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In classical gravimetry, different corrections are applied, e.g. to correct for the

measurement elevation above a reference plane and the gravitational attraction

of the material lying between the measurement point and reference plane.

Additionally, and especially in non-flat regions, a correction for the topography

is generally needed. While this contribution is relatively small on spherical

celestial objects, it can be more important for irregularly shaped bodies,

such as small bodies or some natural satellites. With the surface gravity

being much smaller, the relative importance of the topographic correction

increases, while the approximation errors of the surface will become larger. In

this work, the novel Wedge-Pentahedra Method (WPM) for topographic

correction for (near-) surface gravimetric measurements and simulations is

presented that allows precise topographic corrections for asteroids and natural

satellites. For a first study, the WPM is applied to the Martian moon Phobos.

Taking an exemplary surface location, a high-resolution artificial terrain is added

to the surrounding, and the gravitational influence of this topography compared

to the original surface is assessed. It is found that the influence of topography on

the surface gravity of a small body such as Phobos can be in the order of a few

percent, making it an important correction not only for surface gravity science,

but likewise for landing and surface operations, to best ensure the mission

success. Therefore, the here presented WPM opens a manifold of possible

future applications in the context of Solar System exploration, regarding both

space science and space technology.
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1 Introduction

In classical (Terrestrial) gravimetry, different corrections,

sometimes also referred to as reductions, are applied to

gravimetric measurements (Hammer, 1939). A generally used

concept is the Bouguer anomaly, accounting for 1) the Bouguer

correction, 2) the free-air gradient and 3) the terrain

(topography) correction. Other types of corrections exists, but

those are not discussed here. The Bouguer correction considers

the gravitational effect of material between the measurement

point (i.e. the gravimeter location) and a reference datum (Vaníc

et al., 2001), e.g. the geoid or an arbitrary datum. The free-air

gradient accounts for the increased distance to the centre of the

central body (e.g. Talwani et al., 1973). Therefore, at higher-

altitude surface locations, the Bouguer correction increases the

resulting gravitation depending on the subsurface material

density, while the free-air gradient reduces the resulting

gravitation, both compared to a lower-altitude surface

position. The third contribution is the topographic reduction,

where the topography in the surrounding of the gravity

measurement (evaluation) point is considered. Imagine a

measurement at half height of a hillside: The material above

the measurement point up to the peak lies above the gravimeter

and “pulls up”, the resulting gravity is reduced. By the same

token, from the measurement location down to the valley floor,

material is “missing”, likewise decreasing the resulting gravity.

On Earth, the topographic effect is largest in mountainous

regions, e.g. up 40 arcseconds in the Alps (Barzaghi et al., 2016),

and elsewhere much smaller; often this correction has even be

neglected (Heck and Seitz, 2007).When applied, the topographic,

or mass, reduction can generally be done using tesseroids, prisms

or points masses (Heck and Seitz, 2007). On the local scale, e.g.

considering local surface gravimetry, tesseroids appear not

suitable for a flat-Earth assumption. Point masses, or mass

concentrations (mascons), result in largest computation

uncertainties on the surface (Park et al., 2010; Meißenhelter

et al., 2022), making it less suitable for surface measurement

compared to air-/water-/spacecraft-based measurements,

providing some separation between the approximated surface

and the gravimeter. Regarding prisms, it is possible to obtain an

analytical and therefore precise solution for right rectangular 2D

(Talwani et al., 1973) or 3D prisms, e.g. Heck and Seitz (2007).

However, this assumes a flat-topped rectangular top surface,

which again is only an approximation of the real surface

(Urbancic et al., 2017). The prism approximation therefore

leads to a manifold of plateaux, giving a discontinuous surface

and neglecting the surface slopes.

Whilethetopographiccorrectionmightbeoftentimesnegligible

on the Earth, the relative contribution will increase with decreasing

gravity, e.g. on Mars and the Moon. For example, the Mars science

laboratory (MSL) onboard gravity model differed from the local

Martian gravityby−4.4mm/s2 (Brugarolas, 2017),which is equal to

about 0.12% of the Martian gravity, leading to vertical touchdown

velocity errors roughly equal to the 3σ error and resulting in the

recommendation to include corrections for local gravity (including

topography) to avoid damages to a (planetary) lander in the final

landing phase1. Moreso, the effect will be even larger on small Solar

System bodies (SSSB) and small natural satellites (SNS) such as the

Martian moons Phobos and Deimos (hereafter generally: small

bodies (SB)). To date, one gravimetric study was performed on

theMoon(Talwani et al., 1973) andoneonMars (Lewis et al., 2019).

Currently, the GRAvimeter for small Solar System bodies (GRASS)

(Noeker et al., 2021, 2022) is being developed for surface gravimetry

on the secondaryof theasteroidsystemDimorphos(Karatekinetal.,

2021).SolarSystem surfacegravimetry thereforedemandsamethod

well-suitable to account for local topography reduction in the

proximity of the surface, avoiding the above mentioned top-

surface approximation.

We will therefore address two main problems in this paper.

After introducing the shape file and topography file used in this

work (Section 2), we provide a geometric method to merge high-

resolution 2D terrain data with a lower-resolution global shape

file, exemplary demonstrating this on the Martian moon Phobos

(Section 3). For example, this method can proof valuable if an

existing small body (SB) shape file can be locally augmented by

high resolution, local terrain observations.With this, we continue

by solidifying the local high-resolution surface by creating

wedge-pentahedra (Section 4) and we evaluate in-closed form

the gravitation contribution (Section 5) wedge-wise using the

polyhedral method (PM) (Werner and Scheeres, 1996) applied

per-wedge. To show the working of the newly developed Wedge-

Pentahedra Method (WPM), we further provide here a

verification by comparing the resulting gravitation with a

single, same-sized cube. Lastly, the gravitational influence of

the surface with artificial topography is compared to the

corresponding smooth surface of identical extend. This change

in gravitation is also computed relative to the absolute resulting

surface gravitation.

2 Shape file and DEM

2.1 Shape file

For demonstration of the newly developed WPM, we use the

Martian moon Phobos and the latest shape file by Willner et al.

(2014). The reported extend of this shape is represented with its

radii, being 13.03 km × 11.40 km × 9.14 km, with a volume of

5,742 ± 35 km3 and a density of 1,860 kg/m3 (Willner et al., 2014).

The shape model, with a nominal resolution of 100 m/pixel, was

developed based on imagery data from the Mars Express Mission

(MEX) and the Viking orbiter cameras.

