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Tisserand graphs are a widespread tool for interplanetary trajectory and Moon

tour design. They are based on the Jacobi constant being an integral of motion

in the Circular Restricted Three Body Problem (CR3BP); as such, the classical

Tisserand graph does not include the perturbation of bodies other than the flyby

bodies. Low-energy transfers in the Earth-Moon system make use of the

combined Earth, Moon, and Sun gravities, exploiting the third body

perturbations to reach the Moon with a reduced transfer Δv. The paper,

therefore, proposes a novel double Tisserand graph, where the level lines of

both the Earth-Moon and the Sun-Earth CR3BPs are superimposed, portraying

the complex 4-body dynamics into a single plot. Paths along such level lines

correspond to trajectories utilizing the dynamical effect of the Moon or the Sun

or a combination of both. We show how such a graph can be efficiently used for

preliminary design of Weak Stability Boundary transfers, lunar resonance

transfers, lunar flybys, weak lunar captures or any combination of them.
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1 Introduction

The current plans by NASA and its partners to build a manned station around the

Moon, has sparked new interest in designing transfers between the different regions in the

cislunar space Whitley and Martinez (2016). Of particular interest are so-called low-

energy transfers Belbruno (2018); Schoenmaekers et al. (2001); Parrish et al. (2020), that

exploit the three body dynamics of either the Earth-Moon or the Sun-Earth system to

reduce the transfer Δv. These transfers pass through the region where the gravitational

influence of both bodies (either the Earth and Moon or the Sun and Earth) is significant

and therefore their long-term evolution is chaotic. The initial guess generation for such

transfers is a challenge as Keplerian dynamics cannot be used. This paper proposes a

simple, graphical method based on the Tisserand-Poincaré graph that, unlike the original

graph, allows finding low-energy transfers involving the effect of both the Sun and the

Moon. As in the classical Tisserand graph, the phasing between the bodies and the

spacecraft is neglected. This method also allows intuitively combining different

techniques such as Weak Stability Boundary (WSB) transfers, lunar flybys, lunar

resonances and weak lunar captures.

The Tisserand-Poincaré graph was first proposed in Strange and Longuski (2002) for

the design of multi-flyby missions in the Solar System. The basic idea is to plot level lines

OPEN ACCESS

EDITED BY

Josep Masdemont,
Universitat Politecnica de Catalunya,
Spain

REVIEWED BY

Hao Peng,
Rutgers, The State University of New
Jersey—Busch Campus, United States
Juan Luis Gonzalo,
Politecnico di Milano, Italy

*CORRESPONDENCE

Waldemar Martens,
waldemar.martens@esa.int

SPECIALTY SECTION

This article was submitted to Space
Propulsion,
a section of the journal
Frontiers in Space Technologies

RECEIVED 14 April 2022
ACCEPTED 05 July 2022
PUBLISHED 27 September 2022

CITATION

Martens W and Bucci L (2022), Double
Tisserand graphs for low-energy lunar
transfer design.
Front. Space Technol. 3:920456.
doi: 10.3389/frspt.2022.920456

COPYRIGHT

© 2022 Martens and Bucci. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Space Technologies frontiersin.org01

TYPE Methods
PUBLISHED 27 September 2022
DOI 10.3389/frspt.2022.920456

https://www.frontiersin.org/articles/10.3389/frspt.2022.920456/full
https://www.frontiersin.org/articles/10.3389/frspt.2022.920456/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frspt.2022.920456&domain=pdf&date_stamp=2022-09-27
mailto:waldemar.martens@esa.int
https://doi.org/10.3389/frspt.2022.920456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org/journals/space-technologies#editorial-board
https://www.frontiersin.org/journals/space-technologies#editorial-board
https://doi.org/10.3389/frspt.2022.920456


of constant infinite velocity with respect to the flyby planet (or

equivalently: level lines of the Jacobi integral of the respective

Sun-planet CR3BP) in a graph where the two axes represent the

perihelion radius and the orbital period (or equivalently: the

aphelion radius). A point in such a graph represents a

heliocentric, planar, Keplerian orbit. A planetary flyby can be

represented by a displacement along a level line. The minimum

flyby altitude determines the maximum distance that can be

traveled along a level line. By superimposing the level lines of all

planets in the Solar System in the same graph, suitable planet

sequences and intermediate orbit parameters for interplanetary

transfers can easily be identified. This method was afterwards

used for multi-body transfers by many authors, e.g., Campagnola

and Russell (2010); de la Torre Sangrà et al. (2021); Bellome et al.

