor activity, RNA polymerase II proximal
promoter sequence-specific DNA binding (upregulated),”
“hemoglobin complex (upregulated),” “adaptive immune response
(downregulated),” “immunological synapse (downregulated),” and
“T-cell selection (downregulated)” were highly enriched in DEGs of
SOD1G93A DRG compared to WT at P30 (Figure 2); and
“inflammatory response (upregulated),” “regulation of
inflammatory response (upregulated),” “positive regulation of
cytokine production (upregulated),” “contractile fiber
(downregulated),” “muscle contraction (downregulated),” and
“striated muscle cell development (downregulated)” were highly
enriched in the DEGs of SOD1G93A DRG compared to WT at P120
(Figure 3).

To investigate whether the DEGs between MG- and AG-
exposed mice overlapped with those between SOD1G93A and WT
mice at P30, we assessed similarities in gene-expression pattern
using the BaseSpace platform. We found that 13 genes were
commonly altered in MG-exposed and SOD1G93A mice at P30
(overlap p = 4.40 × 10−5; Figure 4A). The overlap of genes with
negatively correlated expression (10 genes) was greater than for
those with positively correlated expression (3 genes; Figure 4B),
which indicates that the opposite response occurs in the several
common genes.

Next, we examined the similarities between DEGs of MG-
exposed and SOD1G93A mice at P120. The number of common
DEGs increased to 52 genes (overlap p = 0.10) at P120 (Figure 4C).
The number of overlapping genes with positively correlated
expression (27 genes) was comparable those with negatively
correlated expression (25 genes; Figure 4D), indicating that the
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positive and opposite reactions are mixed in the several common
genes. Additionally, we examined the difference between DEGs of
SOD1G93A mice at P30 and P120. 62 genes (overlap p = 0.35) were
common between P30 and P120 (Figure 4E). The number of
overlapping positively correlated genes (32 genes) was
comparable to negatively correlated genes (30 genes; Figure 4F),
indicating that the positive and opposite response in the several
common genes is mixed. Finally, we examined the common GO
term of MG-exposed and SOD1G93A mice at P30 and P120.
Common GO terms indicated that “inflammatory response
(MG exposure, downregulated; P30 ALS, downregulated;
P120 ALS, upregulated),” “leukocyte activation (MG exposure,
downregulated; P30 ALS, upregulated; P120 ALS, upregulated),”
“leukocyte migration (MG exposure, downregulated; P30 ALS,
downregulated; P120 ALS, upregulated),” “positive regulation of
cytokine production (MG exposure, upregulated; P30 ALS,

upregulated; P120 ALS, upregulated)” “negative regulation of
immune system process (MG exposure, downregulated;
P30 ALS, upregulated; P120 ALS, upregulated),” and “adaptive
immune response (MG exposure, downregulated; P30 ALS,
downregulated; P120 ALS, upregulated)” were highly enriched
in DEGs by exposure to MG and ALS (p < 0.0001; Figure 5 and
Supplementary Dataset S2). While inflammatory response was
upregulated in SOD1G93A mice at P120, they were
downregulated in MG-exposed and SOD1G93A mice at P30.
Upregulated and downregulated GO terms related to immune
processes were different among exposure to MG-exposed and
SOD1G93A mice at P30 and P120 (Supplementary Dataset S2).
These results indicate that exposure to MG and ALS are associated
with alterations in inflammation, cytokine production, and
immune responses, with the differential responses of gene sets
altered in the DRG.

FIGURE 1
Gene ontology (GO) terms of differentially expressed genes (DEGs) in the dorsal root ganglia (DRG) ofmicrogravity (MG)-exposedmice compared to
artificial gravity (AG)-exposed mice. Transmembrane transporter complex, proximal/distal pattern formation, and ion channel activity were the
upregulated GO terms in the DRG of MG-exposed mice whereas leukocyte activation, lymphocyte activation, and receptor complex were the
downregulated GO terms. Scores of the 10 most highly enriched upregulated (gray) and downregulated (white) GO terms revealed changes in the
DRG caused by MG exposure.
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3.3 Altered expression patterns of different
dorsal root ganglia cell type-related genes
differed between microgravity-exposed and
SOD1G93A mice