1 https://llis.nasa.gov/lesson/27901 accessed on 28.04.2022.
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2.2 Digital elevation model

While the above introduced shape file of Phobos is one of the

most detailed in the Solar System, the resolution is still limited to

1/100 ppmeter (pixel-per-meter, comparable to pixel-per-degree

(ppd)). Therefore, in order to have a high-resolution surrounding

surface, an artificial digital elevation model (DEM) will be

applied to the Phobian surface, kindly provided by Miyamoto

(2021)2. Obviously, any 2D DEM, being artificial or real, can be

used for this method, meaning that gravity data analysis

augmented by the observed high-resolution (local) topography

can be performed following a successful mission.

The original, dimensionless data set contains 10,001 points

squared, thus it is spanned in a horizontal plane, here referred to

as the X-Y-plane from point (1|1) to (10,001|10,001), where the

points correspond to the array position. The elevation value in

these array positions is here referred to the corresponding

(vertical) Z-coordinate. These “array coordinates” are

completely arbitrary and can therefore be projected on any

surface area. To quantify the DEM, the minimum, maximum,

mean and standard deviation (std.) of the (original) DEM

Z-coordinates are provided in Table 1. Given the very large

amplitude of the full DEM (Table 1), and to exclude individual

features, such as a very large and deep crater, we take a subset of

the DEM, quadratically spanned from data points (1,000|1,000)

to (2,000|2,000). Variation of the here chosen terrain subset

provides an additional variable for future test cases, with

entirely different local terrain. Surface plots of the (unscaled)

full DEM and the chosen subset are provided in the

Supplementary Material of this work. For a good visualization,

only every 50th and fifth points are displayed, respectively. Note

should be taken of the different scale of the Z-axes.

3 Merging topographic data and
shape file

For SBs, the knowledge of their shapes, and thus the

available associated shape file resolution is limited. Especially

for objects that have not been visited by spacecraft, the shape file

is usually solely based on Earth-based observations. Even for

bodies that were target of a flyby such as Phobos, the shape file

resolution is limited despite the good quality of the data.

Generally, the presence of a lower resolution global shape

(e.g. 0.01 ppmeter) file and high resolution local shape file

(e.g. better than 0.1 ppmeter) is a realistic combination. For

example, the NASA DART spacecraft will kinetically impact

Dimorphos to demonstrate planetary defense technology

(Cheng et al., 2012). This will return high-resolution

information on the shape file, but obviously only on the

side/region of impact. The same is true for the Juventas

CubeSat landing on Dimorphos (Goldberg et al., 2019), and

the MMX mission with a planned rover deployment (Ulamec

et al., 2019) and a surface-sample-acquisition-manoeuvre

(Kuramoto et al., 2022). All these examples have in common

that they will return detailed surface information on the surface

surrounding the landing point/rover operation region.

Likewise, in preparation of surface operations/landing, more

detailed topographic observations of possible landing regions

are obtained just-in-time, allowing additional planning using

the here developed method.

Different solutions and proposals exists that consider

(local) surface observations in the context of larger scale

mapping. For example, Haase et al. (2019) used Apollo

17 astronaut imagery for angular measurements to precisely

determine coordinates of landmarks and equipment. Details

on the topography, and more specifically the surface

roughness, of Itokawa were derived by Abe et al. (2006)

using LIDAR observations. However, both approaches were

very specific to individual features/locations, and did not

return systematic improvements in the mapping of the

surrounding on an areal level. On the contrary, a prime

example of obtaining a high-resolution terrain model on a

local scale is the surrounding of the Huygens landing site on

Titan. Using (stereo-) imagery from the descent, Soderblom

et al. (2007) derived an unprecedented DEM of the Titanian

surface, “only” surrounding the landing Huygens landing site.

Alternatively, regarding surface exploration to map the

surrounding, a legged surface vehicle with a ranging sensor

was presented by Kweon et al. (1989) together with a method

to construct and combine elevation maps. Overall, it

is therefore reasonable to assume that a high-resolution

TABLE 1 Key values of unscaled artificial DEM (Miyamoto, 20212), at full (original) resolution. Shown is the full data set of size 10, 0012 and the used
subset spanned as a square between points (1,000|1,000) and (2000|2000). The first line shows the values of the full data set and the second line
shows the same figures for a subset of the DEM used in this work. The data set is dimensionless, but the presented values are treated as meters.

Data Set
min. (X|Y)

Data Set
max. (X|Y)

min. Z max. Z mean Z std. Z

(1|1) (10,001|10,001) −22.590 +10.586 −0.107 1.947

(1,000|1,000) (2000|2000) −0.220 +3.354 1.029 0.453

2 Miyamoto, H. (2021). Personal communication, [Dataset].
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DEM will be available for the surrounding proximity of

landing sites on extraterrestrial surfaces,

without going further into detail on the (2D) mapping

techniques.

In order to allow for good topographic reduction, here we

firstly developed a method to merge a global 3D (small body)

shape file with a local 2D high (-er) resolution digital elevation

model (DEM). Alternatively, the merging method can be

adapted for large spherical bodies (e.g. Moon, Mars, Titan),

where locally a flat surface might be assumed; this will be

discussed in future work. In absence of a suitable ready-

made ground-truth data set of a non-spherical SB, we use

the exemplary artificial DEM introduced in Section 2.2. In a

first step, the local surrounding of the evaluation point is

isolated (Section 3.1) and the (artificial) high-resolution

digital elevation model (DEM) surface is combined with the

lower-resolution shape file (Section 3.2). This merging process

described in this Section is an optional preparatory step to the

WPM gravitation evaluation, described in the subsequent

Sections, and might be skipped if the local topography is

readily available.

3.1 Localizing the region of interest

Initially, the region of interest, i.e. the local surrounding of

the point of interest, is isolated. For our evaluation (landing)

region, we select one exemplary location (“evaluation point”)

on Phobos to illustrate the localization of the problem. To

prove the stability of the method for all macroterrains, we

selected a surface point inside a depression. Rather than using

the vertices of the original Wavefront (.OBJ) file to identify

surface points, we have decided to take the central points as

evaluation (eva.) point (xeva., yeva., zeva.)T of each face by

taking the average coordinates of the three boundary

vertices i, j, k:

xeva.

yeva.

zeva.

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 1
3

xi + xj + xk

yi + yj + yk

zi + zj + zk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

The original coordinates of the studied evaluation point at

the centre of its facets is (xeva., yeva., zeva.)T �
(−945.67 m,−145.67 m,−8044.33 m)T and the point on the

Phobian surface is indicated in the global context in Figure 1

(left).

In a first step, the overall shape model is used to compute the

initial reference gravitation gref, init at the surface evaluation point

with the well-known polyhedral method (PM) by Werner and

Scheeres (1996). (This method is used here tacitly and introduced

in Section 5 as it forms part in the WPM gravity evaluation.) The

reference gravitation is computed with uniform density of

1,860 kg/m3 (Willner et al., 2014) and amounts to

(gx, gy, gz)T � (−0.1957,−0.2193, 5.7880)T · 10−3m/s2, with a

total magnitude of 5.7955·10−3 m/s2 for the studied evaluation

point.

