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Fluids near their liquid-vapor critical point, liquid mixtures near their miscibility critical point,
exhibit universal behavior in their transport properties. Weightlessness is most often
mandatory to properly evidence these properties. This review is concerned with some
of the most important results obtained thanks to space experiments concerning thermal,
mass, and momentum transport. Thermal aspects in pure fluids are mainly concerned with
the discovery of a new thermalization process, the Piston Effect, leading to paradoxical
effects such as a “critical speeding up” instead of the classical “critical slowing down”, heat
seemingly flowing backwards and cooling resulting from heating. Mass transport deals
with the process of boiling in the liquid phase, and phase transition when the fluid or the
liquid mixture is thermally quenched from the homogeneous, supercritical region, to the
two-phase region where it phase separates. Weightlessness makes universal the
dynamics of phase separation. Momentum transport is concerned with the scaled
behavior of viscosity and the effects of vibrations. Vibrations lead to effects (interface
position, instabilities) that resemble buoyancy effects seemingly caused by an artificial
gravity. Although weightlessness has led to solve important problems, many questions are
still opened.

Keywords: fluids in microgravity, near-critical point, thermal effects in weightlessness, phase transition in
weightlessness, vibration effects in weightlessness

1 INTRODUCTION

During the last decades, access to space offered the opportunity to investigate transport phenomena
in fluids without the unavoidable gravity-driven contributions. Under such conditions of
weightlessness, fluids are not affected by gravity-induced phenomena such as stratification or
buoyancy-induced convections (Moldover et al., 1979). At the same time, the effect of vibration-
induced acceleration could be clearly put in evidence. Although transport phenomena are present in
all fluids with more or less intensity, it appeared that the vicinity of the critical point (CP), where
many fluid properties exhibit divergence or convergence, was of great interest to magnify the effects
related to the absence of gravity. In addition, thanks to scaling, all fluids exhibit in this CP vicinity the
same universal behavior.

Orbital flights or free falls as provided by drop towers, sounding rockets, parabolic flights,
can compensate gravity to within 10−2 or even 10−6 g (g is the Earth’s gravity acceleration
constant), depending on the specific resource which is used (e.g., Barmatz et al., 2007 and Refs.
therein). Other means can be considered to compensate partially or totally the gravity effects
(for a review Beysens and van Loon, 2015). On the other hand, these means suffer from
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drawbacks that can make them inappropriate for a specific
study. The suppression of gravity-induced density
stratification can be performed by stirring (e.g., Moldover
et al., 1979; Gillis et al., 2005), however at the cost of a nearly
adiabatic temperature gradient. Gravity can also be
completely or partially compensated in pure fluids by a
volumic force provided by a strong magnetic field gradient
(e.g. in H2, considered below, which exhibits a relatively large
diamagnetic susceptibility). However, the compensation
cannot be made strictly uniform unless very complex
magnets are used (Nikolayev et al., 2010). Electric field
gradients have been envisaged (Moldover et al., 1979), but
the field modifies the coordinates of the critical point. In
partially miscible fluids that exhibit a miscibility critical
point, partial deuteration of one component has been used
to match the density of both phases to within 10−6 (methanol
with partially deuterated cyclohexane; Houessou et al., 1985).
Nevertheless, the fact that the capillary length goes to zero at
the critical point can limit the useful range of this Plateau
method. One notes that these means have the interest of
producing variable g-levels.

Comprehensive reviews on transport phenomena near
the critical point have been given by Sengers and Perkins
(2014) and Abdulagatov and Skripov (2021). Critical
phenomena in zero-gravity have been thoroughly
reviewed by Barmatz et al. (2007). This review paper
updates the Barmatz et al. review and is organized as
follows. After a brief description of the universal
behavior of fluids near their CP, the first section deals
with thermal processes and some paradoxical behavior.
Mass transport is then investigated during the process of
phase transition, followed by the analysis of momentum
transport: Viscosity and the effect of harmonic accelerations
(vibrations). In the conclusion are reviewed still open
questions.

2 UNIVERSALITY OF CRITICAL BEHAVIOR

In the pressure (p)–temperature (T) diagram of pure fluids,
liquid and vapor phase coexist at equilibrium on the saturation
line. This line is the projection in the p–T plane of the 3-
dimensional pressure-temperature-density surface. The
projection in the temperature–volume (V) plane or
equivalently the temperature–density (ρ) plane is the liquid-
vapor coexistence curve (Figure 1A). This curve exhibits a
maximum, the gas-liquid CP. This point represents the place
where the difference between liquid and gas vanishes. The
critical point data of SF6, CO2 and H2 fluids, used throughout
this paper, are listed in Table 1.

Fluids are called near-critical around the CP. The
corresponding near-critical region corresponds to a wide range
of temperature and pressure around their CP. Such near-critical
fluids exhibit a large compressibility, particularly close to the CP.
Above their critical temperatures and pressures, fluids are called
“supercritical”. Fluids in this region display interesting properties
such as large density compared to a gas, low viscosity compared to
a liquid and large mass diffusivity, which makes them
intermediary between gases and liquids. In such supercritical
conditions fluids appear as non-polluting solvents or hosts of
chemical reactions with high yield. Under weightlessness, the use
of cryogenic fluids under supercritical conditions has the benefit
of using a fluid of high density without the difficulty of localizing a
liquid and a vapor phase in a weightless environment (Oschwald
et al., 2006; Air Liquide, 2022).

A key feature of the critical region is concerned with the fact
that the thermodynamic and transport properties can be written
as scaled, universal power law functions with respect to the CP
coordinates (e.g., Stanley, 1971; Chimowitz, 2005; Barmatz et al.,
2007; Zappoli et al., 2015). One can therefore generalize the
results obtained with one single fluid to an entire class of systems,
the “class of fluids”. This class includes (this is a non-exhaustive

FIGURE 1 | (A) Schematic phase diagram for pure fluids.M = (ρ−ρc)/ρc is the order parameter of the liquid-vapor transition. Ti,,f: Initial, final temperature in a phase
separation process. CP: Critical point. (B) Behavior of the thermal diffusivity DT of SF6 in weightlessness showing the asymptotic behavior. Red dots: From density
relaxation measurements (Wilkinson et al., 1998). Open blue square: From image analysis of the density fluctuations (Oprisan et al., 2012). The vertical interrupted line
indicates the lower temperature limit where measurements (light scattering) can be performed on ground. The bold green line isEq. 7withD0T = 1.32 × 10−6 m2.s−1

and D0B = 4.05 × 10−8 m2.s−1 (Wilkinson et al., 1998) and the black line is the asymptotic behavior with exponent 0.673 (Table 2).
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list) pure fluids, liquid mixtures, polymer melts and solutions,
micro-emulsions, molten salts, monotectic liquid metals. The
archetype of this class is the 3D magnetic uniaxial Ising model.
This scaling is fundamental; it originates from the scaled behavior
that the free energy must asymptotically achieve to fulfill the
conditions of the CP 2nd order phase transition.

The transition is governed by an order parameter (OP), M.
The OP defines the CP coordinates. It is zero for T > Tc, the CP
temperature, where the system is homogeneous (symmetrical),
and non-zero for T < Tc, where the system exhibits two phases
(non-symmetrical) (Figure 1A). The order parameter for fluids is
the relative density difference M = (ρ−ρc)/ρc, with ρ (ρc) the
(critical) density. On the critical density path (critical isochore)

above the CP, supercritical fluids correspond to M = 0; gas and
liquid phases at coexistence below the CP correspond toM =M+

or M−, i.e., ρ = ρl or ρv.
The proximity of the CP is characterized by the occurrence of

large fluctuations of the OP. Such fluctuations are at the origin of
an intense scattering of light, the so-called “critical opalescence”.
The importance of fluctuations corresponds to a space-dependent
susceptibility correlation function χ(r):

χ(r) � 〈δM(r)δM(0)〉 ~
1

r1+η
e−

r
ξ (1)

Here the parameter ξ is the correlation length of the OP
fluctuations and η = 0.031 is the universal (Fisher) exponent

TABLE 1 | Some critical parameters of different fluids (see also Table 2). Tc: Temperature; pc: Pressure; ρc: Density; B: Coexistence curve amplitude as defined in Table 2;
σ0: Surface tension amplitude as defined in Table 2; μB: Shear viscosity as defined in Table 2. (From Zappoli et al., 2015 and Refs. therein).