To determine the cell types that are sensitive to MG exposure, we
identifiedDEGs within each group of cells in the DRG of AG- andMG-
exposed mice (Avraham et al., 2020). We observed DEGs in various
DRG cell type-related genes between MG- and AG-exposed mice
(Table 1). DEGs were enriched in genes associated with immune
and barrier cells, such as macrophages, T cells, endoneural cells,
epineural cells, endothelial cells, and pericytes, rather than neurons
and glia. These results suggest thatMG altered transcriptional programs
in the immune system and barrier function. Similarly, to determine

which DRG cell type-related genes are affected by mutant SOD1 in the
ALS group, we identifiedDEGs in each cell cluster-related gene between
SOD1G93A andWTmice at P30 and P120. The results revealed that gene
expression was altered in most cell type-related genes of the DRG of
SOD1G93A mice at both stages, with more changes at P120 (Table 1).
Remarkably, more differences in expression was observed in genes
associated with all neurons, large to small diameter, of the DRG of
SOD1G93A mice (P30 large neurons, 0.84%; P30 medium/small, 1.12%;
P120 large neurons, 2.86%; P120 medium/small, 2.83%) compared to
MG-exposed mice (large, 0.38%; medium/small, 0.54%) (Table 1),
which suggests that DRG neuron-related genes are more sensitive to
changes caused by ALS than by gravity. Altogether, these results
indicate that genes associated with various DRG cells are sensitive to
and differentially affected by MG and ALS.

FIGURE 2
GO terms of DEGs in SOD1G93A mice compared toWTmice at P30. Oxygen binding, transcription factor activity, and hemoglobin complex were the
upregulated GO terms in the DRG of SOD1G93A mice at P30 whereas adaptive immune response, immunological synapse, and T-cell selection were
downregulated GO terms. Scores of the 10 most highly enriched upregulated (gray) and downregulated (white) GO terms revealed changes in the DRG
caused by amyotrophic lateral sclerosis (ALS).
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3.4 Genes related to proprioceptive neurons
in the dorsal root ganglia showed most
expression changes in microgravity-
exposed and SOD1G93A mice

Our results show changes in neuron gene-expression levels in the
DRG of mice subjected to MG (Table 1). Therefore, we examined the
DEGs in various molecularly characterized neuronal populations in the
DRG in our various models to further define the type of affected
neurons (Li et al., 2016; Wu et al., 2021). We investigated the DRG of
MG and ALS models and we observed more DEGs in putative
proprioceptive neurons than in other neurons in MG-exposed and
SOD1 G93A mice compared with their respective controls (Table 2).
Additionally, a comparison between MG-exposed and SOD1G93A mice
showed that the latter had a higher number of DEGs in various DRG’s
putative neurons, notably, proprioceptive and nociceptive neurons
(Table 2). These results show that sensory neurons, particularly

proprioceptive neurons, change concomitantly with altered spinal
motor neuron gene expression and muscle weakness.

3.5 Gene expression related to low-
threshold mechanoreceptive and cold
thermoreceptive neurons was altered in the
dorsal root ganglia of microgravity-exposed
and SOD1G93A mice

The spinal cord receives convergent information fromproprioceptive
neurons innervating muscles and low-threshold mechanoreceptive
(LTMR) neurons innervating the soles of feet and joints (Zholudeva
et al., 2021), which are critical for adapting locomotion to changes in
environment. To determine whether exposure to MG and ALS change
the tactile system in the DRG, we analyzed LTMR neuron markers
(Sharma et al., 2020). The levels of LTMRmarkers were elevated in both

FIGURE 3
GO terms of DEGs in SOD1G93A mice compared to WT mice at P120. Inflammatory response, regulation of inflammatory response, and positive
regulation of cytokine production were the upregulated GO terms in the DRG of SOD1G93A mice at P120 whereas contractile fiber, muscle contraction,
and striated muscle cell development were the downregulated GO terms. Scores of the 10 most highly enriched upregulated (gray) and downregulated
(white) GO terms revealed changes in the DRG caused by ALS.
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MG-exposed and SOD1G93A mice compared with that respective controls
(Table 3). Next, we analyzed cold thermoreceptivemarkers as altered cold
sensations shown inMG-exposed human and patients with ALS (Dupuis
et al., 2018; Buoite Stella et al., 2021). Remarkably, differential expression

of cold thermoreceptor-related genes was observed in the DRG of MG-
exposed and SOD1G93A mice at P120 (Table 3). These results suggest that
tactile and cold sensation systems are altered by exposure to MG and
SOD1 mutation in mice.