With the gravitation vector in place, the first localization step

is the dissection of the body. For this, a dissection plane is simply

constructed by taking the evaluation point and the gravity vector

as plane normal, and translating the plane by a defined distance,

here 1,000 m, along the plane normal. The evaluation point, the

gravity vector as plane normal, and the translational distance

define the dissection plane as shown in Figure 1.

We then dissect the body along this plane and remove the

points on the side away from our local point. Figure 1 (right)

shows the reduced point set with the dissecting plane and the

(outward-flipped) gravity vector.

Due to the arbitrary orientation of the reference gravitation

gref, init in the shape file coordinate system (CS), the forthright

FIGURE 1
(Left) Phobos shape file with dissection plane offset by 1,000 m and evaluation point with (flipped) gravity vector (green). View in +X-direction.
(Right) Local environment above dissection plane rotated with local points in proximity of the evaluation point highlighted. For better context, axes
are here set equal.
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geometric manipulation is facilitated by coordinate system

rotation, such that the (outward-pointing) gravity vector

aligns with the +Z′-axis in the rotated coordinate system CS′.
For this, CS is rotated to becomes CS′ such that gref,init �
(gx, gy, gz)T � (−0.1957,−0.2193, 5.7880)T · 10−3m/s2 become

gref � (gx′ , gy′ , gz′)T � (0, 0, 5.7955)T · 10−3m/s2, where gz′ is

the magnitude of gref, init. The rotated reference gravitation

vector has hence the magnitude as Z-component and the X-

and Y-components are null with the exception of numerical

artifacts. The rotated evaluation point coordinates are

(xeva.′ , yeva.′ , zeva.′ )T � (308.39 m, 1259.79 m, 7996.54 m)T.
Alternatively to using the (normalized) reference gravitation

vector in the above described steps, the usage of the shape surface

normal was studied. However, this was found to work less

reliably for irregular bodies such as Phobos. As will be shown

in the next step, the method to reduce the global shape to a local

shape demands sufficient surrounding material (or: surface) in all

directions. The present details in the shape file of Phobos can

orient the surface normal locally such that it is not helpful for the

here shown implementation, i.e. not pointing in the direction of

the body centre. On the contrary, the gravitation vector is

generally sufficiently pointing towards the body mid-point.

This is usually true for small bodies larger than Phobos, but

not necessarily for even smaller bodies. On a smooth shape, such

as an ellipsoid, e.g. initially assumed for Dimorphos, the gravity

vector will cause a skewed dissection, making the surface normal

on the smooth surface of an elongated shape preferable.

Generally, the gravitational field and shape file (quality) will

determine if the rotation should be done with the reference

gravitation (this work) or surface normal, which will be

investigated further in future work, especially for smaller

bodies, or highly-elongated (e.g. dog-bone) shapes, such as

216 Kleopatra. Following a successful mission, the choice

between surface normal and reference gravitation should be

reconsidered for the analysis based on the latest available

gravitational and observational data.

Finally, following the above introduced “vertical”

translation offset, we now add a “horizontal” offset, here

again exemplary Δh = 1, 000 m, but this can well vary from

the vertical value and be set much larger. The terms horizontal,

above/below, are artificial and only corresponds to the rotated

reference frame CS′. With the “horizontal” offset Δh, we only
keep the points inside a square in the X-Y-plane of side length

a = 2 ×Δh = 2 × 1,000 m, centred at the evaluation point, which

gives us the local surrounding for our further analysis. The

rotated points above the dissection plane with the local points

highlighted and isolated are shown in Figure 2. These

remaining points alone form the basis for the local analysis

and the superposition of the digital elevation model (DEM)

that will be introduced in the next section. Clearly, the variable

Δh sizes the local region of topographic investigation, and

variations in this parameter influence the result. This is not

only because of a different “original” surface covered, but also

because of the different projection of the DEM onto that

surface, recalling the inverse-squared influence of distance

on gravity.

3.2 Superposition of the DEM

The localized points in the area spanning 2,000-m-squared

(compare to Phobos size stated in Section 2.1) shown in Figure 2

consist of 624 points of the original shape file, therefore, we have

here a one-dimensional resolution of about 25 points over

2000 m, meaning 1/80 ppmeter (slightly better than the

nominal 1/100 ppmeter). While this is a good value for the

FIGURE 2
Local environment above dissection plane rotated with local points in proximity of the evaluation point highlighted. For better context, axes are
set equal.
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global shape representation, the aim here is to artificially improve

this resolution locally for the proximity terrain analysis.

The selected DEM data subset, consists of 1,000 points

squared, thus of one million points. This corresponds to a

resolution of 1/2 ppmeter, if projected onto the 2000-m-

squared area. This resolution is too large and the number of

used points has to be limited for the following reasons:

• The computation time of the algorithm, also with respect

to gravity evaluation (Section 5) needs to be limited.

• The triangulation (Section 4.2) fails, if the ratio of artificial

DEM to the original (smooth) resolution becomes too

large.

The limitation in used points is introduced two-fold, by

taking a square subset of the full DEM and by taking only

every nth point of that subset data set.

For example, we take the data subset spanning from 1,000 to

2000, meaning that the points (1,000|1,000) and (2000|2000)

span up the square for the subset. This subset is shown in Figure 3

(top). Hence, we have increased the surface resolution to

1,000 pixel/2000m = 1/2 ppmeter, thus we achieve a

resolution 40 times better than on the original data file (1/

80 ppmeter).

The number of surface points can then be further reduced by

only taking every nth point of the subset, reducing the number of

used pixels. This is shown in Figure 3 (bottom) for every 20th

point. The above calculated ground resolution therefore

decreases from 1/2 ppmeter to 1/40 ppmeter. Yet, while the

ground resolution now mathematically is only twice as large as

the original data set, the added terrain does not disappear. Clearly

visible comparing top and bottom in Figure 3, the base terrain

deviation, above and below the zero-elevation plane, is only little

influenced by the ground resolution at the resolution reduction.

Moreover, the main features, i.e. elevations and depressions (e.g.

craters) are also visible in both resolutions. Best visible when

inspecting these features, however, is the difference in surface

smoothness. While the surface of the original data set appears

continuous and as a smooth surface (close-up inspection will still

reveal discontinuous, straight facets on the “round” features), the

reduced data set clearly shows the (flat) facets between the

individual points. Moreover, the reduction in resolution leads

FIGURE 3
(Top) Side-view (in +Y-direction) on the subset spanned from (1,000|1,000) and (2000|2000) at the original data set resolution where all
features appear smooth with a continuous surface representation. (Bottom) Same as above, but reduced resolution by taking only every 20th point.
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to a reduction in surface features, meaning that smaller features,

i.e. lying between the reduced number of points, will not appear.