Fluid Tc (K) pc (MPa) ρc (kg.m−3) B σ0 (10−2 N.m−1) μB (10−6 Pa.s1)

SF6 318.735 3.754 742 1.60 4.42 39.9
C02 304.14 7.3753 467.8 1.60 6.72 32.7
n-H2 33.19 1.3152 30.11 1.61 0.542 4.6

TABLE 2 | Asymptotic power laws of the critical behavior of some fluid parameters with their amplitudes. The isothermal compressibility κT and the isobaric thermal
expansion coefficient βp vary asymptotically as Cp according to the well-known thermodynamic relationship where Cv is the specific heat at constant volume,
Cp − Cv � T

ρ (zpzT)
2

ρ
κT � T

ρ (zpzT)ρβp. The parameters Γ, Cp0 , A, βp0 ξ0 , Bσ0 ,Λ0 ,D0T are the critical amplitudes associated to the asymptotic power laws. The viscosity amplitude
μB � μB(Tc) is the value of the background viscosity at Tc.

Property Power law Thermodynamic path Critical exponent

Isothermal compressibility κT � Γ
pc
|ε|−γ Critical density γ � 1.240a

Coexistence curve

Specific heat at constant pressure Cp � Cp0|ε|−γ Critical density γ � 1.240a

Coexistence curve

Specific heat at constant volume CV � A
α|ε|−α Critical density α � 0.110a

Coexistence curve

Isobaric thermal expansion βp � βp0|ε|−γ Critical density γ � 1.240a

Coexistence curve

Correlation length ξ � ξ0|ε|−] Critical density ] � 0.630a

Coexistence curve

Density of liquid and vapor phases ρl − ρv � 2ρcB|ε|β Coexistence curve β � 0.325a

Pressure |Δp| ~ |Δρ|δ Critical temperature δ � 4.80a

Correlation function χ(r) ~ r−1−η Critical temperature η � 0.031a

Surface tension σ � σ0|ε|2] Coexistence curve ] � 0.630a

Shear viscosity μ � μB |ε|−]zη Critical density zη � 0.0679b

Coexistence curve

Thermal conductivity Λ � Λ0|ε|γ−](1+zη) Critical density γ − ](1 + zη) � 0.567
Coexistence curve

Thermal diffusivity DT � D0T |ε|]+Yη Critical density ](1 + zη) � 0.673
Coexistence curve

aPelissetto and Vicari (2002).
bHau et al. (2005).
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(Fisher, 1964). ξ varies with the reduced temperature difference
ε = (T–Tc)/Tc as

ξ � ξ0ε
−v (2)

The exponent ] (= 0.630, Table 2) is universal; ξ0 is an amplitude
which depends on the considered system. The correlation length
varies with temperature; it goes to infinite at the CP. It is the natural
lengthscale of the CP phenomena. The behaviors of other important
fluid parameters with their definition are listed in Table 2.

One also finds universal scaling laws in dynamics for the
transport coefficients. However, the universality classes are fewer
than the classes for static properties as described just above. The
natural timescale of CP phenomena appears to be the dynamics of
the OP fluctuations, alike the correlation length for CP
lengthscale. The timescale is thus determined by the decay
time of a fluctuation of size ξ on lengthscale ξ. The fluctuation
dies out by a diffusion process, corresponding to a diffusion
coefficient DT. The latter can be estimated (Kawasaki, 1970) from
the Brownian diffusion of a cluster of size ξ:

DT � kBT

6πμξ
(3)

In this formula kB is the Boltzmann constant and η is the shear (or
dynamic) viscosity.

Note that the thermal diffusion coefficient can be also
written as

DT � Λ
ρCp

(4)

with Λ the thermal conductivity and Cp the specific heat at
constant pressure. They both diverges at Tc, however with
different exponents (Table 2).

The typical diffusion time on lengthscale ξ follows from Eq. 3:

tξ � ξ2

DT
� 6πηξ3

kBT
(5)

The temperature dependence of tξ is related to the temperature
dependence of ξ3, that is

tξ ~ ε−3v (6)
According to Eq. 6 the fluctuations of the OP relax more and

more slowly when nearing the CP temperature. This is the well-
known anomaly called “critical slowing-down”. In contrast to the
pressure fluctuations which equilibrate very rapidly, at the velocity of
sound, density and temperature fluctuations are much slowed down.

The fluctuation lifetime thus appears as the natural timescale of
the CP phenomena, in the same way as the correlation length of
fluctuations is the natural lengthscale. After being appropriately
scaled by ξ and tξ, most of the behavior should follow universal laws.

3 THERMAL PHENOMENA

Three modes for thermalization are classically reported: diffusion
(conduction), convection and radiation. In what follows one will

consider only the diffusion and convection modes. However, in
near critical, very compressible fluids, another thermalization
process, called the “Piston effect”, can take place. (Detailed
information can be found in the book by Zappoli et al., 2015).

3.1 Thermal Conductivity and Thermal
Diffusivity
Thermal conductivity and thermal diffusivity are related by Eq. 4.
Measurements of the thermal diffusion coefficient can be
classically performed by detecting the light scattered by
density fluctuations. On ground, even data in thin samples
where the effect of the hydrostatic pressure is lowered cannot
be obtained closer than 20 mK from the critical point (Jany and
Straub, 1987). The density relaxation experiments in weightless of
Wilkinson et al. (1998) with SF6 have been performed up to
1.4 mK from Tc and corresponds to the extrapolation of the
ground data (Figure 1B). Other measurements were performed
by Oprisan et al. (2012) closer to Tc (200 µK) by analyzing the
images of critical density fluctuations. In Figure 1B one sees that
microgravity data are mandatory to evidence the true asymptotic
power law, whose expected exponent is 0.673 (Table 2). The full
variation including the background contribution is also drawn in
Figure 1B; it corresponds to:

DT � D0Tε
](1+zη) +D0Bε

γ (7)
The first term is the asymptotic behavior (Table 2) and the

second corresponds to the background contribution (Luettmer-
Strathmann et al., 1995), the amplitude of which being
D0B � Λ0B/(ρcCp0). Λ0B is the background of the thermal
conductivity and Cp0 is the critical amplitude of Cp (Table 2).

The thermal diffusion coefficient DT thus progressively goes to
zero when nearing the CP. This means that the heat diffusion
process becomes extremely slowed down. For instance, thermal
equilibration of a CO2 sample with thickness 2L = 1 cm at 1 mK
from Tc would demand a time tD ≈ L2/DT ≈ 1 month to attain
thermal equilibrium. It was thus currently anticipated at the
commencement of space experimentations that homogenizing
in temperature and density a sample of fluid under weightlessness
near its CP was impossible to be carried out in a practical
experiment time.

3.2 Thermalization by the Piston Effect
Nonetheless, another process, called “adiabatic heating” (Boukari
et al., 1990a; Onuki and Ferrell, 1990) or “Piston Effect” (Zappoli
et al., 1990; Zappoli et al., 2015), invisible on Earth because
partially hidden by convection, appears to be quite efficient due to
the large values of the coefficients of compressibility and thermal
expansion. This process explains the fast equilibration observed
by Nitsche and Straub (1986) and in subsequent experiments by
Klein et al. (1991) Guenoun et al., 1993; Straub et al., 1995a;
Straub et al., 1995b; Fröhlich et al., 1996; De Bruijn et al., 1997;
Wunenburger et al., 2000; Garrabos et al., 2001a; Wunenburger
et al., 2002; Bartscher and Straub, 2002.