FIGURE 4
Common DEGs were increased in the DRG of MG-exposed and P120 SOD1G93A mice. (A–D) DEG patterns after MG exposure compared with those
with ALS in the DRG. Venn diagrams illustrate the overlap of DEGs in the DRG of MG-exposed mice (compared with AG-exposed mice) and SOD1G93A

mice (compared with WT mice) at P30 (A) and P120 (C). Bar graphs illustrate the −log of overlapping p-values for upregulated (up arrows) or
downregulated (down arrows) genes under each condition (B,D). (E,F) Patterns of DEGs in SOD1G93A DRG at an early stage compared with those of
SOD1G93A DRG at a late stage. Venn diagrams illustrate the overlap of DEGs in the DRG of SOD1G93A mice (compared with WT mice) at P30 and P120 (E).
Bar graphs illustrate upregulated or downregulated genes under each condition (F). n = 3 mice per group.
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3.6 Gene expression related to nociceptive
neurons was more elevated in
P120 SOD1G93A mice than in microgravity-
exposed and P30 SOD1G93A mice

Altered pain sensitivity has been reported in MG-exposed humans
and patients with ALS (Buoite Stella et al., 2021; Rubio et al., 2022). To
confirm whether exposure to MG and ALS affect nociceptor levels, we
used data on nociceptive neuron markers from previous DRG studies
(Usoskin et al., 2015; Sharma et al., 2020;Huang et al., 2021). Expression
of genes related to the calcitonin gene-related peptide (CGRP), amarker
of peptidergic nociceptive DRG neurons (McCoy et al., 2013; Crawford
and Caterina, 2020), were altered in the DRG of MG-exposed and
SOD1G93A mice (Table 3). The levels of nociceptor markers were
elevated in SOD1G93A mice at P120 (Table 4); however, these
markers were rarely expressed in MG-exposed and SOD1G93A mice
at P30 (Table 4). Additionally, differential expression of skin- and

lymph-node-innervating neuron-related genes was observed in the
DRG of SOD1G93A mice at P120 (Table 4), but few changes were
detected in these neurons in MG-exposed and SOD1G93A mice at P30
(Table 4), which indicates that nociceptors (innervating skin and
lymph-node) are less sensitive to changes in MG and early stages
of ALS.

3.7 Gene expression related to Imoonglia,
macrophage, and satellite glial cells was
affected in microgravity-exposed and
SOD1G93A mice

Immune and glial cell-related gene expression was altered in the
spinal cord of MG-exposed and SOD1G93A mice (Yoshikawa et al.,
2022b). To decipher the various effects of exposure to MG and ALS
pathology on immune and glial cells in the DRGmicroenvironment,

FIGURE 5
Common GO terms were analyzed in the DRG of MG-exposed and SOD1G93A mice at P30 and P120. Inflammatory response, leukocyte activation,
regulation of inflammatory response, contractile fiber, and positive regulation of cytokine production were common GO terms in the DRG of MG-
exposed and SOD1G93A mice at P30 and P120. Scores of the 20 most highly enriched GO terms revealed changes in the DRG caused by MG exposure
and ALS.
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we examined Imoonglia expressing macrophage and glial markers,
macrophage, and SGC-related genes in the DRG of MG-exposed
and SOD1G93A mice (Avraham et al., 2021; Feng et al., 2023). The
effects of MG were stronger on Imoonglia and macrophage genes
than on SGC genes (Table 5). DEGs in Imoonglia, macrophages, and

various putative SGC cell types were detected in the DRG of
P120 SOD1G93A mice, and slight changes were observed in these
cells in P30 SOD1G93A mice (Table 5). These results indicate that
exposure toMG and ALS stimulates gene expression of immune and
glial cells in the DRG.

TABLE 1 Proportion of DEGs in putative DRG cell types of MG-exposed and SOD1G93A mice at P30 and P120 (MG vs. AG-exposed mice, SOD1G93A vs. WT mice).

Putative cell type MG-exposed P30 SOD1G93A P120 SOD1G93A

Large neurons 0.38% (21/5459) 0.84% (46/5459) 2.86% (156/5459)

Medium/small neurons 0.54% (26/4838) 1.12% (54/4838) 2.83% (137/4838)

Mesenchymal endoneural cells 1.13% (25/2217) 0.72% (16/2217) 7.26% (161/2217)

Mesenchymal epineural cells 0.91% (18/1988) 0.45% (9/1988) 8.45% (168/1988)

Satellite glial cells 0.33% (5/1508) 0.27% (4/1508) 3.32% (50/1508)

Schwann cells 0.29% (4/1046) 0.29% (3/1046) 7.55% (79/1046)

Endothelial cells 0.97% (25/2579) 1.05% (27/2579) 5.51% (142/2579)

Pericytes 0.85% (19/2245) 0.67% (15/2245) 6.68% (150/2245)

Smooth muscle cells 1.07% (21/1955) 1.38% (27/1955) 7.42% (145/1955)

Macrophages 3.43% (80/2331) 0.77% (18/2331) 12.05% (281/2331)

T cells 3.17% (91/2874) 1.43% (41/2874) 9.64% (277/2874)

DEG, differentially expressed gene; DRG, dorsal root ganglia; MG, microgravity; AG, artificial gravity; SOD1, superoxide dismutase 1; WT, wild type; P, postnatal day. Cell types were defined as

described by Avraham et al., 2020.