Likewise, the shape of surface features might be altered for this

reason. The pure quantitative comparison of ground resolutions

might therefore be misleading, as the DEM with lower resolution

still provides much more terrain and features than the original

surface. An analysis of the influence of the ground resolution is

therefore included in this work. This is also important with the

above mentioned computation time/algorithm for gravity and

the formulation of observation requirements.

As a next step, the selected subset of the DEM with variable

ground resolution (Figure 3) needs to be combined with the

smooth original surface (Figure 2). This process is described step-

wise in the following.

Firstly, the DEM is translated and scaled such that it lies

above the reduced original surface. The vertical position “above”

the original surface is only temporary and therefore arbitrary. At

this stage, the DEM still has its original scaling thus within the

range of −0.220 to +3.354 (Table 1), here treated as meter.

By definition, the resolution of the two data sets to be merged

differs. In order to project the higher- onto the lower-resolution

data grid, we perform an interpolation of the rotated original (i.e.

without DEM) data set (in CS′) to match the specified (variable)

resolution of the used data set. The interpolation here uses the

MATLAB function griddata (option “natural”) that allows

interpolation of the scattered data (here: original surface). For

this, firstly amesh is initialised with the size of the original surface

(here 2000-m-squared, as highlighted in Figure 2) in the rotated

reference frame CS′, with a step size equal to the (specified) DEM
resolution. We then use the X′- and Y′- coordinates of this mesh

for the DEM-superposition, by firstly taking the Z′-coordinate of
the interpolated surface Zlocal,surface. To this value, we add the

corresponding Z-value of the DEM ZDEM,original, multiplied by a

scale factor as:

ZDEM,included � Zlocal,surface + ZDEM,original · ST (2)

where ST is the terrain scale factor. A value of ST = 0

effectively removes the added DEM, only leaving the

interpolated surface, a value of 1 is representative of the DEM

plotted in Figure 3 (top) and (bottom), showing the original and

resolution-reduced data, respectively. Any other value for ST will

scale the DEM accordingly, where a negative scale factor inverts

the topographic profile.

In a last step, we perform a final vertical adaptation such that

our evaluation point and the (newly added) artificial DEM

coincide in the central evaluation point. This adaptation is

arbitrary, but necessary, e.g. for the gravity evaluation.

Otherwise, the evaluation point on the smooth surface could

end up below the DEM surface (if the DEM locally is positive) or

floating in empty space (if the DEM locally is negative).

Finally, the complete superposition of the DEM with a scale

factor of ST = 250 on the local interpolated original surface is

shown in Figure 4. It is clearly visible that some of the (scaled)

DEM terrain appears above and some below the original

surface. This was found to be the best way of including the

terrain, instead of systematically lying above or below the

original surface, also with respect to the common boundary,

introduced in Section 4.1.

4 WPM: Solidification using wedge-
pentahedra

To obtain inter-comparable results between original and

DEM surface, we have to ensure a common boundary for all

tested surfaces, which is done by creating a boundary frame

(Section 4.1). In addition, to be able to calculate the gravitational

influence of the local region, the surface has to be solidified,

FIGURE 4
Original (smooth), interpolated surface (grey) and superpositioned DEM surface in copper. Both surfaces touch in the evaluation point (blue).
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forming a solid volume (Section 4.2). This Section therefore

describes the transition from the surface to the solid volume.

4.1 Common reference boundary

As indicated above, the geometric operations performed here

need special attention towards a common boundary of the

localized area. To compute the influence of the topography on

the surface gravitation, we need a comparable environment,

independent of the terrain scaling and realized by a common

boundary frame.

For this, we start at the (central) evaluation point and span a

quadrangle bound by four points (X1,2|Y1,2). The X-Y

coordinates of these four points are simply calculated as

X1,2 � xeva.′ ± SfΔh (3)
Y1,2 � yeva.′ ± SfΔh (4)

where Sf (≠ ST) is an arbitrary scale factor, chosen here as

1.001, to ensure that the frame is always outside the treated

surface. Δh was above defined as the horizontal offset in the

localization (here 1,000 m). The vertical (Z-) coordinate of these

four points is set to be identical to the respective closest point of

the DEM surface, by finding the nearest neighbour.

Starting from these four points, the frame is built in four legs,

comparable to a launching gantry. Starting from one point, either

the X- or Y- coordinate is kept constant. The other coordinate is

varied step wise (e.g. 10 m) in one direction. The Z-value of the

framing points is then again set equal to the Z-value of the closest

neighbouring point of the interpolated (smooth) DEM surface,

with scale factor ST = 0 (Figure 4). By taking the smooth surface

high-resolution surface, it is ensured that the frame points always

find a close-by surface point for the Z-coordinate adaptation. This

means, that the boundary will slightly vary for different ground

resolutions, while the frame for the (interpolated) flat surface and

the DEM-applied surface are always identical, which is important

for a sound comparison of the DEM at that scale factor ST.

On the local scale, it can be observed that the frame is built with

small (staircase) steps of identical Z-value. This, however, does not

pose a problem as no points overlap in a vertical sense. Using always

the identical case for the (interpolated) flat surface and the surface

with applied topography allows for the topographic reduction and

the assessment of the local topography only. Finally, these frame

points are added to the respective surface point sets, and they

therefore play an important role in the solidification of the surface,

described in the next section.

4.2 Building the local solid volume

Above, the evaluation point has been localized and rotated

(Subection 3.1), the artificial DEM was superpositioned on the

original surface (Section 3.2), and a reference boundary frame

was built as generic boundary of the studied surface

(Section 4.1).

The last step in the geometric computation is to solidify the

newly created surface, i.e. creating a 3D-volume from the 2D-

surface. This is required to compute the gravitational effect of the

surface-forming topography, which is created by the material

underlying the surface (Section 5).

In order to create a solid volume from the triangulated surface,

each of the surface triangles is considered individually. The three

triangle vertices are projected downwards to a common reference

plane, i.e. the X-Y-coordinates are kept constant while the

Z-coordinate is adapted. These total of six points form a wedge,

i.e. a pentahedron, consisting of five facets, where the top triangle

forms part in the DEM-surface and the bottom triangle is parallel to

the X-Y-plane (Figure 5 left). Repeating this for all surface triangles,

a solid volume, consisting of a multitude of pentahedra-wedges is

created.

For a generic algorithm, we define the projection elevation

Zbottom here as

Zbottom � 0.9 · Zlocal,min (5)

where Zlocal,min is the minimum Z-value of the surface. In

general, the exact value (here 0.9) is not important, as long as it is

kept constant between the smooth and rough surface in the

topographic reduction (Section 5), similarly to the common

boundary (Section 4.1). However, the down-projection

distance should be large enough to always be below the

anticipated surface, including the scaled DEM-surface with

negative terrain such as craters. Otherwise, the

superpositioned surface will appear under the projection

elevation, causing the “downward” projection to fail. Likewise,

projecting the surface too far down might create numerical

problems as the long edges of the wedge-pentahedra become

much larger than the top and bottom triangle edges.