The Piston Effect can be described (Zappoli et al., 1990;
Zappoli et al., 2015; Beysens et al., 2021) by the expansion of
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the hot diffuse boundary layer that forms at the heating wall of a
closed cell (Figure 2A). This layer expands and compresses
adiabatically the whole fluid, as a piston would do.
Thermalization thus proceeds at the velocity of sound, as
calculated by Zappoli et al. (1990) and observed by Miura
et al. (2006). It results a spatially uniform heating of the bulk
fluid outside the boundary layer, as observed by Guenoun et al.
(1993). In addition, the development of the hot boundary layer
produces a flow in the fluid, whose velocity is maximum at the
edge of the layer (Zappoli, 1992; Zappoli and Carles, 1995). It is
the motion of the fluid at the edge of the boundary layer which
compresses the bulk fluid by transferring a small amount of fluid.
The boundary layer thus operates as a transformer, converting the
thermal energy into kinetic energy. Note that the flow at the edge
of the boundary layer is actual; under intense heating conditions
it was observed under weightlessness as a “jet” (Fröhlich et al.,
2006).

According to the clear demonstration by Onuki et al. (1990),
the first characteristic Piston Effect time scale is the time, tc, to
deliver from the boundary layer the amount of energy, Eb, needed
to adiabatically heat by compression the remaining fluid of size
L–δ ≈ L, whose temperature adiabatically rise by ΔTb ≈ Eb/LCV.
(CV is the specific heat at constant volume; the sample is of unit
area and unit mass). The transfer of energy takes place on several
acoustic times scale and is thus nearly instantaneous with respect
to tc, which involves a diffusion process in the boundary layer.

As a consequence, a thermal equilibrium is obtained on the
new time scale tc, intermediate between the acoustic and diffusion
timescales. This equilibration time is reached when the boundary
layer temperature equals the bulk temperature. It corresponds to
the time when the energy E(t) diffusing in the boundary layer
during tc equals Eb. It results the temperature equality Eb/(δCp) ≈
Eb/LCV giving δ ≈ L/γ0, with γ0 = Cp/CV. Ferrel and Hao (1993),
from a more rigorous calculation, obtained δ = L/(γ0–1). As a
result, the value of tc, using Eq. 4, can be written as

tc � δ2

DT
� tD(γ0 − 1)2 (8)

where tD = L2/DT represents the time scale of diffusion on
length L.

According to Table 2, the temperature dependence of
γ0 ~ ϵ−1.13 and diverges. It means that, instead of the expected
critical slowing down, one rather obtains a critical speeding up
since tc goes to zero although tD goes to infinity. This striking
behavior was highlighted by Boukari et al. (1990a; 1990b) and
Garrabos et al. (1998). Although this effect immensely reduces the
temperature equilibration time, it is nonetheless at the cost of
formation of a boundary layer, which only slowly diffuses out.
The final equilibration time is still the diffusion time, as Zappoli
et al. (1990) and Bailly and Zappoli (2000) rightfully noted.

Another very particular behavior was observed by
Wunenburger et al. (2000) in the two-phase region below the
CP. When heating a cell under weightlessness, the vapor bubble
temperature became superior to the heating wall temperature
(Figure 2B). Heat was apparently flowing from cold to hot,
seemingly contradicting the laws of thermodynamics. It has to
be noted, nevertheless, that the process corresponds to a thermo-
mechanical exchange where the homogeneous pressure rise due
to the expansion of the hot boundary layer gives a larger effect in
the vapor than in the liquid, the pressure derivative of
temperature at constant entropy (zT/zp )S being larger in the
vapor phase than in the liquid phase. In addition, the vapor
bubble is thermally isolated from the thermostated walls by the
liquid. The vapor temperature becomes not only larger than the
liquid temperature, but also larger than the heating wall
temperature. The violation is therefore only apparent.

In the Earth’s environment or when the cell is submitted to
accelerations in space, a coupling arises between the thermal
boundary layers and acceleration-induced flows. Paradoxical
cooling of the fluid after a heat pulse can be observed on Earth

FIGURE 2 | (A) The mechanism of the Piston Effect. A thin hot boundary layer develops and compresses the bulk fluid. The resultant temperature profile shows i) a
small zone of high gradients near the heated boundary, defining the extent δ of the thermal boundary layer and ii) a uniform increase in the other part of the fluid arising at
the sound velocity. (B): When heat seemingly flow backwards. The vapor phase of a SF6 sample at 10 K below the CP (ALICE in MIR, 1999) undergoes large overheating
during a continuous rise of the cell wall temperature Twall. (Data fromWunenburger et al., 2000). (C)When heat can cool. Undercooling of SF6 fluid after heating by a
100 mW, 4 s heat pulse on Earth at 16.5 K above the CP and (inset) under the weak acceleration of a space shuttle maneuver [three different locations in the fluid;
ΔT � T(t) − T(0) with initial temperature T(0) ≈ Tc ]. (Data from Beysens et al. (2011).
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or during spacecraft rotations and maneuverings (Figure 2C;
Beysens et al., 2011). This cooling is related to the buoyancy
convection of the hot thermal boundary layer, which couples with
the PE. Note that these studies certified the numerical codes used
for the pressurization of the tanks in the Ariane 5 rocket (Air
Liquide, 2022).

3.3 Heat Transport
Temperature outside the thermal boundary layers is uniform;
then the bulk fluid acts as an actual thermal short circuit. The
possibility to use the Piston Effect as a sort of heat pipe to
transport heat on long distances has been investigated.
Beysens et al. (2010) carried out experiments and
simulation with magnetically levitated H2 and extrapolated
to CO2 (magnetic gradients compensate gravity forces, e.g.,
Nikolayev et al., 2010). Very fast heat transfer is obtained at
short times, the dynamics of which being only limited by the
thermal properties of the heat pipe materials. Nonetheless, the
yield expressed in terms of ratio of transported/injected
powers does not exceed 10–30%, a value connected to the
limiting pipe heat capacity.

4 MASS TRANSPORT

In this section are addressed two processes of phase transition.
The first process, called phase separation, is met when changing
temperature from the homogeneous, supercritical phase. The
second process is boiling, where the evaporation of a liquid
phase is made in the two-phase, liquid-vapor region below Tc.

4.1 Phase Separation
One considers a fluid initially above its CP (at temperature Ti and
density ρi). It is thermally quenched in the two-phase region
where it separates in liquid and vapor phases (Figure 1A).
Beysens and Garrabos (2000) have evidenced the different
routes that a fluid, initially in its supercritical state, takes to
phase separate. If the fluid initial density ρi < ρc, liquid droplets
nucleate on critical fluctuations (of mean size ξ) and develop by
incorporating by diffusion the molecules from the bulk phase.
The density of this phase decreases to reach the vapor density. If
ρi > ρc, vapor bubbles follow the same process: Nucleation on
critical fluctuations of mean size ξ, then growth by evaporative
diffusion towards the bulk phase, which eventually reach the
liquid density. The typical time to reach local equilibrium is thus
the typical diffusion time tξ (Eq. 5).

Further growth is driven by coalescence events. When the
volume fraction ϕ (� ρl−ρi

ρl−ρv) of the new nucleated phase is low
(typically ϕ < 0.3, see below), the droplets coalesce when they
collide during their Brownian motion. The average radius R of the
bubbles or the average distance Lm ~ Rϕ −1/3 between them grow
as (Siggia, 1979; Nikolayev et al., 1996).

