AUTHOR=Fexer Sebastian
TITLE=A novel evaluation method for in situ space debris detection based on conductive traces
JOURNAL=Frontiers in Space Technologies
VOLUME=3
YEAR=2022
URL=https://www.frontiersin.org/journals/space-technologies/articles/10.3389/frspt.2022.867853
DOI=10.3389/frspt.2022.867853
ISSN=2673-5075
ABSTRACT=
To enable the detection of micrometeoroids and small-sized space debris (MMSD) in the sub-mm range, in situ detectors aboard a spacecraft are the tool of choice. Unfortunately, only a few projects have been sent to space until today. However, knowledge of the MMSD population is important to keep the reference models up-to-date and gain more insights into factors like the amount of debris and its distribution along certain orbits. This will be crucial for the safety of current and future spaceflight missions. Present-day in situ detection systems mostly rely on impact recognition and characterization using different methods. One of them is the perforation of a special detection area during such an event. These areas consist of one or more layers provided with conductive traces. Any interruption of one of these lines can be recognized using some kind of electrical continuity testing method or the determination of the resistance. This goes along with some drawbacks, like the difficult or even impossible multi-event recognition along one line. The proposed concept relies on a reflectometric approach. In doing so, for example, pulses are being sent along a well-defined transmission line, which is a part of the detection area. Any alteration in the characteristic line impedance, for instance, due to an impact, will generate reflections back into the generator. Their evaluation can provide the location as well as the complex impedance of the perturbation.