Each of the wedges, bound with 3 + 3 = 6 vertices is now

transformed to an alphaShape (α − Shape). Due to the simplicity

of the (individual) wedge-pentahedra shapes, this is straight-

forward. From this alphaShape, the (five) outside facets are

triangulated, thus automatically splitting the (three)

quadrangle facets in two triangles, giving a total of 8 facets

(Figure 5 right). The advantage of this triangulation of the

enclosed volume is that this format directly allows us to

evaluate the gravity using the polyhedral method (PM). This

evaluation is discussed further in the next Section. Showing the

fully created WPM-solid is of little avail to illustrate the interior

and therefore, we truncate the WPM-solidification process after

500 out of (here) 7,998 constructed wedges, showing indeed the

full volume is built of individual wedges (Figure 6). As will be

discussed, the advantage to evaluate the gravity pentahedron-

wedge-wise is that the density can be varied per-wedge, and that

the density does not have to be kept homogeneous throughout

Frontiers in Space Technologies frontiersin.org08

Noeker and Karatekin 10.3389/frspt.2022.982873

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2022.982873


the entire volume as would be the case applying the PM to the

bounding volume.

For demonstration, we apply the solidification to the example

evaluation point, once using the terrain scale factor ST = 0 and

once using a large terrain scale factor ST = 500 to clearly visualize

the added DEM. Evaluating the gravitational influence of the

latter case and comparing it to the interpolated and smooth

former case allows to account for the topographic reduction

presented in the next Section. This is shown with the evaluation

point centered (yellow) in Figure 7. Here, it is clearly visible that

the common boundary frame closes the volumes off, e.g. closing

of the depression on the left for ST = 500.

5 WPM: Topographic reduction

With the solid in place, we can now proceed with the gravity

evaluation of the local topography. In simple terms, this

evaluation is done in three steps:

1) First, we compute the resulting gravity in our evaluation (eva.)

point for the entire body (Phobos). For this, the homogeneous

density (1,860 kg/m3, Willner et al. (2014)) is assumed. We

call this gravity reference gravity: gref.

2) Second, we subtract the gravity of the volume bound by the

local, quasi-original surface. For this, we set the DEM scale

FIGURE 5
(Left) Geometry of a wedge as a pentahedron with the top surface forming part of the local surface highlighted in green. (Right) AlphaShape of
wedge-pentahedron with 8 triangular facets.

FIGURE 6
Surface solidified by WPM, truncated after 500 built wedges to show the interior of the volume.
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factor to ST = 0, meaning that the surface triangulation is

identical to the one to follow, yet no DEM is applied, qua

definition: gDEM=0. This is representative of the original

surface with the addition of the original surface being

interpolated between the (lower-resolution) original surface

points.

3) Third, we then add the gravity of the same bounding volume,

now with the DEM applied with the respective scale factor ST.

This gives: gDEM�ST.

Then the resulting gravity gres is simply calculated with a cut-

and-paste approach as

gres � gref − gDEM�0 + gDEM�ST (6)

The calculated resulting gravity gres canbe compared to the reference

gravity gref, e.g. to assess the relative change in resulting surface gravity,

due to (solely) the local terrain. Generally, the relative change κ

κ � gres

gref
− 1 (7)

is a good measure to understand the influence on the local

resulting surface gravitation due to terrain. An increase in gravity

yields a positive value for κ, while a decrease returns a negative κ.

This Section subsequently introduces the computation of the

reference gravitation and of the gravitation per pentahedron-

wedge (Section 5.1). This is then followed by a comparison of the

smooth original and interpolated surface to underline the validity

of the presented approach (Section 5.2). Then, the gravitational

computation per-pentahedron-wedge is verified using a cube in

Section 5.3.

5.1 Reference gravitation and
pentahedron-wedge gravitation

The polyhedral method (PM) byWerner and Scheeres (1996)

was already used tacitly in Section 3.1 to perform the initial

rotation of the larger surrounding area. Here, we use an

implementation by Tasev (2019). This code was verified with

another implementation of the PM, by Van wal (2018) and

further verified by comparing it to two different mascon

implementations and to analytical solutions for a sphere and

cube, as presented in Meißenhelter et al. (2022).

The gravitational attraction of any polyhedron shape with

constant density ρ can be expressed as

g �(x) � −Gρ ∑
e∈edges

Eij · �rij · Lij + Gρ ∑
f∈facets

Fijk · �rijk · ωijk (8)

where Werner and Scheeres (1996) give the full derivation

and we adapted the notation used by Van wal (2018).

As was introduced in Section 4.2, the solid volume consists of

a multitude of individual pentahedra-wedges. With the surface

triangulation shown in Figure 7, the gravitation of each of these

wedges can be done using Eq. 8, where the number of (triangular)

facets amounts to 8 and the number of edges is 12. Without

question, the density of each wedge can be assigned anew,

allowing a local density variation in lateral direction (and

vertically in future work). Therefore, for the local gravity of

the DEM, we can extend Eq. 8 by summing of the number of

pentahedra-wedges z, each with variable density ρz as

g �(x) � G ∑
z∈wedges

−ρz ∑
e∈edges�12

Eij · �rij · Lij + ρz ∑
f∈facets�8

Fijk · �rijk · ωijk
⎛⎝ ⎞⎠. (9)

FIGURE 7
Solidified local surrounding of evaluation point (yellow) “in-crater” with local region of (2000m)2 for scale factors ST = 0 (top) and ST = 500
(bottom).

Frontiers in Space Technologies frontiersin.org10

Noeker and Karatekin 10.3389/frspt.2022.982873

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2022.982873


In this work, the density ρz is kept constant for all

pentahedra-wedges with the above introduced value of Phobos

(1,860 kg/m3). It is noted that the PM is not defined on vertices or

edges of the polyhedron (here: pentahedra-wedges)

(Meißenhelter et al., 2022). Therefore, to avoid problems in

the gravitational computation, we systematically increase the

Z-component of the evaluation point generally by 0.1 m, to

avoid any interference with the solidified volume. Such a

distance of 10 cm is a realistic offset between surface and a

gravimeter, e.g. for a landed CubeSat with a gravimeter payload,

such as Juventas. For a gravimeter-carrying rover, this value

could be expected to be even larger due to the ground clearance

and it can be adapted accordingly. By applying this offset to all

gravitation evaluations (gref, gDEM=0, and gDEM�ST) the

comparison is consistently done in the same location.

5.2 Comparing smooth original and
interpolated surface

As stated above, the here presented WPM performs initially

an interpolation on the lower-resolution original (regional)

surface to be able to accommodate the DEM projection

(Section 3.2). In this section, the influence of this

interpolation will be studied to assess how close the

interpolated surface corresponds to the original surface

coming from the global shape file.