ϕ−1/3R ~ Lm � 2π(kBT
6πμ

)1/3t (9)

This law depends only on T and is weakly dependent on the
distance (T−Tc) from the CP. When ϕ > 0.3, the flow engendered
by a coalescence event can move a nearby drop, hence inducing
another coalescence event (Nikolayev et al., 1996). A chain
reaction of coalescence is thus generated, creating an
interconnected pattern. In the viscous limit and late times, the
interface motion and the evolution of Lm corresponds to the
balance between the capillary pressure gradient σ/R (here σ is the
vapor-liquid surface tension) and the friction related to the shear
viscosity µ, giving:

Lm � b(σ
μ
)t (10)

FIGURE 3 | (A) Universal scaled growth laws of liquid or vapor domains
during phase separation when gravity effects are removed. Fluids (SF6, CO2):
All data points except open squares (liquid mixtures). The mean distance
between domains (Lm) is expressed in the scaled units Km* and t* = t/tξ;
lines and curves represent the theoretical predictions (see text). (B) Critical
boiling. (a–d) Typical images of a SF6 sample in a thin 12 mmdiameter cell (the
engraved ring on the windows is 10 mm diameter). Temperature of the cell
walls are ramping up towards Tc from well below the CP. Temperatures are
indicated at the top left of the images; Tc = 45.950°C. L: Liquid; V: Vapor.
(a’–d’): Calculated bubble shape for different values of the non-dimensional
strength of vapour recoil N corresponding to the images. N goes to zero at the
CP (Eq. 11). (Adapted from Garrabos et al., 2001b).
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The parameter b ≈ 0.03 is a universal constant. For early times,
coalescence is not effective and the domain evolution follows Eq. 9
with Lm ~ t1/3. The full evolution, including the intermediate
regime between Eqs 9, 10 growth laws can be described by a
phenomenological expression given by Furukawa (1985).(Kp

m − 1) − (Ap/Bp)1/2[tan−1(Bp/Ap)1/2 − tan−1(Ap/Bp)1/2]
� Bptp

(11)
with the adjustable parameters Ap � 0.14 ± 0.01 and
Bp � 0.022 ± 0.001. In this equation Km* = 2πξ/Lm and t* =
t/tξ corresponding to a rescaling of Lm by ξ, the natural
lengthscale, and time t by and tξ, the natural timescale.

When experimental data are rescaled as noted just above, they
all fall on only two curves (Figure 3A). For volume fractions ϕ >
0.3, one finds a “fast” growth law and an interconnected

morphology (Eq. 10). For ϕ < 0.3, one obtains a “slow”
growth and a disconnected morphology (Eq. 9). Note that the
above behavior can also be applied to the phase separation of
binary liquids, which belongs to the same universality class as
fluids. One simply has to consider the OP “concentration” instead
of the OP “density”.

4.2 Critical Boiling and Boiling Crisis
Boiling as a result of liquid-vapor transition has been the object of
many studies under weightlessness (e.g., Konishi and Mudawar,
2015; Colin et al., 2017). Much less have been performed in the
vicinity of a critical point. However, close but below the critical
point, interesting behavior concerning the nature of the boiling
crisis can be clearly evidenced.

The boiling crisis is the formation of a vapor film between the
heater and the liquid when the heat supply exceeds a critical value,
the Critical Heat Flux (CHF). Nikolayev and Beysens (1999)

FIGURE 4 | (A) Typical boiling curves in H2 (Tc = 33.2 K) for different pressures (temperatures) T. The boiling regimes are indicated for T = 32 K. Th is the heater
temperature, q is the heat flux. The lines are guides for the eye. (B) Critical heat flux qCHF as a function of the reduced distance to the CP. The straight line corresponds to
the vapor recoil model of Eq. 16. (Adapted from Nikolayev et al., 2006). (C) Viscosity of Xenon measured near the critical point (log-log plot; Tc ≈ 290 K) from the CVX
(Berg et al., 1999) and OCV (Berg and Moldover, 1990) setups. Ground and microgravity data are shown. The straight line corresponds to the asymptotic behavior
of microgravity data and has the slope ]zη � 0.0435 corresponding to zη = 0.0690. Very near Tc the microgravity data depart from the asymptotic line due to the effect of
viscoelasticity (Bhattacharjee and Ferrell, 1983). The two sets of ground data also depart from the asymptotic line further from Tc because Xenon is compressed under its
own weight.
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proposed a mechanism for the boiling crisis that is based on the
spreading of the dry spot under a vapor bubble by the action of a
vapor recoil force. This force comes from the uncompensated
mechanical momentum of the vapor coming into the bubble.
Since the evaporation intensity increases sharply near the gas-
liquid-solid triple contact line, the influence of the vapor recoil
can be interpreted in terms of a change of the apparent contact
angle (Figure 3B).

One can define a non-dimensional number N
corresponding to the ratio of the recoil force at the contact
line (the place where the evaporation rate is the highest
because the temperature gradient is the largest) to the
capillary force. This parameter determines the deformation
of the bubble from its circular or spherical shape by the drying
of the contact surface area and the manifestation of an
apparent finite contact angle in the vicinity of the contact
line. Following Nikolayev and Beysens (1999) and Garrabos
et al. (2001b), near the CP one can write N as:

N ~ (Tc − T)3β−2]−2 � (Tc − T)−2.285 (12)
One sees that N goes to infinite at the CP, which means

that in the vicinity of the CP the bubble can be highly
deformed. Figure 3B illustrates this behavior in SF6 under
microgravity.

Since the vapor recoil force is always directed towards the
liquid side, it increases the dry spot under the bubble. For the
most usual case of complete wetting of the heating surface by the
liquid, the boiling crisis can be thus understood as an out of
equilibrium drying transition from complete to partial wetting.
Figure 4A report the heat flux dependence with the heater
temperature in weightless experiments as provided by a
magnetic field gradient. The fluid is H2. According to
Nikolayev et al. (2006) the CHF decreases to zero with T–Tc
following the power law:

qCHF ~ N−1/2 ~ (Tc − T)1+]−3β/2 ~ (Tc − T)1.142 (13)
This power law is well visible in Figure 4B. The decrease in

critical heat flux when nearing Tc explains the easy drying of
the wetting film under the vapor bubble close to Tc as observed
in Figure 3B and quantitatively studied by Hegseth et al.
(2005).

5 MOMENTUM TRANSPORT AND
VISCOSITY

In a non-equilibrium fluid submitted to a shear stress, there is a
relative motion of different layers with respect to one another.
The layer moving faster conveys momentum to the layer moving
slower to bring about an equilibrium state. As a consequence the
transport of momentum generates the phenomenon of viscosity.
The shear or dynamic viscosity µ can be related to the correlation
function of the pressure fluctuations by the Kubo-Green relation,
which relates in general the fluctuations near the thermodynamic
equilibrium to a transport coefficient. An anomalous increase of
the viscosity is found near the critical point because the OP

correlation function becomes long range in time. Noting pxy the
off-diagonal element of the total pressure tensor, the Kubo-Green
relation becomes for the anomalous part of the viscosity (Deutch
and Zwanzig, 1967):

μ � 1
kBTV

∫∞

0
pxy(t)pxy(0)dt (14)

pxy can be separated into a short range part, which gives rise to
the regular, background contribution in the viscosity (µB), and a
long range part, pl

xy, which corresponds to the critical
enhancement Δμ of the viscosity:

Δμ � 1
kBTV

∫∞

0
pl
xy(t)pl

xy(0)dt (15)

It results that the viscosity diverges near the critical point,
following the power law behavior (e.g., Sengers and Perkins, 2014;
Abdulagatov and Skripov, 2021) (Table 2):

μ � μB|ε|−]zη (16)
Here μB(Tc) is the value of the background viscosity at Tc. Its

temperature variation is a classical Arrhenius function
μB(T) � μ∞exp(E/T), with μ∞ an amplitude and E an
activation energy. The exponent zη is expected to be 0.0679 ±
0.0007 (Table 2 and Refs. therein).

Berg et al. (1999) developed a novel viscometer (CVX) and
carried out a careful experiment in weightlessness (Figure 4C). In
contrast to ground experiments, the microgravity experiment
exhibit a clear power law over about three decades in ε. The data,
however, depart from the asymptotic power law when very close
the critical temperature due to the increasing viscoelasticity near
the critical point (Bhattacharjee and Ferrell, 1983). The exponent
value zη = 0.0690 ± 0.0006 was determined in this experiment.
The value is in full agreement, within the uncertainties, with the
theoretical value 0.0679 ± 0.0007 (Table 2 and Refs. therein).