TABLE 2 Proportion of DEGs in putative DRG neuron classes of MG-exposed and SOD1G93A mice at P30 and P120 (MG vs. AG-exposed mice, SOD1G93A vs. WT mice).

Putative neuron class MG-exposed P30 SOD1G93A P120 SOD1G93A

MHN 0.76% (1/131) 2.29% (3/131) 9.92% (13/131)

MHN (IS) 1 1.15% (1/87) 3.45% (3/87) 4.60% (4/87)

MHN (IS) 2 0% (0/361) 0.83% (3/361) 3.32% (12/361)

MHN (MI, IS) 0.35% (1/288) 0.69% (2/288) 11.11% (32/288)

MHN (MS), proprioceptors 2.99% (2/67) 0% (0/67) 29.85% (20/67)

MN 0.74% (1/135) 1.48% (2/135) 5.19% (7/135)

MR 0.86% (3/348) 0.86% (3/348) 5.46% (19/348)

C-LTMR 0% (0/126) 0.79% (1/126) 4.76% (6/126)

Satellite glial cells 0.99% (3/303) 0.33% (1/303) 4.29% (13/303)

Blood cells 0% (0/42) 7.14% (3/42) 7.14% (3/42)

Proprioceptive neurons

Ia 1 0% (0/151) 0.66% (1/151) 11.92% (18/151)

Ia 2 0.50% (2/398) 1.76% (7/398) 9.80% (39/398)

Ia 3 0.72% (4/554) 0.54% (3/554) 7.22% (40/554)

Ib 0.48% (2/421) 0.48% (2/421) 10.45% (44/421)

II 1 0% (0/262) 0.76% (2/262) 9.54% (25/262)

II 2 0.64% (1/156) 1.92% (3/156) 10.90% (17/156)

II 3 0.57% (3/529) 0.76% (4/529) 6.62% (35/529)

II 4 0.34% (2/582) 0.86% (5/582) 5.67% (33/582)

DEG, differentially expressed gene; DRG, dorsal root ganglia; MG, microgravity; AG, artificial gravity; SOD1, superoxide dismutase 1; WT, wild type; P, postnatal day; MHN, mechanoheat

nociceptor; IS, itch sensitive; MS, mechanically sensitive; MI, mechanically insensitive; MN, mechanical nociceptor; MR, mechanoreceptor; LTMR, low-threshold mechanoreceptor. Cell types

were defined as described by Li et al., 2016 and Wu et al., 2021.
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3.8 Injury-induced gene expression in dorsal
root ganglia was more affected in
P120 SOD1G93A mice than microgravity-
exposed and P30 SOD1G93A mice

The expression of genes related to axon injury was altered in the
DRG of MG-exposed and SOD1G93A mice (Supplementary Tables
S1–S3). To assess whether exposure to MG or ALS induces axonal

damage, we compared altered gene expression in the DRG of sciatic
nerve transected mice with that in the DRG of MG-exposed and
SOD1G93A mice (Renthal et al., 2020). Expression of injury-induced
DRG neuron-related genes increased in the DRG of SOD1G93A mice
at P120 but not that of MG-exposed and P30 SOD1G93A mice
compared with their respective controls (Table 6), which suggest
that axonal injury does not occur or is less prominent in MG-
exposed and P30 SOD1G93A mice.

TABLE 3 Proportion of DEGs in DRG sensory neuron subtypes of MG-exposed and SOD1G93A mice at P30 and P120 (MG vs. AG-exposed mice, SOD1G93A vs. WTmice).