For this, we compare the original surface with lower

resolution (here 624 surface points coming from the original

surface) and we have the (generally) higher resolution

interpolated surface, created in preparation of the DEM

application (i.e. scale factor ST = 0). These two surfaces are

shown in Figure 8. By visual judgement, both surfaces appear

identical, yet with different resolution. Therefore, additional

analysis is required to assess the influence of the interpolation

in detail.

To compare the two surfaces, two different assessments are

performed to indirectly judge the alikeness of the two surfaces.

Initially, the WPM gravitational evaluation is applied to both

surfaces shown in Figure 8. As identical surfaces would yield

identical surface gravitation, some expected variation serves as a

measure of the similarity between the two surfaces. This analysis

can be made for different resolution reduction values. Table 2

shows the resulting gravitation evaluated with the WPM on both

the original and the interpolated surface. In addition, the ratio

between both is provided. Likewise, the volume of the two created

solid volumes from the two surfaces in computed and compared

in Table 3.

Regarding these two Tables, it is observable that the

gravitation (Table 2) and the volume (Table 3) of the smooth

(original) surface is not perfectly constant with a small yet

distinct variation. Generally, one would expect this to be

constant, as the WPM method is applied to the same

(original) surface points. However, due to the variation in the

resolution parameter, the building of the common boundary

frame (Section 4.1) varies such that the Z-coordinates of the

frame points, looking for the nearest neighbour, differ slightly. It

is recalled that here the interpolated DEM grid is used with ST=0,

of which the resolution depends on the resolution parameter.

Nonetheless, even if the variation in gravity and volume were

larger, this does not pose a problem, since the WPM topographic

reduction always is concerned between a comparison between

smooth surface and surface with applied DEM, both at the same

resolution.

FIGURE 8
Comparison of the high-resolution (interpolated) and original surface at top and bottom, respectively. Clearly, the surrounding frame boundary
and centre point are identical.

Frontiers in Space Technologies frontiersin.org11

Noeker and Karatekin 10.3389/frspt.2022.982873

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2022.982873


By the same token, the provided ratios must be assessed only

with regards to the interpolated surface. The agreement

regarding both, the gravitation of the WPM solid volume

alone and the volumina are generally in good agreement,

especially for 1/40 ppmeter. Here the gravitation varies only

by 0.35% and the volume by about 1%. This is a very good

agreement, showing that the surface interpolation in preparation

of the DEM application is of very good quality. Therefore, the

interpolated surface is well representative of the original surface,

while some deviation due to the interpolation has been shown, as

can be expected. These percentages must not be compared to the

percentages presented in Section 6, where the effect of the local

topography on the resulting surface gravitation is assessed.

Considering the trend of the ratios of the gravity and volume

agreement, there is a clear decreasing trend. Starting with an

overshoot at the highest resolution (1/10 ppmeter), the

agreement decreases towards and undershoots at the coarsest

resolution (1/200 ppmeter). Clearly, the “natural” interpolation

switches from an over-representation (too much gravity and

volume) to an under-representation (too little gravity and

volume). This can be qualitatively explained with the

following example. Consider an upward pointing triangle,

representative of the cross-section of two facets of the original

surface. To achieve a continuous (“natural”) surface

representation, it is possible that the triangle is not fully

inside the interpolated surface at similar or even lower

resolutions due to the limited resolution, and therefore, the

bound volume will be smaller. On the contrary, if distinct

more points have to be fit between the three exemplary

triangle points, the interpolation will yield a surface

comparable to a half-circle, which would exceed the bound

volume of the triangle. Of course, the overall surface

interpolation is more complex and three-dimensional, yet the

example provides a general explanation how the interpolation

trend might change with variable resolution. Obviously, for

different interpolation settings at other surface locations, the

trend could likewise be inverse and yield an opposite ratio trend.

5.3 Verification of wedge-pentahedra-
wise gravitation computation

Before presenting results of the gravitation computation, we

have to verify that the computation of the overall gravitation of

the entire considered volume can be obtained by summing the

gravitation of all wedge-pentahedra that represent the identical

volume (Eq. 9). For this, we apply the WPM to a flat surface with

DEM scaling ST = 0 and create a cube out of individual

pentahedra-wedges. The resulting gravitation as a sum of all

individual shapes is then compared to the gravitation of a single

TABLE 2 Absolute WPM gravitation for local surrounding for different interpolation (interp.) resolutions (res.) compared to the WPM of the original
(orig.) surface (surf.) to assess the influence of the DEM interpolation at scale factor 0. The ratio refers to the quotient of resultingWPMgravity ‖g‖
from interpolated to original surface. Resolution in ppmeter.

Res. Surf. gx [10−5 m/s2] gy [10−5 m/s2] gz [10−4 m/s2] ‖g‖ [10−4 m/s2] Ratio [%]

1/10 orig. 9.0973 1.6387 −4.2445 4.3439

1/10 interp. 8.7912 1.5833 −4.2975 4.3893 101.05

1/20 orig. 9.0664 1.6445 −4.2439 4.3427

1/20 interp. 8.8075 1.6369 −4.2895 4.3821 100.91

1/40 orig. 9.1043 1.6146 −4.2428 4.3424

1/40 interp. 8.8837 1.6759 −4.2640 4.3578 100.35

1/80 orig. 9.0999 1.6468 −4.2444 4.3440

1/80 interp. 8.8795 1.7324 −4.1303 4.2282 97.33

1/200 orig. 9.0739 1.6283 −4.2496 4.3484

1/200 interp. 10.1451 1.6487 −4.0546 4.1828 96.19

TABLE 3 Overview of bounded solid volume for different surface
resolutions. This allows a comparison of the original (orig.) and
interpolated (interp.) surface, using the ratio of iterp. to orig.

Res. [ppmeter] Surf./DEM V [109m3] Ratio [%]

1/10 orig. 3.76145

1/10 interp. 3.82236 104.57

1/20 orig. 3.75786

1/20 interp. 3.81328 101.47

1/40 orig. 3.75308

1/40 interp. 3.79108 101.01

1/80 orig. 3.75845

1/80 interp. 3.79542 100.98

1/200 orig. 3.76455

1/200 interp. 3.56247 94.63
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continuous cube, computed with the PM. The validity of the PM

applied to a cube was shown in Meißenhelter et al. (2022),

providing a very good test case for gravitational computation

comparison, therefore this provides a very suitable verification

case within the WPM geometric constraints. For the WPM, a

simpleWavefront(.OBJ) shape file can be created with side length

a = 10,000 m to represent the cube.

For the WPM cube, a surface is spanned from −5,000 m to

+5,000 m in both X- and Y-direction. The surface is created and

triangulated at Z = +5, 000 m and the wedges are projected

downwards to Zbottom = −5, 000 m. This is shown in Figure 9.