6 MOMENTUM TRANSPORT AND
VIBRATIONS

Fluids submitted to linear harmonic vibrations asin(ωt) (a:
amplitude; ω: angular frequency) exhibit very particular
behavior (e.g., Gershuni and Lyubimov 1998). Practically
speaking, vibrations are transmitted to the fluid by the
container walls from an external source. Hence the fluid
undergoes periodic movements whose velocity depends on the
local density. Depending on the amplitude and frequency of the
vibration, mean flows can follow. This averaging process occurs
for “small” amplitudes (small with respect to the cell size, typically
a = 0.1−0.5 mm) and “high” frequencies (frequencies larger than
the characteristic inverse hydrodynamic times, typically f �
2π/ω = 1−100 Hz). The mean flows superimpose to small
periodic displacements. On Earth, the mean flows are strongly
coupled with gravity flows such as sedimentation and thermo-
gravitational convections. This is not the case anymore in
weightlessness, a situation which have led to discover new and
unexpected behavior. In addition to induce average flows in a
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fluid, vibrations can also break the symmetry of the system during
a phase transition and order the phases, in a way similar to
terrestrial gravity where the vapor phase goes upwards and the
liquid phase downwards. On the other hand, in addition to
explore new phenomena, the interest of investigating such
vibrational effects is related to the effects on fluids of the
vibrations generated in a space station or in a spacecraft,
which is still poorly acknowledged; systematic investigations
are highly desirable.

Vibrations can induce instabilities of thermo-vibrational type
in a supercritical, homogeneous fluid submitted to gradients of
density originating from temperature gradients. Long-ranged
mean flows are generated, seemingly due to an artificial
gravity. Near the CP, these phenomena are amplified, because
many parameters exhibit significant divergences, and especially
the isobaric thermal expansion coefficient βp (Table 2).

When the fluid is diphasic (liquid-vapor), various instabilities
can be induced by vibrations according to the relative direction of
the interface with the vibration direction. One can indeed observe
Faraday-type (parametric) instabilities and/or Rayleigh-Taylor
type instabilities, which grow on the liquid-vapor interface
perpendicular to the vibration. On the liquid-vapor interface
parallel to the vibration Kelvin-Helmholtz type instabilities
(“frozen waves”) can develop. On the other hand, the liquid-
vapor interface can orientate itself perpendicular to the interface;
this is reminiscent of the Kapitza pendulum, stabilized upside
down when its support is horizontally vibrated. Vibrations in the
above examples mimic in space the effects of gravity. A better
management in space of fluids and their phase change is therefore
expected.

The shear flow resulting from the difference in velocity
between the liquid-vapor density differences only matters
for length-scales greater than the viscous boundary layer.
The fluid internal structure is not concerned at the molecular
level. However, shear flow can reduce the extent and
amplitude of the density fluctuations near the CP. It

results a deep modification of the critical behavior, with
different values (“mean-field”) for the critical exponents
(e.g., Beysens et al., 1983; Onuki, 2002).

6.1 Supercritical Thermo-Vibrational
Instabilities (T > Tc)
One now examines a vibrated fluid in the Rayleigh-Bénard
configuration (two parallel plates separated by distance e with
temperature difference ΔT). The fluid is thus submitted to a
vibrational acceleration in a thermal gradient. The occurrence of
the instability depends on the presence of the Bernoulli pressure,
which destabilizes the fluid depending on the direction of the
vibration with respect to the thermal gradient direction. When
the vibration is parallel to the gradients, the Bernoulli pressure
drives the inhomogeneities on an isotherm and the fluid is stable.
The less unstable situation corresponds to vibrations
perpendicular to the gradient where a vibrational Rayleigh-
Bénard instability can appear when the vibrational Rayleigh
number Rav becomes larger than 2,100 (Gershuni and
Lyubimov 1998):

Rav �
[aω(zρzT)pΔTe]2

2πDT
(17)

The fluid becomes more and more sensitive to vibration as the
CP is neared because Rav increases as (T−Tc)

−1.9. Measurements
and numerical simulations have been carried out by Garrabos
et al. (2007) concerning the flows of SF6 fluid around a point-like
heat source (thermistor, Figure 5) submitted to an harmonic
oscillation. Data compare well with theory. Two different regimes
were evidenced according to the vibration parameters. For “large
amplitude and low vibration frequency”, as defined above at the
beginning of Section 6, the instantaneous acceleration is seen to
drive the process. The hot fluid is convected during each vibration
period parallel to the vibration and develops as “plumes”

FIGURE 5 | Interferometry pictures in SF6 at Tc + 0.5 K of the hot fluid regions (dark) around a heating point source S (thermistor). The vibration direction is indicated
by a white double arrow. (A) Low frequency and large amplitude vibration. The hot regions are convected from S as plumes parallel to the vibration direction. (B) High
frequency vibration. The hot region (underlined white), is convected perpendicular to the vibration direction due to four convection rolls (symbolized by interrupted circles)
(Adapted from Garrabos et al., 2007).
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(Figure 5A). Under “small amplitudes and high frequency”, an
average flow connected to the vibrational Rayleigh instability
develops. The hot fluid is convected by four rolls perpendicularly
to the vibration direction (Figure 5C), corresponding to the most
unstable situation.

When the temperature of the fluid is very rapidly varied
(thermal quench), a thermal boundary layer forms. The latter
can be destabilized; a vibrational Rayleigh instability can indeed
develop parallel to the thermal boundary layer. Its study has been
carried out by Amiroudine and Beysens (2008) and Gandikota
et al. (2013). Viscous digitations (Figures 6A,D) appear in H2

vibrated under magnetic levitation and CO2 vibrated in a
sounding rocket (Beysens et al., 2009).

Instabilities of parametric nature can in turn develop when the
vibration direction is perpendicular to the thermal boundary
layer. A 2D numerical analysis was carried out by Gandikota
et al. (2013) in a square cell with supercritical H2 (Figures 6C,D).
The vibration amplitudes were varied between 0.05 and 5 times
the cell side and the frequencies ranged from 2.78 to 25 Hz.
Different thermal conditions of border were also considered (all
isothermal walls, adiabatic vertical wall/isothermal horizontal
wall, adiabatic horizontal wall/isothermal vertical wall) and
several temperatures (T–Tc = 10 mk, 100 mk, and 1 K). In this
study the roles of the Rayleigh vibrational and parametric
instabilities in a thermal field were emphasized, as the
importance of the corners of the cells in triggering a “corner”
instability (Figure 6B).

6.2 Liquid-Vapor Phase Transition Under
Vibration
The phase transition process under vibration was investigated in
fluids H2 under magnetic levitation and CO2 in sounding rockets.
Following section 4, a phase change without vibrations is
concerned with only two cases. When the volume fraction of
the nucleated phase is less than 30%, a pattern of vapor bubble (or
liquid droplets) develop at the expense of the other, homogeneous
phase. When the volume fraction of the nucleated phase is greater

than 30%, an interconnected pattern of the nucleated phase
shows up.

When the phase change process is carried out under
vibration, inertial effects can affect the nucleated domains
whose density is different from the matrix phase. Domains
acquire a velocity different from the surrounding phase
provided that their size is larger than the viscous boundary
layer, l, where the effect of viscosity is important. The
condition above can thus be written as:

Lm > l � (2μ
ρω

)1/2

(18)

A Bernoulli pressure develops perpendicularly to the interface
because of the difference between the liquid and vapor phase
velocities. It results a force that increase in the direction
perpendicular to vibration the coalescence events between
domains. In the other direction, parallel to vibration,
coalescence between domains are not affected and growth can
proceed as if there were no vibrations.