Putative neuron type MG-exposed P30 SOD1G93A P120 SOD1G93A

Aβ field-LTMR 4.00% (2/50) 4.00% (2/50) 16.00% (8/50)

Aβ RA-LTMR 6.00% (3/50) 2.00% (1/50) 26.00% (13/50)

Aδ-LTMR 4.00% (2/50) 4.00% (2/50) 20.00% (10/50)

C-LTMR 8.00% (4/50) 0% (0/50) 20.00% (10/50)

CGRP-α 6.00% (3/50) 4.00% (2/50) 10.00% (5/50)

CGRP-ε 2.04% (1/49) 2.04% (1/49) 12.24% (6/49)

CGRP-γ 6.12% (3/49) 0% (0/49) 12.24% (6/49)

CGRP-η 4.00% (2/50) 0% (0/50) 14.00% (7/50)

CGRP-θ 4.17% (2/48) 2.08% (1/48) 10.41% (5/48)

CGRP-ζ 6.12% (3/49) 4.08% (2/49) 14.29% (7/49)

Cold thermoreceptors 4.26% (2/47) 0% (0/47) 12.77% (6/47)

Polymodal nociceptors 0% (0/49) 2.04% (1/49) 6.12% (3/49)

Pruriceptors 4.00% (2/50) 0% (0/50) 24.00% (12/50)

Proprioceptors 0% (0/50) 2.00% (1/50) 44.00% (22/50)

DEG, differentially expressed gene; DRG, dorsal root ganglia; MG, microgravity; AG, artificial gravity; SOD1, superoxide dismutase 1; WT, wild type; P, postnatal day; LTMR, low-threshold

mechanoreceptor; CGRP, calcitonin gene-related peptide. Cell types were defined as described by Sharma et al., 2020.

TABLE 4 Proportion of DEGs in putative DRG neuron types of MG-exposed and SOD1G93A mice at P30 and P120 (MG vs. AG-exposed mice, SOD1G93A vs. WT mice).

Putative DRG neuron type MG-exposed P30 SOD1G93A P120 SOD1G93A

Non-peptidergic nociceptors 1 0.86% (3/348) 1.15% (4/348) 13.22% (46/348)

Non-peptidergic nociceptors 2 0.33% (1/303) 0.66% (2/303) 9.24% (28/303)

Non-peptidergic nociceptors 3 0% (0/206) 0.97% (2/206) 9.71% (20/206)

Peptidergic nociceptors 1 0.56% (2/358) 1.40% (5/358) 12.85% (46/358)

Peptidergic nociceptors 2 0.75% (2/265) 0.75% (2/265) 9.43% (25/265)

LTMR 1 0% (0/242) 0.83% (2/242) 9.50% (23/242)

LTMR 2 0.65% (2/310) 0.65% (2/310) 14.52% (45/310)

LTMR 3 0.90% (2/223) 0.45% (1/223) 10.76% (24/223)

C-LTMR 0.81% (3/369) 0.81% (3/369) 13.82% (51/369)

Proprioceptor 1 0% (0/254) 0.39% (1/254) 15.35% (39/254)

Proprioceptor 2 0.43% (1/233) 0.43% (1/233) 14.59% (34/233)

Lymph nodes-innervating 0.99% (1/101) 1.98% (2/101) 8.91% (9/101)

Skin-innervating 0% (0/156) 0.64% (1/156) 6.41% (10/156)

DEG, differentially expressed gene; DRG, dorsal root ganglia; MG, microgravity; AG, artificial gravity; SOD1, superoxide dismutase 1; WT, wild type; P, postnatal day; LTMR, low-threshold

mechanoreceptor. Cell types were defined as described by Usoskin et al., 2015 and Huang et al., 2021.
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TABLE 5 Proportion of DEGs in putative Imoonglia, macrophages, and satellite glial cells in the DRG ofMG-exposed and SOD1G93Amice at P30 and P120 (MG vs. AG-
exposed mice, SOD1G93A vs. WT mice).

Putative cell type MG-exposed P30 SOD1G93A P120 SOD1G93A

Imoonglia 5.74% (63/1097) 1.09% (12/1097) 16.96% (186/1097)

Macrophages 3.81% (94/2469) 1.50% (37/2469) 13.28% (328/2469)

Satellite glial cells

Cluster 1 1.40% (7/500) 2.00% (10/500) 8.00% (40/500)

Cluster 2 3.08% (10/325) 2.46% (8/325) 15.69% (51/325)

Cluster 3 0.60% (3/500) 0.20% (1/500) 9.00% (45/500)

Cluster 4 0.20% (1/500) 0.60% (3/500) 12.40% (62/500)

Astrocyte 1.20% (6/500) 1.40% (7/500) 14.00% (70/500)

Non-myelinated Schwann cells 0% (0/80) 0% (0/80) 13.75% (11/80)

Myelinated Schwann cells 0% (0/99) 1.01% (1/99) 17.17% (17/99)

DEG, differentially expressed gene; DRG, dorsal root ganglia; MG, microgravity; AG, artificial gravity; SOD1, superoxide dismutase 1; WT, wild type; P, postnatal day. Cell types were defined as

described by Avraham et al., 2021.

