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Mobility analysis is crucial to fast, safe, and autonomous operation of planetary

Wheeled Mobile Robots (WMRs). This paper reviews implemented odometry

techniques on currently designed planetary WMRs and surveys methods for

improving their mobility and traversability. The methods are categorized based

on the employed approaches ranging from signal-based and model-based

estimation to terramechanics-based, machine learning, and global sensing

techniques. They aim to detect vehicle motion parameters (kinematic states

and forces/torques), terrain hazards (slip and sinkage) and terrain parameters

(soil cohesion and friction). The limitations of these methods and

recommendations for future missions are stated.
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1 Introduction

For more than five decades, Wheeled Mobile Robots (WMRs) have been proven

essential in space exploration and planetary missions. Traversing a wide range of

environments, maneuverability, ability to be directed to special features, and lower

weight and power consumption with respect to other platforms are some reasons

supporting their increasing popularity. Figure 1 depicts the well-known WMRs in the

past, present, and future missions on different extraterrestrial bodies. For a

comprehensive bibliography on planetary WMRs the reader is referred to (Sanguino,

2017). The operation of WMRs on planetary bodies requires sophisticated software and

hardware solutions for Guidance, Navigation and Control (GNC). This is indeed because

of different conditions prevailed on extraterrestrial bodies. The complex and unknown

environments, interaction with heterogeneous soil, steep slopes, loose and multi-phase

terrains, driving over low gravity regions, harsh lighting conditions, unavailability of GPS

signals, power consumption constraints, and computational limitations of embedded

systems are critical challenges that must be dealt with when developing GNC modules

(Quadrelli et al., 2015). Odometry or knowledge of pose and orientation of the vehicle

with respect to some local references is a key component of GNC algorithms. Due to

constraints and uncertainties involved, the current planetary WMRs rely on tele-

communication with Earth-based stations to perform odometry and plan for safe

operation. This ground-in-the-loop operation results in reduced time a vehicle can
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travel per day on a specific extraterrestrial body. As a result,

future planetary missions demand for greater level of technology

for localization to enhance the autonomy of roving platforms. In

this paper, we first review the implemented odometry solutions

on planetary WMRs and highlight their advantages and

shortcomings. Then, we proceed with reviewing the solutions

that have been proposed to improve the traversability and

mobility of the planetary WMRs and aiding the traditional

odometry techniques. Here, we have categorized these

solutions into five different approaches including signal-based

methods, model-based methods that rely on kinematics and

estimation theory, terramechanics-based methods, machine

learning techniques, and global sensing.

2 Implemented navigation
techniques on planetary WMRs

Odometry is central to every navigation system. It refers to

estimating pose and orientation of a vehicle with respect to some

reference coordinate frames. Odometry can be performed using

proprioceptive sensing (e.g., IMU and encoders) or exteroceptive

sensing (e.g. camera and Sun sensor). Therefore, depending on

the sensors involved the problem is called Wheel Odometry

(WO), Inertial Odometry (IO), or Visual Odometry (VO). The

WO uses a kinematic model of the vehicle along with the

rotational velocity of the wheels, acquired by the encoders, to

estimate pose and orientation. The drift of this method on even

and planar terrains is above %10 of the traversed distance

(Azkarate Vecilla, 2022). This solution was implemented on

Sojourner in Mars Pathfiner mission in 1997 for pose

estimation (Matijevic, 1997b). Other Mars rovers of Jet

Propulsion Laboratory (JPL) use this type of odometry in

combination with other means. The IO uses noisy

measurements of inertial sensors and a kinematic model to

estimate pose and orientation. The noise level of

accelerometers results in 5–10% drifts in estimating pose

making the IO ineffective in translational motion. However, it

has been used to accurately update the rotational states. Using

sensor fusion through Kalman-based filters combined WO and

IO was proposed in (Baumgartner et al., 2001; Ali et al., 2005) to

ensure the accurate odometry on high-traction terrains for Spirit

and Opportunity rovers of Mars Exploration Rover (MER)

missions. This technique was also aided by a Sun sensor to

provide absolute heading estimations. The VO processes a

sequence of onboard camera images for motion estimation.

This method is independent of wheel-terrain interactions and

provides accurate estimates (1–5% drifts). The rover Curiosity of

Mars Science Laboratory (MSL) mission and Perseverance rover

of Mars2020 mission combine the previously stated odometry

methods with VO (Gong, 2015). The Rosalind Franklin rover of

ExoMars mission employs combined VO and IO for its

localization (Bora et al., 2017). The VO was also implemented

on the Lunar rover Yutu two of Chang’e 4 mission (Wan et al.,

2014). The combined WO, IO, and VO can produce estimates

with 1–2% of drift (Azkarate Vecilla, 2022). Although VO

provides a superior performance for localization, it is

computationally expensive which negatively affects power

consumption and speed of a WMR. To resolve this problem

Field-Programmable Gate Arrays (FPGAs) was proposed as an

efficient platform for running VO (Howard et al., 2012). Table 1

summarizes the odometry techniques for planetary WMRs and

compares their performance.