The pattern of disconnected drops or bubbles (Figure 7A) is
unaffected by vibrations in region (A) where the size of domains
(radius R) is lesser than the viscous boundary layer. Here the
radius grows as R~t1/3, corresponding to a growth only limited by
Brownian diffusion (Eq. 9). When R > l, (region B in Figure 7A),
the evolution becomes R~t1/2. This growth law is the signature of
coalescences limited by Levy flights (Beysens et al., 2008). Because
of the existence of hydrodynamical forces which repulse bubbles
parallel to the vibration direction or attract them perpendicular to
the vibration direction (Lyubimov et al., 2001), drops eventually
order in periodic rows perpendicular to the vibration direction
(Figure 7A).

The interconnected pattern evolution is different in three
characteristic time regions (Beysens et al., 2005; Beysens et al.,
2009; Figure 7B). Region (A) corresponds to phase separating
domains smaller than the viscous boundary length l, Lm < l (Eq.
18) where vibration is not “felt” by the domains. For Lm > l, region
(B), the Bernoulli pressure imposes an exponential growth

FIGURE 6 |Different instabilities observed during a negative thermal quench. (A): Cold fingers in a 10 mm diameter cylindrical cell filled with C02 (vibration direction:
Double white arrow) with 0.3 mm amplitude and 20 Hz frequency. Initial temperature Tc +2 mK, quench −2.4 mK. (Adapted from Beysens et al., 2009). (B–D):
Simulation of the thermal field evolution in a square cell of 7 mm length with isothermal walls filled with H2. Vibration (direction: Double white arrow) is 20 mm amplitude
and 5.56 Hz frequency. Initial temperature Tc + 1 K, quench −0.1 K. Several instabilities are present: (B) Corner instability; (C) parametric instability on the vertical
walls; (D) vibrational Rayleigh instability on the horizontal walls. (Adapted from Gandikota et al., 2013).
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perpendicular to the vibration direction, a direction along which
the domains are stretched. The evolution of the characteristic
length follows

Lm⊥ ~ exp(− t
θ
) (19)

with the typical time, where Δρ = ρl − ρv

θ � μ

Δρ a2ω2
(20)

Region (C) corresponds to the time when the domains
extent attains the sample dimension. The pattern exhibits
periodic bands perpendicular to the vibration direction and
continues to rearrange in the direction parallel to vibration
(Wunenburger et al., 1999; Lyubimova et al., 2017). These
bands correspond to “frozen waves” and are studied in
section 6.3.3.

6.3 Vibrational Instability Below the Critical
Point (T < Tc)
A liquid-vapor fluid at equilibrium under weightlessness
shows a liquid phase which wets the cell walls, surrounding
a single vapor bubble. The bubble can be more or less spherical
according to its volume fraction and the form of the cell, which
imposes geometrical constraints. When the fluid is submitted
to vibrations, the vibration direction can be in certain regions
of the interface parallel (or tangential) to the liquid-vapor
interface and in other regions perpendicular, thus authorizing
different kinds of instabilities. These instabilities have
different thresholds depending on the value of the
important parameters of the fluid, the interfacial tension σ

and the liquid-vapor difference Δρ. Since the latter parameters
strongly diminishes when nearing the CP with different power
law exponents (Table 2), diverse instabilities can show up at
various distances from the CP.

6.3.1 Dynamical Liquid-Vapor Interface Equilibrium at
Various Gravity Levels
The orientation of the H2 liquid-vapor interface has been
investigated under the effect of a harmonic horizontal
vibration at various effective gravity levels by Gandikota
et al. (2014a). Gravity can be varied in magnetic levitation by
simply modifying the magnetic field amplitude. The situation is
similar to a simple pendulum which can be stabilized in an
upside-down position by vibrating horizontally its support at a
frequency much higher than the natural frequency of the
pendulum. A similar phenomenon happens with a vapor-
liquid interface submitted to a horizontal harmonic vibration.
The interface attains an equilibrium position at an angle α with
vertical (Figure 8A) above a critical value of the vibrational
velocity aω. With L the dimension of the interface, the tilt angle
should be:

sin α � 2gpL

πa2ω2

ρl + ρv
ρl − ρv

(21)

The results at different vibration amplitudes a and angular
frequencies ω for effective gravity g* = 0.05 g compare well with
the theory of Wolf (1969) as seen in Figure 8B.

6.3.2 Frozen Wave Instability Under Various Gravity
Levels
Experiments in SF6 under 1-g gravity have been carried out by
Wunenburger et al. (1999) and in H2 in partial or total

FIGURE 7 | Phase separation under harmonic vibration of amplitude ≈0.3 mm and frequency ≈20 Hz. The double white arrows indicate the vibration direction. The
region (A) is for Lm < l (the viscous boundary layer) and (B,C) for Lm > l, corresponding to time t0 (see text). Region (C) corresponds to the timewhere domains size reaches
the sample dimension. (A) Evolution in H2 of a disconnected bubble pattern with mean radius, R, with typical pictures. Red squares: Bubble population unaffected by
vibrations (Eq. 9). Blue dots: Bubbles aligned in rows coalescing in region (B) in the direction perpendicular to vibrations. The full curve is a fit to a t1/3 growth law and
the interrupted curve a fit to (t−to)

1/2 growth law. The cell diameter is 3 mm. (Data from Beysens et al., 2008). (B) Evolution (semi-log plot) of an interconnected domain
pattern, with typical pictures, in the direction parallel to vibration direction (typical domain lengthscale Lm//, crosses) and perpendicular (Lm⊥, open circles). Red squares
correspond to domains parallel to the vibration direction, Lm‖, without vibration influence (red curve, Eq. 10). The blue line is an exponential fit of the Lm⊥ data to Eq. 19.
The broken horizontal line corresponds to the cell diameter (10 mm). (Data from Beysens et al., 2009).
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magnetic levitation by Gandikota et al., 2014c in the same
configuration as in the above section 6.3.1. The frozen wave
instability was investigated at various temperatures and gravity
levels.

The frozen wave instability develops at a vapor-liquid
interface submitted to a harmonic vibration in a tangential

direction. The instability condition is expressed in the same
way as in the conventional Kelvin-Helmholtz instability,
from a linear stability analysis. By analyzing the linear
stability of the quasi-equilibrium state, Lyubimov and
Cherepanov (1986) obtained an explicit formula for the
neutral curve:

FIGURE 8 | (A)H2 liquid (L)−vapor (V) interface orientates at angle αwith respect to gravity direction (white arrow; effective gravity g* = 0.05 g) under the influence of
vibration (white double arrow; amplitude a = 0.83 mm, frequency f = 35 Hz). Temperature is Tc−45 mK. The cell is a cube with side 7 mm. (B) Comparison of the
experimental data with the Wolf’s theory (Eq. 21) (gravity level: 0.05 g, temperature Tc−45 mK). (Data from Gandikota et al., 2014a).

FIGURE 9 | (A) Frozen wave instability phase diagram (vibration amplitude versus frequency) in H2 at three gravity levels. The curves represent the Eq. 23 at
Tc–1 mK for the indicated g-values and the symbols the experimental values. (Data from Gandikota et al., 2014c). (B) Frozen wave amplitude for various gravity levels at
1 mK from the CP in a cubic cell of 7 mm side. (Vibration a = 0.53 mm, f = 35 Hz; same cell as in Figure 8A). The white double arrow is the vibration direction. (Adapted
from Gandikota et al., 2014c).