TABLE 6 Proportion of differentially expressed axonal injury-neuronal genes and proportion of differentially expressed endothelial cells, pericytes, Schwann cells,
macrophages, and satellite glial cells genes after dorsal root crush, spinal cord injury, and sciatic nerve crush in the DRG of MG-exposed and SOD1G93A mice at
P30 and P120 (MG vs. AG-exposed mice, SOD1G93A vs. WT mice).

Putative neuronal and non-neuronal cell type MG-exposed P30 SOD1G93A P120 SOD1G93A

Injury-induced neuronal genes 0.76% (4/524) 0.57% (3/524) 10.69% (56/524)

Dorsal root crush

Endothelial cells 2.70% (17/630) 0.63% (4/630) 15.24% (96/630)

Pericytes 2.64% (15/568) 0.70% (4/568) 14.79% (84/568)

Schwann cells 2.76% (19/689) 0.73% (5/689) 15.82% (109/689)

Macrophages 3.04% (14/460) 1.52% (7/460) 15.43% (71/460)

Satellite glial cells 0.57% (1/174) 1.15% (2/174) 18.39% (32/174)

Spinal cord injury

Endothelial cells 4.33% (10/231) 0% (0/231) 18.61% (43/231)

Pericytes 3.91% (10/256) 1.56% (4/256) 15.23% (39/256)

Schwann cells 2.41% (6/249) 1.20% (3/249) 17.27% (43/249)

Macrophages 2.67% (2/75) 0% (0/75) 24.00% (18/75)

Satellite glial cells 1.54% (1/65) 0% (0/65) 30.77% (20/65)

Sciatic nerve crush

Endothelial cell 2.35% (30/1276) 0.31% (4/1276) 8.62% (110/1276)

Pericytes 2.19% (21/957) 0.52% (5/957) 12.64% (121/957)

Schwann cells 1.97% (25/1271) 0.63% (8/1271) 10.62% (135/1271)

Macrophages 3.08% (21/682) 1.17% (8/682) 15.54% (106/682)

Satellite glial cells 0.63% (3/479) 0.84% (4/479) 8.35% (40/479)

DEG, differentially expressed gene; DRG, dorsal root ganglia; MG, microgravity; AG, artificial gravity; SOD1, superoxide dismutase 1; WT, wild type; P, postnatal day. Cell types were defined as

described by Renthal et al., 2020 and Avraham et al., 2021.
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3.9 Expression of genes related to non-
neuronal cells after central and peripheral
axonal injuries was altered in P120 SOD1G93A

mice but not in microgravity-exposed and
P30 SOD1G93A mice

To compare the effects of exposure to MG and ALS on non-
neuronal cells in the DRG, we examined the expression of genes related
to endothelial cells, Schwann cells, pericytes, macrophages, and SGCs of
dorsal root crushed, spinal cord injured, and sciatic nerve crushed mice
(Avraham et al., 2021). Compared to their control counterparts, an
increase in the DEGs related to injury was observed in SOD1G93A mice
at P120, but not at P30, and a slight increase was also observed in MG-
exposed mice compared to the AG controls (Table 6). These results
indicate that P120 ALS affects expression of non-neuronal cell-related
genes in the DRG associated with spinal cord and nerve injuries and
that MG has slighter effects compared to P120 SOD1G93A mice.

4 Discussion

Exposure to MG and ALS are associated with changes in various
physiological functions, which leads to alterations in the cardiovascular,
musculoskeletal, immune, membrane transporter, and motor systems.
Several studies have demonstrated that defects in the sensory
components of the sensorimotor system contribute to motor neuron
dysfunction in the pathogenic process of motor neuron diseases, such as
spinalmuscular atrophy (Shorrock et al., 2019), and it has been suggested
that the sensory systemmay be affected just like themotor system (Rubio
et al., 2022). Here, we investigated and compared the effects of exposure
to MG on the DRG with an ALS mouse model expressing the mutant
SOD1G93A, which exhibits similar motor deficits. SOD1G93A mice show
neuromuscular junction denervation, mitochondrial abnormalities in
spinal motor neurons, and altered spinal neurovascular units at P30
(Vinsant et al., 2013a; Vinsant et al., 2013b; Yoshikawa et al., 2022a) and
numerous pathological changes, including spinal motor neuron loss at
P120 (Vinsant et al., 2013a). By analyzing the characteristics ofMG- and
mutant SOD1-induced degeneration, we aimed to obtain new insights
into neurodegenerative diseases, which could lead to new treatments,
targeting the DRG.