(2020). More recently, an extended version of the Tisserand

graph has been proposed to be used in combination with small

manoeuvres for low-energy transfers Campagnola et al. (2014)

(so-called Tisserand-leveraging transfers) and the design of low-

energy endgames for Moon tours. Reference Yárnoz et al. (2016);

Ross and Scheeres (2007) discusses the use of such a Tisserand

graph in the Earth-Moon system leveraging the Sun gravity.

In this paper we combine and unify all those techniques in a

single plot. In particular, the approach is to plot two sets of level

lines in a graph where the axes are the perigee and apogee radii of

the spacecraft orbit. The first set of level lines are derived from the

Jacobi integral of the Earth-Moon system. They represent lines of

constant infinite velocity with respect to the Moon for orbits that

cross the Moon orbit. These are the level lines that are

traditionally used in Tisserand graphs. The second set of level

lines are derived from the Jacobi integral of the Sun-Earth system

and are plotted in the same graph. They represent the effect of the

Sun that is used in the WSB transfer.

The document is structured as follows: After an introduction

of the main concept in Section 2, Sections 3.1, 3.2, 3.3 and 3.4

discuss how to use the double Tisserand graph to design WSB

transfers, lunar resonance transfers, flybys and weak lunar

capture trajectories, respectively. Following a short word on

maneuvers in Section 3.5, Section 4 presents examples of how

to use a combination of these techniques to design low-energy

transfers to a Near-Rectilinear Halo Orbit (NRHO). The paper

closes with a discussion in Section 5. Detailed derivations are

available in the Supplementary Appendix (Sections 6 and 7).

All equations in this paper use adimensional units. Plots are

dimensionalized to the Sun-Earth-Moon system.

2 Tisserand graphs and the CR3BP

Tisserand graphs are based on the conservation of the Jacobi

integral in the CR3BP. In adimensional units of the synodic

reference frame, the Jacobi integral can be computed as follows:

CJ � n2 x2 + y2( ) + 2 1 − μ( )
r1

+ 2μ
r2

− _x2 + _y2 + _z2( ) (1)

Here, μ is the (adimensional) gravitational constant of the lighter

(secondary) body, and (1 − μ) the gravitational constant of the

heavier (primary) body. The latter can be either the Sun or the

Earth for the purpose of this paper. The mean motion of the

system, n, is unity in the adimensional system, but is kept in the

equations for traceability. x, y, z, _x, _y and _z are the position and

velocity coordinates of the spacecraft in the barycentric, synodic

reference frame, which is defined in Figure 1A.

Figure 1B defines the longitude of pericenter, ϖ, computed in

the synodic frame, which is used throughout the paper to

characterize transfers. Finally, r1 and r2 are the distances of

the spacecraft from body 1 and 2, respectively. They can be

computed as follows:

r21 � x + μ( )2 + y2 + z2

r22 � x − 1 − μ( )[ ]2 + y2 + z2
(2)

During parts of the spacecraft trajectory where the secondary

body is the main source of gravitational attraction, Eq. 1 can be

expressed in terms of osculating, Keplerian elements around the

secondary body. This will be convenient for a representation of

Jacobi integral level lines of the Sun-Earth system in a Tisserand

graph where the axes are the perigee and apogee radii. The

derivation is detailed in the Supplementary Appendix SA and

results in the following expression:

CJ � n2 1 − μ( ) r21 − r22( ) + 2 1 − μ( )
r1

+ μ

as
+ 2n

���������
μas 1 − e2s( )√

cos is

− n2μ 1 − μ( )
(3)

No approximation has been done at this point. However, it is

useful to approximate r1 and r2 by fixed values in Eq. 3 to make CJ

independent of the position of the spacecraft on its orbit. This

will be done later for the creation of Tisserand graphs. as, es and is
are the semi-major axis, eccentricity and inclination in an inertial

reference frame with the secondary at the center and the

fundamental plane coinciding with the orbital plane of the

two bodies.