Frontiers in Space Technologies | www.frontiersin.org May 2022 | Volume 3 | Article 87664212

Beysens Transport Phenomena Fluids Critical Point

https://www.frontiersin.org/journals/space-technologies
www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies#articles


(aω)2 � (ρl + ρv)3
2ρlρv(ρl − ρv)2 [σk + (ρl − ρv)gk]th(kh) (22)

Here k � 2π/λ is the wavenumber of instability with
wavelength λ. The critical conditions for the onset of
instability in an infinitely long horizontal layer is

(aω)2 ≥ 1
2
(aω)2c( λ

λ0
+ λ0

λ
)tanh(2πh

λ
). (23)

where

(aω)2c �
(ρl + ρv)3

ρlρv(ρl − ρv)
������
σg

ρ2 − ρ1

√
(24)

is the critical value of the squared vibration velocity amplitude at
the instability onset. h is the thickness of the liquid layer, λ is the
perturbation wavelength and λ0 � 2πlc is the critical wavelength,
with lc �

����������
σ/g(ρl − ρv)

√
the capillary length. When the vibration

velocity amplitude is critical, aω = (aω)c and the wavelength of the
quasi-stationary profile is equal to λ0.

The diagram of stability is reported in Figure 9A. The
experiments at various g levels show a good agreement with the
inviscid model of Lyubimov and Cherepanov (1986), whatever is the
gravity level. In the experiments the amplitude of the frozen waves is
seen to slightly vary with temperature. The amplitude increases with
g according to a power law with exponent—0.7. The wave height
thus unavoidably becomes on the order of the cell size as g is
decreased enough (Figure 9B). The vapor-liquid interface therefore

FIGURE 10 |Band pattern under weightlessness under vibration (white double arrow). (Adapted from Lyubimova et al., 2017). (A)CO2 at Tc–2.4 mK; cell of 10 mm
diameter and 2.189 mm thickness; vibration a = 0.7 mm, f = 10.37 Hz. (B) H2 at Tc–5 mK; cell 3 × 3 × 2 mm3; vibration a = 0.29 mm, f = 40 Hz. (C,D) Numerical
simulation with zero surface tension and diminution of shear viscosity from (C) to (D). Viscosity is identical in both fluids as T is close to Tc. Vibration a = 1.8 mm, f = 30 Hz.
(C) µ = 0.075 Pa.s; (D) µ = 0.05 Pa.s. The pattern wavelength diminishes with the decrease of viscosity.

FIGURE 11 | (A) Variations of the pattern wavelength λc = 2π/kc (cm) on shear viscosity η (Pa.s) (vibration characteristics a = 1.8 mm and f = 30 Hz). Red squares:
Direct numerical simulation. The solid curve is a smoothing function. The full green circle is the value determined from the analytical formula Eq. 26 for inviscid fluids. (Data
from Lyubimova et al. (2017). (B) Dimensionless vibration parameter B as a function of the dimensionless band wavevector kp. Data are from CO2 in sounding rockets
Maxus 7 (blue tilted crosses), Maxus 5 (green open circles), and MiniTexus 5 (red crosses) and the results of the linear stability analysis for viscous fluids (full red
circles). The variation approximately follows a power law with exponent 2. (Data from Lyubimova et al., 2017).
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appears as a pattern of alternate liquid and vapor bands. This
phenomenon is analyzed in the next section 6.3.3.

6.3.3 Band Instability Under Weightlessness
When g is equal to zero, a band pattern is effectively observed
near Tc in CO2 in sounding rocket experiments (Figure 10A;
Beysens et al., 1998; Beysens et al., 2007; Beysens et al., 2009) and
in H2 under magnetic compensation of gravity (Figures 9B, 10B;
Gandikota et al., 2014c). The formation of such band patterns
when g is negligible with respect to the vibrational acceleration
was predicted by Lyubimov and Lyubimova (1990) and observed
by Beysens et al. (1998). Whereas the band pattern is evocative of

the frozen wave which form under a gravity field (section 6.3.2.
above), the investigation by Lyubimova et al. (2017) show that
they are not identical.

It follows from Eq. 22 that stability is lost under zero gravity
conditions (cf. the terms under bracket), in the same way as the
Kelvin-Helmholtz instability occuring at the interface of two
steady parallel flows. The difference is the absence of
instability threshold. Indeed the neutral curve Eq. 22 does not
exhibit a minimum. Then the instability grows even at small
values of the vibrational velocity aω. Following Burnysheva et al.
(2011), the wavelength selection should correspond to the
wavelength giving the maximal growth rate to the

FIGURE 12 | (A) Variation with Tc–T of the wavelength of a Faraday wave instability (from three fingers at Tc–T = 20 mK to nine fingers at Tc–T = 10.5 mK. A and B
indicate two rows of fingers in two different planes. At Tc–T ≈ 8 mK, a transition square-roll occurs (see text). The instabilities develop symmetrically on the left and right
parts of the interface that are directed perpendicular to the vibration direction. (Vibration a = 0.29 mm and f = 40 Hz; direction: double arrow same cell as in Figure 10A).
(Adapted from Gandikota et al., 2014b). (B) Faraday critical wavelength λc at the instability threshold with respect to frequency f for different values of Tc–T. The
curves are theoretical values from Eq. 29. (Data from Gandikota et al., 2014b).
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perturbations. The following expression is thus obtained for the
exponential growth rate ζ , with 2 h the sample height:

ζ2 � 2a2ω2ρlρv(ρl − ρv)2(ρl + ρv)4 k2 − 1(ρl + ρv) σk3thkh (25)

The coordinates of the maximum of the curve ζ(k) in Eq. 25
gives the relation between the vibrational parameters and the
wave number kc of the perturbations showing the maximal
growth rate:

a2ω2 � (ρl + ρv)3
4ρlρv(ρl − ρv)2 σkc[3tanh(kch) + kch

cosh2(kch)] (26)

This relation can be written in dimensionless form with kp =
kch and ρ � ρl,v/(ρl − ρv), using the dimensionless vibration
parameter

B � a2ω2h(ρl − ρv)
4σ

(27)

Equation 26 therefore becomes:

B � (ρ + 1)3
16ρ(ρ − 1)2 [3kptanh(kp) + kp2

cosh2(kp)] (28)

It is not possible to derive an analytical expression as Eqs
25, 26 for viscous fluids. The solution has to be found
numerically from the linearized problem concerning the
evolution of small perturbations of the base state
(Lyubimova et al., 2017). Direct numerical simulations were
also performed by Lyubimova et al. (2017); the importance of

viscosity is there emphasized in the pattern formation (Figures
10C,D), the critical wavelength strongly depending on
viscosity (Figure 11A).

Comparison with experiments by Lyubimova et al. (2017) is
concerned with CO2 in sounding rockets. The variations of Bwith
the dimensionless band wavevector kp agree well with the
experimental data and the linear stability analysis for viscous
fluids (Figure 11B). The variation can be approximately
described by the power law B ~ kp2, with exponent 2 as can be
seen from Eq. 28.

6.3.4 Faraday Instability Under Weightlessness
6.3.4.1 One Single Interface
In H2 under magnetic levitation, a Faraday instability (frequency
half of the vibration), develops on the part of the liquid-vapor
interface perpendicular to the direction of vibration for vibration
parameters above the onset of instability (Figure 12A; Gandikota
et al., 2014b). The latter observation shows that Faraday waves
can indeed form under weightlessness.