In this study, we hypothesized that MG and ALS would result in
different pathophysiological adaptations. To this end, we investigated
the effects of exposure to MG and mutant SOD1 on gene expression
related to various cell types in the mouse DRG. The results showed that
the direction of several common GO terms was different in the DRG of
MG and ALS mice. For example, the GO term inflammatory response
was downregulated in the DRG of MG-exposed and P30 SOD1G93A

mice, while upregulated in SOD1G93A mice at P120. Furthermore,
common DEGs between the DRG of MG-exposed and ALS mice
were increased in the late stages of ALS. Several DEGs were observed in
genes related to putative DRG cell types in both experimental mouse
models. Several types of cells associated with the immune system and
barrier formation are affected by exposure to MG. Differential
expression alterations were observed in whole range of neurons of
the DRG of SOD1G93A mice compared with MG-exposed mice. Several
ALS-causing genes have been linked to sensory dysfunctions, and
mutant SOD1 and TDP-43 have been reported to be associated with
sensory abnormalities prior to motor neuron death, withmitochondrial

damage (Guo et al., 2009; Tao et al., 2018). Altered gene expression was
observed in the DRG of SOD1G93A mice as early as P30; however,
SOD1-associatedALS is only one ofmany forms of ALS, andwe need to
expand to other forms of ALS.

The expression of several SLC family-related genes in the DRG of
MG-exposed and SOD1G93Amice at P30 and P120 was altered.Multiple
SLCs are expressed in the DRG cells and located in the plasma
membranes of DRG neurons (Sprowl et al., 2013; Yi et al., 2021).
SLC genes have been identified in the brain, particularly in barrier cells
(Ayka and Şehirli, 2020; Hu et al., 2020; Kumar et al., 2022). Several
studies have indicated the neuroprotective role of SLCs in
neurodegeneration-inducing conditions, such as hypoxia and
ischemia, and diseases such as Alzheimer’s and Parkinson’s disease,
through reducing redox signaling (Ayka and Şehirli, 2020; Nguyen et al.,
2021; Kumar et al., 2022). DEGs of the Slc6 family, neurotransmitter
transporters, and the Slc25a family, mitochondrial carriers, were altered
in SOD1G93A mice at P30 and P120, which deserves consideration (Hu
et al., 2020; Kumar et al., 2022). However, SLCs in the DRGhave not yet
been well evaluated and remains to be determined.

In this study, the expression of proprioceptive neuron markers
decreased in the DRG of MG-exposed and SOD1G93A mice at P120,
whereas it did not change at P30. Exposure to MG induced changes in
the activity of oxidative enzymes in large-diameter DRG neurons
(Nagatomo et al., 2014). Previous studies suggested that exposure to
MG and ALS alter in large-diameter, putative proprioceptive, DRG
neurons and axons, resulting in motor system dysfunction (Nagatomo
et al., 2014; Sábado et al., 2014; Rubio et al., 2022). Additionally, large
proprioceptive neurons were shown to undergo a degenerative process
involving the inflammatory recruitment of macrophages (Sábado et al.,
2014), and proprioceptive synapses, muscle spindle afferent inputs to
motor neurons, were reduced on the motor neurons in the SOD1G93A

spinal cord (Schütz, 2005; Vaughan et al., 2015). Motor neuron survival
increased in SOD1G93A; Egr3KO double mutant mice (proprioception
altered in SOD1G93A mice), suggesting that proprioceptive sensory
activity contributes to motor neuron degeneration (Lalancette-Hebert
et al., 2016). These results suggest that changes in genes related to
proprioceptive neurons may contribute to the motor dysfunction
associated with exposure to MG and the late stage of ALS and may
reflect muscle weakness.

Expression of LTMR-related genes was also altered in the DRG of
MG-exposed and SOD1G93A mice. Tactile sensory inputs are required to
generate appropriate movements (Paixão et al., 2019), and cutaneous
pathways contribute to corrective movements during locomotion, via
networks in the spinal cord that integrate tactile and proprioceptive
information (Zholudeva et al., 2021). In microgravity, tactile sense is
affected, as astronauts feel less (or no) pressure on their feet, leading to
sensory deprivation (Hupfeld et al., 2021). Therefore, changes in
mechanoreceptors may cause the motor dysfunction associated with
exposure toMGandALS.Moreover, expression of cold thermoreceptor-
related genes was altered in the DRG of MG-exposed and SOD1G93A

mice. Additionally, cold-cutaneous stimulationmodulatesmotor neuron
activity (Tamura et al., 2019). However, whether altered cold
thermoreceptors potentially contribute to the motor deficits caused
by exposure to MG and ALS remains to be determined.