In the other limiting case, where the spacecraft is solely under

the gravitational influence of the primary body, Eq. 1 can also be

expressed in terms of osculating, Keplerian elements around the

primary body. With some approximations, that leads to an

expression which is identical to the Tisserand parameter Roy

(1978) up to a constant. The derivation of Eq. 4 and the

justification of the assumed approximations can be found in

the Supplementary Appendix SB:

CJ ≈
1 − μ

ap
+ 2n

���������������
1 − μ( )ap 1 − e2p( )√

cos ip

� 3 − 2μ − v2∞
(4)
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Note, that here ap, ep and ip are the semi-major axis, eccentricity

and inclination in an inertial reference frame with the primary at

the center. The second line in Eq. 4 gives an alternative

expression where the Jacobi integral is parameterized in terms

of the infinite velocity with respect to the secondary body, v∞,

before or after an encounter.

In order to analyze both Sun andMoon third body effects, we

define two CR3BPs, one in the Sun-Earth system and another one

in the Earth-Moon system. Eqs 3, 4 are used to express the Jacobi

integrals as a function of the spacecraft Keplerian elements with

the Earth at the center in both cases. In order to make Eq. 3

independent of the position of the spacecraft, the approximations

r1 = 1 and r2 = 0 have been used which are valid in the close

vicinity of the Earth. Moreover, only planar motion is considered.

The resulting (dimensionalized) basic double Tisserand graph

using the perigee and apogee radii as the independent variables is

shown in Figure 2. The perigee and apogee radii, rp and ra are

computed from the semi-major axis, a and eccentricity, e, as

follows:

rp � a 1 − e( )
ra � a 1 + e( ) (5)

The shaded area indicates spacecraft orbits that cross the Moon

orbit and therefore allow for a lunar flyby. The red level lines in that

region correspond to constant flyby v∞. They are spaced by 0.2 km/

s. The red level lines extend beyond the shaded region into the low-

energy regime that can be used for lunar resonance transfers (cf.

Section 3.2) and weak captures at the Moon (cf. Section 3.4). The

level lines that correspond to the Jacobi integral values of the Earth-

Moon libration points are also indicated.

The cyan level lines, indicate the loci of constant Jacobi

integral in the Sun-Earth system. They show the low-energy

FIGURE 1
The synodic reference frame in the CR3BP (A), with definition of longitude of pericenter, ϖ (B).

FIGURE 2
Basic double Tisserand graph showing level lines of the Jacobi integral in both the Sun-Earth and the Earth-Moon systems. In both cases, the
lines corresponding to the Jacobi integral value of the libration points are indicated. For orbits crossing the Moon orbit, the numbers indicate the
flyby infinite velocity in km/s.
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regime that can be used for WSB transfers leveraging the Sun

gravity (cf. Section 3.1). In the following sections, the basic

double Tisserand graph will be analyzed in some detail in

order to generate initial guesses for low-energy transfers.

3 Transfer techniques using the
double tisserand graph

3.1 Weak stability boundary transfers

WSB transfers have been proposed in Belbruno (1987) and used

by the Hiten mission in 1991 Belbruno and Miller (1993); Belbruno

(2018) and more recently in the GRAIL mission Hoffman (2009).

Starting with a low perigee and an apogee close to the Earth sphere of

influence, the Sun gravity gradient is exploited to raise the perigee to

the lunar altitude1. In thisway, the totalΔv can be reduced compared to

standard Hohmann transfers to the Moon. Figure 3A shows two such

transfers in the Earth-centered synodic Sun-Earth frame. The apogee

has to point to a quadrantwhere the Sun gravity gradient acts along the

spacecraft velocity. An apogee in one of the other two quadrants would

reduce the perigee radius and can be used for transfers from theMoon

back to Earth. For a fixed initial apogee radius, the longitude of perigee

(defined in the synodic Sun-Earth frame) determines the final perigee

radius and needs to be tuned such as to accomplish themission needs.

This is illustrated by the parametric plots in Figure 3B. The quadrant

pointing away from the Sun (longitude of perigee close to 0°) is always a

bitmore efficient than the other in terms of perigee raising. The highest

increase in perigee radius is indicated by a cross in the plot. A lower

increase can always be achieved by tuning the longitude of perigee

away from the extreme value.