The Faraday wave instability under vibration in the absence of
gravity can be schematized by considering two layers of
immiscible and incompressible viscous fluids submitted to a
vibration perpendicular to the interface. Kumar and
Tuckerman (1994) solved the stability problem in a 1-g
environment by using a Floquet analysis. They performed
numerical calculations founded on the linearized Navier-
Stokes equations and analytical calculations; for low viscous
fluids, they introduced phenomenologically the viscosity into
the Mathieu equation. For low fluid viscosities the dispersion
relation for g = 0 conditions is then:

FIGURE 13 | (A,B) Faraday waves on bands (roll pattern) under weightlessness. The black lines are the liquid-vapor interfaces. Both phases appear as alternate
vapor and liquid bands oriented perpendiculary to the vibration direction (white double arrows). (Adapted from Lyubimova et al., 2017). (A) CO2 at Tc−2.4 mK, in the
same cell as in Figure 10A. Vibration a = 0.7 mm and f = 10.37 Hz. (B) H2 at Tc − 10 mK in the same cell as in Figure 10B. Vibration a = 0.83 mm and f = 20 Hz. (C).
Stability map from the results of experiments, analytical analysis and numerical simulation. Experimental results with H2: Red squares with open squares for stable
states and full squares for instability. The red dots and red curve (smoothening) correspond to numerical simulations. The interrupted black curve represents the
analytical estimation (Eq. 32). (Data from Lyubimova et al., 2019). (D–F). Faraday waves on bands near Tc in weightlessness for vibration parameters: (D) a = 2.5 mm,
f = 5 Hz, pattern wavelength λ = 0.8 mm; (E) a = 1.1 mm, f = 25 Hz, λ = 0.4 mm, (F) a = 1.6 mm, f = 20 Hz, λ = 0.1 mm. The double white arrow is vibration
direction. (Data from Lyubimova et al., 2019).
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(ω
2
)2

� σk3

ρl + ρv
− 4k4(μl + μv

ρl + ρv
)2

(29)

The critical amplitude at the onset of instability, as obtained by
Shevtsova et al. (2016) for a single fluid interface, is written as:

ac � 2
ρl − ρv

(2μ(ρl + ρv)
ω

)1/2

(30)

In the above equation the liquid and vapor shear viscosities were
assumed to be equal (� μ) because of the near-critical conditions.

According to Eq. 29, the instability wavelength decreases
with surface tension σ tending to zero when approaching the
CP (Table 2). To this decrease corresponds an increase of
viscous dissipation. When the dissipation becomes too
large, the classical square pattern transforms itself into a
roll (line) pattern. The transition square—line occurs for
temperature |ε| < 3 10−4 in H2 (Figure 12A). On ground a
similar square-roll transition has been observed in CO2 near
its CP by Fauve et al. (1992). The wavelengths measured in
weightlessness experiments (Figure 12B) agree well with
the Kumar and Tuckerman (1994) relation of dispersion
with g = 0 (Eq. 29), except when the transition square-roll
occurs close to Tc.

6.3.4.2 Pattern of Interfaces
Very near Tc where the band pattern develops, and for large
enough vibration velocity an instability can occur on the
interfaces perpendicular to vibrations. It leads to the
appearance of Faraday rolls (Figures 13A,B) because of the
closeness to Tc (section 6.3.4.1 above). Interactions between
the bands make the situation different from the classical
Faraday instability on a single interface between two fluid
layers.

Theoretical, numerical and experimental investigations of the
Faraday instability onset and development in such band pattern
were carried out by Lyubimova et al. (2019), taking into account
the interaction between bands. An analytical solution was found
assuming fluid low viscosity and low surface tension as it the case
near a CP. Assuming small viscosity, the neutral curve can be
written as, with γ = 4k2μ/(ρl +ρv):

(aω)2 � (ω2 + 4γ2 + 8ωγe−kh + 6ω2e−2kh)(ρl + ρv)2
(1 − e−2kh)2(ρl − ρv)2k2 . (31)

One obtains the critical amplitude at the onset of instability by
minimizing the neutral curve (Eq. 31) with respect to the
wavenumber. Due to the vicinity of the critical point, both
liquid and vapor shear viscosities were assumed to be equal (= µ):

ac �
2(2e−2H + (6e−2H + 1)1/2)1/2(ρl − ρv)(1 − e−2H) (2μ(ρl + ρv)

ω
)1/2

(32)

The dimensionless wavelength of the band pattern is written as
H=kh. The variation of ac with f � 2π/ω is drawn in Figure 13C.
When H is large, the interactions between interfaces become
negligible and Eq. 32 reduces to Eq. 30 corresponding to the
estimation for a single fluid interface.

The 2D numerical modeling of Faraday waves uses the Navier-
Stokes equations and, for interface tracking, the volume of fluid
method (Figures 13D–F). It is found that for small band pattern
wavelengths the interactions between the interfaces stabilize the
system. The Faraday wave dynamics on the band interfaces are
similar to sub-harmonic oscillations: the waves correspond to
classical Faraday waves.

Good agreement is found when comparing the analytical
results obtained on the critical amplitude of the vibration with
the stability curves determined by direct numerical simulation
and experiments (Figure 13C). However, the analytical analysis
exhibits a small overestimation of the critical vibration amplitude.
This deviation was expected since similar deviation was observed
by Shevtsova et al. (2016) for a single fluid interface.

7 CONCLUSION

The absence of gravity effects in space, or on Earth when
compensating gravity by magnetic fields, leads to uncover and/
or magnify transport phenomena hidden partially or totally on
Earth. Fluids near their critical point, because of their large or
small anomalous values of thermodynamic and transport
parameters, which accentuate the effects of gravity, make more
apparent the effects of weightlessness and highlight the other
processes.

Thermal effects lead to paradoxical phenomena as the
critical speeding up by adiabatic heating or Piston effect,
instead of the expected critical slowing down due to heat
diffusion. It results that transient phenomena can go again
the common sense such as heat flow flowing backwards, or
cooling resulting from heating. The Piston Effect is in itself
now rather well understood, but some important questions
remain open when going very near the critical point. For
instance, the effect of bulk viscosity can make uncertain or
even wrong the assumption of a uniform pressure distribution
in the early stages of the Piston Effect and a critical slowing
down may occur (Carlès, 1998; Carlès and Dadzie, 2005). Very
near the CP, the thermal equilibration time can become so
small such as to reach the typical acoustic time for sound waves
to cross the fluid sample, where it should saturate at this value
(Zappoli and Carles, 1996). No experimentations yet have
checked this expectation. The typical boundary layer
thickness, which becomes smaller and smaller as the critical
point is neared, can become smaller than the correlation
length, which in contrast diverges at the critical point. A
novel and unknown situation may occur.

Mass transport during liquid-vapor phase separation from
supercritical conditions, once unaffected by gravity effects, lead to
universality in the evolution of the phase separating domains
(drops or bubbles). Although the mechanisms involved in this
process are now well known, some situations have not been well
investigated, such as phase separation when starting in the two-
phase region. Also the thermal problems associated to the release
of latent heat have not been well investigated. Furthermore the
role of a wall with the different wetting properties of liquid and
vapor at its contact and the local heat flux are not well

Frontiers in Space Technologies | www.frontiersin.org May 2022 | Volume 3 | Article 87664216

Beysens Transport Phenomena Fluids Critical Point

https://www.frontiersin.org/journals/space-technologies
www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies#articles


understood, in particular near the critical point when the effect of
the Piston Effect becomes important. Concerning boiling,
different mechanisms can occur when going further from the
CP. As noted by Konishi and Mudawar (2015), there is a severe
shortage of useful correlations, mechanistic and computational
models, which compromises readiness to adopt flow boiling in
future space systems.

Vibrations, which correspond to momentum transport, are
seen to affect the shape of the liquid-vapor interface, which
flattens and orientates perpendicularly to the vibration
direction, making vibration working as a kind of artificial
gravity. Under some conditions of vibrations, this interface
order in bands, a reminiscence of “frozen” waves observed
under gravity. Perpendicularly to vibrations, Faraday
instabilities can develop, whose square wave pattern transforms
into rolls very near the critical point. Special Faraday instability
can also develop on bands, with flow correlations between the
neighboring wave patterns. The diversity of instabilities triggered
by small amplitude and large frequency vibrations can be large
and other instabilities, not yet observed, are likely to be present.
The behavior of fluids in presence of large amplitude and/or small
frequency vibrations could be an interesting topic to investigate.
Very few theoretical and experimental investigations have been
still devoted to this question.

It is thus a rich phenomenology that arises for transport
phenomena near the critical point under weightlessness. It
permits to understand various behaviors which were
misunderstood or ignored on Earth or misleadingly attributed
to buoyancy effects. More generally, these investigations give us
the possibility to predict and better understand the complex and
in some aspects still unexplored behavior of fluids in the spatial
ambiance of weightlessness and time-dependent accelerations
and vibrations.
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