Given that skin alterations have been reported following
exposure to MG and ALS progression (Pampalakis et al., 2019;
Radstake et al., 2022), but that changes in skin- and lymph-node-
innervating neuron-related genes were mild in MG-exposed and
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SOD1G93A mice at P30, we conclude that effects of inflammation on
nociceptive neurons in the DRG caused by MG exposure and early
ALS are minimal. Additionally, expression of nociceptor-related
genes was mildly altered in the DRG of MG-exposed mice, whereas
expression of CGRP-related genes was altered in the DRG of MG-
exposed mice. CGRP-positive neurons are, in addition to
nociceptors, associated with high-threshold mechanosensory and
cold sensations (McCoy et al., 2013; Kuehn et al., 2019; Crawford
and Caterina, 2020). Therefore, alterations in the CGRP-positive
neurons may not be limited to nociceptive functions. In the DRG of
SOD1G93A mice at P120, the expression of nociceptors and skin- and
lymph-node-innervating neuron-related genes was altered, showing
increased cytokine and axon injury markers, suggesting that DRG
cells are affected by inflammation and axonal damage upon disease
progression.

The expression of axonal injury-induced factors is altered in
the DRG of MG-exposed and SOD1G93A mice. Long-term
exposure to microgravity and ALS have been shown to induce
multi-organ damage, including the brain, spinal cord, and DRG
dysfunction (Guo et al., 2009; Vinsant et al., 2013a; Vinsant et al.,
2013b; Holley et al., 2022; Li et al., 2022; Mhatre et al., 2022; Rubio
et al., 2022; Yoshikawa et al., 2022b). Therefore, we compared the
DRG of MG-exposed and SOD1G93A mice with that of animals
subjected to different injury conditions (Avraham et al., 2021).
The expression of Atf3, which is increased in DRG neurons in ALS
mouse model (SOD1G93A and TDP43A315T mice; Vaughan et al.,
2018), and SGC-related genes, which is increased in response to
peripheral nerve injury (Avraham et al., 2021), changed in the
DRG of SOD1G93A mice at P120 but not in MG-exposed and
P30 SOD1G93A mice, which may reflect DRG neuron and axon
damage in P120 SOD1G93A mice (Vaughan et al., 2018). ATF3 is
known to be a stress-responsive molecular hub for a variety of cell
types (Ku and Cheng, 2020). While ATF3 expression may indicate
axonal damage, neurons without axonal damage but with
metabolic stress, or by SGCs, or by resident or invading
immune cells may also express ATF3 (Hunt et al., 2012).
Previous study indicates that proprioceptive neurons, in
addition to all other neurons in the DRG, resist degeneration
during the early stages of ALS (Vaughan et al., 2015).
Furthermore, the expression of Imoonglia-related genes was
altered in the DRG of MG-exposed and P120 SOD1G93A mice.
Imoonglia in the DRG activate following both peripheral and
central injuries (Avraham et al., 2021). These results suggest that
the DRG microenvironment in MG-exposed and SOD1G93A mice
is different, and exposure to MG- and P30 ALS-induced neuronal
damage is mild, and the genes may not respond.

The expression of genes related to endothelial cells, pericytes,
mesenchymal endoneural cells, and mesenchymal epineural cells was
altered in the DRG of MG-exposed and SOD1G93A mice. These cells are
related to physical barriers, including the blood–nerve barrier, which
protects peripheral nerves from external influencing factors and are
altered following peripheral nerve injury (Liu et al., 2018). Additionally,
injury-induced gene expression related to endothelia cells and pericytes
was observed in the DRG of MG-exposed and SOD1G93A mice.
Therefore, alterations to these cells may influence the barrier
integrity and, consequently, peripheral nervous system injury.

In conclusion, we describe the effects of exposure to MG and
ALS on the DRG. Our study supports the involvement of the

sensory system in exposure to microgravity and in the
SOD1 transgenic mouse model of ALS. We first determined the
DEGs in the DRG of MG-exposed (compared with AG-exposed)
and early and late stages of SOD1G93A (compared with WT) mice.
Our results revealed changes in various neuronal and non-
neuronal cell-related gene expression in the DRG in response to
exposure to MG or ALS, especially proprioceptive neurons,
mechanoreceptive neurons, glial cells, immune cells, and barrier
cells. A better understanding of the role of the sensory system, in
response to exposure to MG and ALS, may provide opportunities
to elucidate the determinants of the different vulnerability patterns
between the MG-exposed and SOD1 mice, which could allow the
identification of new therapeutic targets for patients with motor
disturbances.
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