Here, the cube with top and bottom parallel triangular facets

provide a special case, where the wedges are all right prisms. The

WPM cube surface is created by points every 200 m, thus

creating (10,000m/200m)2 · 2 = 5, 000 wedges. For the

purpose of the cube, no framing using the common frame of

the shape has been performed, since the flat

cube surface ensures a perfect cutoff of the top surface

(Section 4.1).

With both in place, it is possible to compare the gravitation

calculated by the PM, which is a closed-form analytical solution

and therefore considered as the truth, and the here developed and

presented wedge-pentahedra-wise gravitation computation,

calculating the gravitation as summation of the gravitation of

all individual wedges. The evaluation point is done 0.1 m above

the centre of the top facets, i.e. at (0, 0, 5,000.1)Tm and the density

is arbitrarily kept at 1, 860 kg/m3, like for Phobos. The resulting

3D gravitation vector components of both methods are listed in

Table 4.

Obviously, the X- and Y-components of the gravitation are

expected to be zero. Indeed, both methods return near-zero

values, which can be explained to be non-zero due to

numerical noise. Still, the non-zero values are larger for the

WPM compared to the PM, which can be expected given that

within the WPM the PM is executed (here) 5,000 times, i.e.

individually per pentahedron-wedge, and thus accumulating

numerical noise. Clearly, the Z-component computed in both

methods is in agreement, verifying the gravitation computation

within the WPM.

6 Gravitational influence of the local
topography

With the gravitational computation (Section 5.3) of the

WPM being verified and the quality of the surface

interpolation assessed (Section 5.2), the new Wedge-

Pentahedra Method (WPM) can now be used to test the

influence of the local topography on the surface gravity. For

consistency, this will be done for the Phobian surface point used

throughout this work.

Regarding the gravitational influence, we present here the

assessment of two parameters, the terrain scale factor ST and the

FIGURE 9
WPM applied to a created flat (10,000 m)2 surface, projected
from Z = +5, 000 m down to Z = −5, 000 m and thus creating a
cube.

TABLE 4 Gravity verification between PM and WPM using a cube. The
theoretical X- and Y-components are zero and we provide the
numerically created non-zero orders of magnitude as well as the
order of magnitude of the deviation of the Z-components.

gx [m/s2] gy [m/s2] gz [m/s2]

PM (truth) 0 O(10−19) -0.0032236259

WPM (to verify) O(10−17) O(10−17) -0.0032236259

Ratio PM/WPM [%] 0 0.6052581804 100 −O(10−14)

TABLE 5 Absolute gravitation for different terrain scale factors ST for
the WPM. The ratio κ provides insights on the relative change of
the resulting gravitation as a function of the increased amplification
of the local artificial terrain.

ST gx [m/s2] gy [m/s2] gz [10−3

m/s2]
‖g‖ [10−3
m/s2]

κ [%]

0 −1.4472E-08 2.6931E-09 −5.7955 5.7955 0

1 3.1993E-07 −1.4756E-07 −5.7955 5.7954 −0.0005

10 3.5863E-06 −1.3576E-06 −5.7950 5.7950 −0.0085

25 9.0795E-06 −3.2298E-06 −5.7939 5.7939 −0.0281

50 1.8070E-05 −6.2595E-06 −5.7914 5.7914 −0.0711

100 3.5117E-05 −1.0273E-05 −5.7819 5.7821 −0.2322

250 8.2717E-05 −1.9609E-05 −5.7537 5.7544 −0.7099

500 1.3694E-04 −3.0724E-05 −5.6926 5.6944 −1.7453

600 1.5268E-04 −3.3594E-05 −5.6696 5.6718 −2.1346
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DEM resolution (measured in pixel-per-meter (ppm)) discussed

in the previous section. Firstly, the resulting gravitation at the

evaluation point (Eq. 6) and the relative change due to the added

topography (Eq. 7) is shown in Table 5 for different terrain scale

factors ST. Here, the ground resolution is kept constant at

10 ppmeter.

For the scale factor 0, the X- and Y-components are near

0 due to the applied rotation. The components are still non-zero

due to the applied interpolation and numerical artifacts of the

applied rotation. The scale factor 0 approximates, with some

approximation error (Section 5.2), the original surface. As can be

expected, the changes in gravity due to the topography increase

with increasing scale factor in all three dimensions and

magnitude. Therefore, also the 3D-orientation of the

gravitation will vary. In this location, the ratio decreases,

making the DEM gravitation smaller than the original

gravitation. Here, this is due to the shape of the DEM, and,

obviously, the increasing change can be inverted for a different

DEM or a different evaluation location. At some tested scale

factors larger than ST=600, no result was obtained as the DEM

amplitude became too large. This was discussed alongside

with Eq. (5).

In the same fashion, we investigate the influence of the

resolution at which the DEM is applied (Table 6). This is

similar to the study presented in Table 2, however, there the

DEM scale was kept constantly at ST = 0. Here, we chose to fix the

terrain scaling at ST = 250, with a deviation of about −0.7% of the

gravitation due to the added DEM (Table 5). Additionally, we

track the computation time of the WPM evaluation only (thus

excluding the initialization), to demonstrate the influence of the

resolution on the computation time, driven by the number of

pentahedron-wedges. Regarding the computation time tracked in

MATLAB, the used hardware (CPU) is an Intel® Core™ i7-

8850H.

For the resolution, other than for the scale factor, the result is

less unambiguous. Generally, one could expect that with lower

resolution, and thus less surface detail, we will approximate the

original surface with fewer and fewer surface points spanning the

DEM surface. Looking at the two highest resolutions, the

absolute value of κ indeed increases from 1/10 ppmeter to

1/20 ppmeter towards 0%. However, going then to 1/

40 ppmeter, the relative change again increases to

κ = −0.7773%. It is hard to explain this behaviour

exhaustively, but it can be expected that this shows a good

example how the overall topography is steered by the chosen

ground resolution, as was previously discussed with Tables 2, 3.

For example, imagine a net-gravity reducing hillock with

material “above” the evaluation point, again with a

(simplified) 2D-triangular cross-section. This could be

perfectly represented at a resolution of 1/20 ppmeter with

three points, but would disappear with the peak point if the

resolution is decreased to 1/40 ppmeter. Here this effect could

then outweigh the general surface approximation, before this

becomes again the main contribution, reducing the relative

change in gravity further. Then, with further decreased

ground DEM resolution, indeed the gravitation ratio increases

again towards 0%, meaning that fewer details, here decreasing the

resulting gravitation in sum, are represented on the lower-

resolution surfaces. The second coarsest resolution of 1/

80 ppmeter is indeed equal to the original shape file

resolution of Phobos. Yet, while having the same resolution,

the surfaces are not identical and thus κ ≠ 0%, as even with this

resolution the DEM adds local topography, thus altering the

original (interpolated) surface. This is even the case for 1/

200 ppm, having a resolution lower than the original file, yet

presenting added DEM features. Generally, while here κ < 0% it is

well possible that the added DEM results in κ > 0%. This solely

depends on the macroscopic (shape file) and microscopic (DEM)

regional circumstances. Overall, the irregularity at 1/40 ppmeter

highlights that while general trends can be expected for a variable

ground resolution, the added topography will still return

exceptions to such trends.