The Tisserand graph allows displaying the relationship

between all relevant parameters in a very concise way as shown

in Figure 4. Transfers with the longitude of perigee value

maximizing the Sun effect (the maximum in Figure 3B) are

represented by moving between two crosses in the Tisserand

graph. One step corresponds to one orbit revolution around the

Earth. Steps that are smaller than indicated by the crosses can

easily be achieved by deviating from the extreme longitude of

perigee value. At an initial apogee radius of around 500, 000 km the

Sun effect is weak and therefore the distance between the crosses is

very small. To increase the perigee to the lunar altitude would

require many revolutions around the Earth, i.e. many steps in the

Tisserand graph. But towards higher initial apogee radii, the

distance between the crosses increases, allowing to reach

perigee radii at lunar altitude or above in a single step. Note

that the interesting region is where the spacecraft Jacobi integral is

close to the value of the Sun-Earth L1 and L2 libration points.

The color bar indicates the initial longitude of perigee used in

the transfer (defined in the synodic Sun-Earth frame). It is always

close to 0°, consistent with Figure 3B. As the perigee radius

increases in the Tisserand graph, one can observe a deviation

between the level lines and the crosses. This is because of the

approximation made to Eq. 3 of setting r1 = 1 and r2 = 0 when

computing the level lines, which is only valid close to the Earth.

Nevertheless, the level lines approximate the general behavior of

WSB transfers in the Tisserand graph very well.

FIGURE 3
Two WSB transfers in the Sun-Earth CR3BP shown in the Earth-centered synodic Sun-Earth frame (A). The yellow arrows indicate the general
direction of the Sun gravity gradient. Final perigee radius (B) for an initial perigee altitude of 300 km (dashed line) and three different initial apogee
altitudes. In terms of perigee raising, the most efficient longitude of perigee is always close to 0° and 180°.

1 The direction of the Sun gravity gradient can be computed from the
CR3BP gravitational potential in the Sun-Earth system, but here only
the general direction is relevant. It always points away from the Earth
and towards the Sun-Earth line in the synodic reference frame as
shown in Figure 3A
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3.2 Lunar resonance transfers

When launching with an apogee altitude below the lunar

altitude, the lunar perturbation can be used to increase the

perigee and thus reduce the lunar orbit insertion Δv
Schoenmaekers et al. (2001). By tuning the spacecraft

orbital period at each revolution to be in resonance with

the Moon, a close-to-ballistic sequence of close Moon

encounters can be constructed. The effect of the lunar

gravity is illustrated by the trajectories in Figure 5. Both

shown trajectories have an initial perigee altitude of

10,000 km. Their apogee radii are 330,000 km (light blue)

and 360,000 km (yellow), respectively. However, only the

latter has an optimal phasing with the Moon, i.e., encounters

the Moon in a trailing configuration. This results in the

strong increase of both, the perigee and apogee radii. In the

other trajectory, the perigee radius remains almost

unchanged. For a fixed apogee radius, the parameter to be

tuned is again the longitude of perigee, but defined in the

synodic Earth-Moon frame.

Figure 6 shows how the final perigee and apogee radius after

one revolution changes as a function of the longitude of perigee.

The crosses indicate points that lead to the strongest increase of

perigee radius for a given apogee radius. Smaller increases are

always achievable by tuning the longitude of perigee away from

the extreme value. A reduction of the perigee is also possible by

choosing the longitude of perigee around 250°, i.e. encountering

the Moon in a heading configuration.

The maximum achievable steps in perigee radius can

again be plotted in the Tisserand graph as shown in Figure 7.

It is clear that the higher the initial apogee radius, the fewer

steps are required to circularize the orbit. Above a certain

initial apogee radius, the Moon effect raises the apogee

above the lunar altitude. The plot also shows that a

minimum perigee altitude is required to achieve a

significant effect from the Moon perturbation. The higher

the initial perigee radius, the stronger the effect becomes.

The optimal longitude of perigee (measured at perigee) is

always in the range 210°–240° as indicated by the color bar

and consistent with Figure 6. Again, a deviation of the

crosses from the level lines is observable, the higher the

FIGURE 4
Tisserand graph showing level lines of the Jacobi integral in the Sun-Earth system. The crosses indicate the maximum possible travel distance
during one revolution around the Earth. The colors of the crosses indicate the longitude of perigee at the start of the transfer which is always close to
0°. That’s why they are all the same color.

FIGURE 5
Two lunar resonance transfers in the Earth-Moon CR3BP
shown in the Earth-centered synodic frame. Only the yellow
trajectory has an optimal longitude of perigee which results in a
strong increase of the perigee radius. The yellow arrow
indicates the general direction of the lunar gravity pull.
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perigee radius becomes. This is due to the approximations

done for the derivations of Eq. 4.