7 Discussion and future work

To date, topographic corrections on (surface) gravimetric

measurements only use approximating topographic corrections,

if applied at all. The here developed Wedge-Pentahedra Method

(WPM) provides a novel technique for topographic reduction.

Future work might compare the WPM with existing techniques

to quantify the benefit of this method, which will also allow to

TABLE 6 Absolute gravitation for different DEM resolutions compared to the WPM of the original surface to assess the influence of the DEM
interpolation at scale factor 250. Computation time T for comparison of different resolutions. Compare the first κ value to Table 5 (ST = 250).

Res. [ppmeter] gx [m/s2] gy [m/s2] gz [10−3 m/s2] ‖g‖ [10−3 m/s2] κ [%] T [s]

1/10 8.2717E-05 −1.9609E-05 −5.7537 5.7544 −0.7099 454.7

1/20 8.2255E-05 −2.1151E-05 −5.7548 5.7552 −0.6954 119.2

1/40 7.5848E-05 −1.8113E-05 −5.7500 5.7505 −0.7773 34.4

1/80 7.8634E-05 −1.5219E-05 −5.7634 5.7639 −0.5448 21.6

1/200 5.4792E-05 −1.5634E-05 −0.5769 5.7700 −0.4455 19.8
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better justify the sizing of the here introduced local surrounding,

to which the DEM was applied.

While not limited to small bodies and natural satellites in the

Solar System, it has been shown that, depending on the terrain

amplification, the sole effect of the local surrounding topography

has a non-negligible effect on the surface gravitation, important for

surface gravimetry or landing/surface operations. For example, in

the studied test case, the deviation in gravitation due to the terrain

amounts to −0.7% for a scale factor ST = 250. The amplification of

the DEM terrain is arbitrary and larger scaling factormight, in some

locations, be unrealistically large. With very good observational

knowledge of the inner moon in areocentric orbit, the presented

topography might be exaggerated for larger scale factors. On the

contrary, considering a similar celestial body with much less known

detail about the shape, large topographic variations as shown here

cannot be ruled out. In any case, it is well possible to limit individual,

unrealistically large features in the (artificial) DEM data set, by

introducing cutoff criteria or proportional scaling.

Therefore, in absence of high-resolution ground truth

data, the presented results should be understood as a priori

estimates of possible topographic influences on the surface

gravity. Like this, mission planning could be aided, e.g. in

estimating uncertainties in the gravity for landing trajectories

or rover stability. If high resolution terrain data of the

selected/considered landing sites become available just

before descent, final corrections might be applied and

post-mission data analysis will certainly be able to include

WPM corrections, which is valuable not only for surface

gravimeters. Here, the analysis and variability of the DEM

resolution (res.) parameter is an interesting asset, e.g. when

formulating terrain/shape observation resolution

requirements. Another parameter to be varied in future

investigations is the size of the local surrounding

(determined by Δh). This will determine the surface area

surrounding the point of interest to be included in such

topographic analysis regarding gravity.

The presented results are only one snapshot of a multitude of

possible test cases. The presented analysis only shows the results for

one exemplary surface location on one exemplary body, one artificial

DEM and one local subset thereof. All these parameters can be

studied further by varying them. The WPM therefore opens up a

manifold of future applications across the Solar System. For

example, the WPM can be used further to assess the gravity

slopes on the surface of a body, i.e. the orientation of the gravity

vector with respect to the local surface normal.

Likewise, while kept constant in this work, the density per-

wedge can be varied to assess the influence of variation of the

density. This is not limited to the “horizontal” variation, but

can be extended vertically in future work. The variation of the

local density is solely limited by the DEM resolution in lateral

direction (determining the number of wedges) and by

computation time in the subsurface direction (“vertical”).

This vertical variation, stacking different right prisms or

wedges above each other, will be done in future work.

Moreover, the created DEM surface solid can be exported

and used for illumination assessments, that will be affected by

shadows of the local terrain.

Possible applications of the here developed method include, but

are not limited to, small body landing (bouncing) analysis, surface

operation planning, illumination assessment (shadowing, solar

power etc.), or gravity science preparation. Initially targeted

specifically at small, non-spherical bodies, the scope of the WPM

application can be extended to larger, spherical bodies, such as the

Moon and Mars. Here, a topographic reduction with very good

surface representation will also be beneficial, most notably in regions

with significant terrain. Good surface gravity interpretation will not

only aid the science, but can be equally important in preparation of

in-situ resource utilization (ISRU) or the detection of intact

subsurface lava tubes.

8 Conclusion

Here, we present the implementation of the newly developed

Wedge-Pentahedra Method (WPM). Using the Polyhedral

Method (PM) prevalently, it provides a closed-form analytical

description of the topographic influence of the local surface,

while allowing the perfect triangulated description of the surface,

rather than approximating it using (flat topped) prisms.

At the same time, the local density in the WPM can be varied

per wedge, and further vertically, by stacking wedges or right

prisms. This allows to combine the advantage of the mascon

approach where the density can be assigned per mass element,

while removing the disadvantage of relatively large errors at the

surface, the location which is of special interest in Solar System

surface gravimetry.

We have successfully verified the method by comparing the

resulting gravitation of a single cube with the WPM applied to a

WPM-volume equal to the cube. Further, the WPM has been

applied to a surface point on Phobos and the influence of

different terrain scale factors ST and resolutions has been

investigated. The influence is indeed significant for larger

terrain scale factors ST, e.g. at a scale factor of ST=100 the

effect was found to be larger than −0.1%. The DEM

resolution has also an influence on the resulting gravitation,

which can provide inputs to observation requirement

formulation. Therefore, for Solar System gravimetry, it was

shown that the topographic reduction cannot be neglected as

is sometimes done on Earth, and this work provides a way to

account for the local topography, especially in the context of

small bodies.

Possible future applications of the here presented Wedge-

Pentahedra method (WPM) are manifold and have been

discussed. They are not limited to classical gravimetry and

topographic reduction, but can likewise be used for mission

planning, e.g. landing or rover operations. Obviously, the
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WPM can incorporate artificial data prior to a mission and

likewise real data obtained by an exploration mission. While

the effect might be largest on smaller objects in the Solar System,

the method can also be applied to significant topography on the

Moon, Mars and our home planet.
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