Moreover, Figure 7 indicates loci in the ra − rp plane that

correspond to integer period ratios with theMoon (dashed lines):

for instance, 3 : 1 indicates orbits where the spacecraft performs

three complete revolutions around the Earth in the same time as

the Moon performs one revolution. Strictly speaking, these are

only valid for purely Keplerian orbits, but can serve as a useful

indication even here, where the lunar gravity is important.

During the revolutions where there is no Moon encounter,

the spacecraft will move on a close to Keplerian orbit. In

order to design a lunar resonance sequence, it is desirable to

chose the steps in the Tisserand graph such that they land on one

of the resonance lines. Preferably, those are chosen where the

second number is lowest, because those take the least amount

of time.

FIGURE 6
Final perigee radius (A) and apogee radius (B) for an initial perigee altitude of 10,000 km (dashed line) and three different initial apogee radii. In
terms of perigee raising, the most efficient longitude of perigee is between 210° and 240°.

FIGURE 7
Tisserand graph showing level lines of the Jacobi integral in the Earth-Moon system and lunar resonance transfers. The crosses indicate the
maximum possible travel distance during one revolution around the Earth for the longitude of perigee as indicated by the color bar. Resonance ratios
with the lunar orbit are indicated by dashed lines.
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3.3 Lunar flybys

The traditional way of using Tisserand graphs is for multi-

flyby missions [cf. Strange and Longuski (2002); Miller and

Weeks (2002)]. In the Earth-Moon system, flybys can, of

course also be employed to save Δv. Due to the high relative

velocity with respect to the Moon at encounter, a full three-body

treatment is not required and a patched conics approach Battin

(1987) yields sufficiently accurate results for the sake of initial

guess generation Topputo (2013). The flyby is modeled as an

instantaneous rotation of the infinite velocity vector. The rotation

angle, δ depends on the flyby altitude, h, as follows:

sin
δ

2
� 1

1 + rMoon+h( )v2∞
μMoon

(6)

where rMoon is the radius of the Moon, v∞ the flyby infinite

velocity and μMoon the gravitational constant of the Moon. The

flyby altitude takes a similar role as the longitude of perigee in

Sections 3.1, 3.2 in defining the strength of the third body effect.

It is also convenient to define the so-called pump angle Strange

et al. (2007), which is the angle between the Moon velocity and

the spacecraft infinite velocity vector at encounter. Depending on

whether the flyby is performed at the left or the right side of the

Moon as seen from the spacecraft, the pump angle can either be

increased or decreased by the same amount. These are called the

“pump-up” and “pump-down” solutions in this paper. Examples

of both cases are shown in Figure 9. The final orbital parameters

after a lunar flyby for both options are illustrated in Figure 8 as a

function of the flyby altitude. For the shown case, the pump-

down solution can even lead to an escape from the Earth-Moon

system if the flyby altitude is chosen low enough.

The maximum travel distances along the infinite velocity

level lines in the Tisserand graph are shown in Figure 10 for a

minimum flyby altitude of 200 km. In the shown region, any

point on the level line can be reached in a single step. The strong

effect of a lunar flyby is due to the relatively high ratio of

gravitational constants between the Moon and the Earth. For

planetary flybys the relative effect is usually smaller and often

FIGURE 8
Final perigee radius (A) and apogee radius (B) and pump angle (C) after a lunar flyby for an initial perigee altitude of 300 km and an initial apogee
radius of 400,000 km (dashed lines). Two solutions are possible (pump-down and pump-up depending on the flyby orientation).

FIGURE 9
Pump-down and pump-up trajectories after a lunar flyby of
1,000 km altitude in the synodic Earth-Moon frame. This illustrates
the strong effect of the lunar gravity.
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more than one flyby with the same body has to be used to achieve

the deflection desired effect.

3.4 Weak lunar capture

The transfer techniques considered so far in this paper used

trajectories where both the start and the end were located in a

region that is dominated by either the primary or secondary body

gravity. This allowed using the approximations for the Jacobi

integral as expressed by Eqs 3, 4. This is not the case for so-called

weak capture trajectories Schoenmaekers et al. (2001); Pernicka

et al. (1994); Topputo et al. (2005); Macau (2000), which makes

their treatment in the Tisserand graph a bit less generic.

This technique exploits the three body dynamics with the

Earth and the Moon and in some cases allows a completely

ballistic capture into a weakly bound orbit around the Moon. In

any case, the capture maneuver is small (typically, a few m/s).

Figure 11 shows such a capture trajectory to a southern NRHO

Howell and Breakwell (1984) that has an orbital period of

6.56 days. This is the 9:2 resonant NRHO that is currently

proposed as a location for the lunar Gateway Williams et al.

(2017); Zimovan et al. (2017). The capture trajectory is obtained

through a backwards propagation starting from the stable NRHO

and applying a tangential maneuver of 15 m/s at the

aposelenium. The (chronologically) initial orbit obtained is no

longer bound to the Moon and can be represented in the

Tisserand graph by its perigee and apogee radius. Note,

however, that the inclination of this orbit is neglected at this

point. It has to be matched at a later stage in the trajectory design

where no longer a planar approximation is used.

Figure 12 shows the points in the Tisserand graph that can

be reached with this technique using 50 days of backwards

propagation as a function of the capture Δv. The larger the

capture maneuver, the more sensitive the initial state

becomes: the Δv step used to produce Figure 12 is 2 cm/s.

Obviously, the obtained points strongly depend on the sort of

capture orbit that is used. Therefore, there is no generic way

of visualizing weak capture trajectories in the Tisserand

graph. What can be said, however, is that the starting

point for a weak capture in the Tisserand graph is always

around to the Jacobi level lines of the Earth-Moon libration

points L1-L5, because this is energetically the region where

the weak capture orbits, like the NRHO, lie.

FIGURE 10
Tisserand graph showing level lines of the Jacobi integral in the Earth-Moon system with labels showing the flyby infinite velocity in km/s. The
circles indicate the maximum possible travel distance achievable by a single lunar flyby with an altitude higher than 200 km.

FIGURE 11
A weak capture trajectory to a southern NRHO with a period
of 6.56 days obtained through backwards propagation and a
capture maneuver of 15 m/s opposite to the velocity direction at
aposelenium.
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To make practical use of the described technique, one would

choose a capture orbit and define the free parameters, like the

capture Δv or the orbit orientation. A scan on these parameters is

performed and the points obtained through backwards

propagation are indicated in the Tisserand graph, similar to

what was done in Figure 12. These points serve as target points

for the trajectory design using techniques such as WSB transfers,

lunar resonances and flybys. Note that for the Jupiter and Saturn

systems where the mass ratio between the Moons and the planet

is much lower, these target points follow much closer the level

lines of the Jacobi integral than what was shown here in the

Earth-Moon system Campagnola et al. (2014).

3.5 Maneuvers

So far, mostly ballistic transfer techniques have been

discussed. Maneuvers, are expected to be added once one

moves past the point of initial guess generation and uses high

fidelity models. However, also at the stage of initial guess

generation, simple maneuvers like apogee/perigee raising/

lowering can be added. These can conveniently be displayed

in the Tisserand graph by horizontal (apogee raising/lowering) or

vertical (perigee raising/lowering) lines. The travel distance along

these lines depends on the starting point and on the applied Δv.

4 Combined techniques

The real benefit of using the Tisserand graph for low-energy

lunar transfer becomes apparent when a combination of the

techniques discussed so far is used. Figure 13 shows two examples

of such techniques.

4.1 WSB transfer with lunar flyby and weak
capture

The upper part of Figures 13A,B show a trajectory that

starts with a launch into a 300 × 400, 000 km orbit, performs a

lunar flyby at 4,650 km altitude to increase the apogee towards

the WSB region and finally uses a weak lunar capture to insert

into an NRHO. The corresponding path in the Tisserand

graph is shown on the upper right quadrant of the figure.

The apogee raising via the lunar flyby follows the red level line

of the Earth-Moon system corresponding to 860 m/s infinite

velocity. The perigee raising in the WSB region follows the

cyan level line close to the L2 value of the Sun-Earth Jacobi

integral. The final point, 3, is one that has been identified in

Section 3.4 to lead to an almost ballistic capture to NRHO

using only a small insertion maneuver of 20.8 m/s.

The trajectory shown in Figure 13A was designed by first

fixing points 1 and 3 in the Tisserand graph by choosing the

launch orbit and by backwards propagation from the NRHO (cf.

Section 3.4). Then the lunar flyby altitude and longitude of

perigee were tweaked manually to find point 2 in the

Tisserand graph that connects point 1 and 3 via red (lunar

flyby) and cyan (WSB transfer) level lines of the Jacobi

integral. The manual process was easy enough in this case,

but of course this process can easily be automatized using

standard root finding algorithms.

Note that the transfer shown neglects out-of-plane

motion and the relative phasing between the spacecraft,

the Moon and the Sun. This means that whenever the

spacecraft reaches the lunar altitude, the Moon is assumed

to be there. Put differently, it means that although the

trajectory appears closed in space, there are time gaps at

the matching points 1, 2, and 3 in Figure 13A. Techniques to

FIGURE 12
Tisserand graph showing level lines of the Jacobi integral in the Earth-Moon system. The color-coded circles indicate points fromwhich a weak
capture in an NRHO with a period of 6.56 days is achievable as a function of the capture Δv.
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close these time gaps are not covered in detail in the scope of

this paper. These techniques exploit the periodicity of the

individual trajectory parts of the transfer and subsequent

local optimization. In particular, this implies:

• Shifting the launch date by integer Earth rotations in the

Earth-Moon system.

• Shifting the lunar flyby date by integerMoon revolutions in

the Sun-Earth system.

• Shifting the NRHO capture date by integer Moon

revolutions in the Sun-Earth system.

These operations do not change the trajectory in space,

but only alter the time gaps. Local optimization can then be

used to adjust the free parameters in the system to close the

time gaps and obtain a feasible trajectory from the initial

guess.

4.2 Weak lunar capture to NRHO with
lunar resonance

As an additional example of a combined transfer, showing

the different combinations achievable with the Tisserand graph,

Figures 13C,D show a weak capture to NRHO, achieved with a

2.4 m/s manoeuvre, obtained after a sequence of 85 geocentric

orbits, exploiting a lunar resonance to slowly raise the perigee

until being captured by the lunar gravity.

The trajectory in Figure 13C was designed by first looking at the

points surrounding point 3, which represent NRHO capture with

FIGURE 13
Examples of combined techniques for low-energy transfers. The plots on the top row show a transfer to NRHO using a lunar flyby, WSB
transfer and weak lunar capture. The plots on the bottom row display a transfer to NRHO using a sequence of lunar resonance and weak lunar
capture.
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differentΔv values (as shown in Figure 12), then jumping back to the

equivalent level line in the bottom-left quadrant of the Tisserand

graph and selecting point 1 at 50,000 × 301,301 km, assuming it as

departure orbit for the transfer. Point 2 is then achieved after a

sequence of resonances, moving on the level line, until the “jump” to

the upper-right quadrant of the Tisserand graph at the same energy

level. This brings the spacecraft to the cislunar space, at the correct

point for the weak capture in NRHO after the small capture

manoeuvre.

As mentioned in Section 4.1, this design procedure does not

take into account the phasing problem, which can be solved at a

later stage with the proposed methodologies. Nevertheless, using

the Tisserand graph allows for a fast initial guess design and a

good insight into the problem.

5 Discussion and conclusion

The double Tisserand graph of the Earth-Moon and Sun-Earth

systems is a powerful tool for designing initial guess trajectories that

involve WSB transfers (Section 3.1), lunar resonance transfers

(Section 3.2), lunar flybys (Section 3.3) and weak lunar captures

(Section 3.4) in a circular planar model. The double Tisserand graph

using generic techniques is summarized in Figure 14 for

convenience. The method can be used to graphically come up

with an initial guess for the sequence of apogee/perigee radii, the

flyby infinite velocities, the required number of revolutions around

the Earth and the optimal longitudes of perigee. Infeasible paths in

the graph are easy to identify. Moreover, simple numerical solvers

can be implemented in a computer program that determine the

maximum step size along a level line. This allows for a fast and

robust initial guess generation which can later be improved by

successively moving to higher fidelity models.

The techniques described in this paper are not only

applicable to the Sun-Earth-Moon system, but also to other

planetary systems, like Jupiter or Saturn. Because the mass

ratio of the Moons in the gas giants is much smaller

compared to the Earth-Moon system, the approximations

described in this paper work much better there. They can be

efficiently used for Moon tour design.
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