3 Mobility and traversability
enhancement

To increase the operation time, future planetary WMRs

require a higher degree of autonomy to perform navigation

tasks without relying on high-latency tele-communication

with Earth-based stations. However, operation on

extraterrestrial bodies is not analogous to Earth operations

and involves challenging problems. For instance, driving on

soft deformable and non-homogeneous soil, steep slopes, few

distinguishable visual features, permanent shaded areas, and

processing power constraints on embedded systems are some

of these challenges. These problems demand for design of specific

algorithms that are capable of predicting traversability for

planning safe autonomous operations and improving mobility

FIGURE 1
Planetary WMR platforms, date, and site of missions.
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and odometry on unknown rough terrains. This section surveys

dozens of these methodologies.

3.1 Direct signal-based approaches

These approaches use output signals of some sensors to

detect abnormal conditions and correct odometry. Hardware

redundancy, use of special sensors, frequency analysis, and logic

reasoning are some methods in this category. Fuzzy logic and

expert rule-based techniques were used in (Ojeda et al., 2004) to

compare data from redundant encoders with each other, gyros,

and motor currents to detect slip and correct odometry for a six-

wheel robot with a rocker-boogie suspension system. However,

this technique does not estimate the degree of wheel

slip. (Ojeda et al., 2006). proposed a slip estimator for

odometry correction in the direction of motion that

requires accurate current measurements and some specific

terrain parameters. They argue that the terrain parameters

can be estimated online either using absolute positions

provided by GPS or induced slip in a single wheel for a

WMR with at least four driven wheels. The slip detection in

Mars rover Curiosity, is done based on motor currents and

visual sensors (Arvidson et al., 2017). When abnormal

currents are detected the vision system is activated to aid

the navigation system with VO. In case features are not

unique in the scene, using wheel tracks (Maimone et al.,

2007) or steering mast cameras are proposed (Strader et al.,

2020). Visual odometry correction on deformable terrains

were also proposed in (Reina et al., 2010) using fuzzy

reasoning and in (Nagatani et al., 2010) using special

telecentric lens. These techniques, however, require high

computational cost on embedded processors of planetary

WMRs. Thermal cameras are another form of special

sensors that were used in (Cunningham et al., 2015) to

develop a non-geometrical method for predicting

traversability of a terrain through analysing its thermal

inertia from infrared imagery. However, long observation

periods are required to obtain a good prediction.

3.2 Estimation and kinematics

These methods are based on kinematics models derived from

the physics of WMRs and estimation theory tools such as

Kalman-based filters. In (Dissanayake et al., 2001), non-

holonomic kinematic constraints were used to obtain velocity

measurements for aiding the IO within an Extended Kalman

Filter (EKF) framework. The method, however, is not applicable

on low-traction and uneven terrains of extraterrestrial bodies as

the authors modeled slip as a zero-mean noise. Other kinematics-

based methods that aim to improve odometry performance were

proposed in (Hidalgo-Carrio et al., 2014; Lou et al., 2019). A

vision-based method was proposed in (Helmick et al., 2006)

which developed a forward kinematics model of rocker–bogie

suspension system for a Kalman filter to combine inertial and

visual measurements as well as wheel rates and wheel steering

angles for slip estimation and compensation. However,

permanent shaded regions of Moon, featureless scenes of

Mars, and power constrains of WMRs are the main

limitations of visual techniques. In (Ward and Iagnemma,

2008) a tire traction model within an EKF framework was

incorporated to fuse data of encoders, IMU, and GPS for

detecting slip and immobilized conditions. However, GPS

signals are not available on extraterrestrial bodies. Although,

most research works rely on EKF for estimation, in (Sakai et al.,

2009; Reina et al., 2020) two different filters were used. The

former proposed a 6-DoF localization solution within an

Unscented Kalman Filter (UKF) framework based on the

measurements of stereo cameras, an IMU, and wheel

encoders. The latter employed a Cubature Kalman Filter

(CKF) to estimate terrain properties using vibrations. To

reduce odometry error of combined IO and WO, (Kilic et al.,

2019), employed non-holonomic constraints and the zero-

TABLE 1 Comparison of different odometry methods for planetary WMRs.

Method Accuracy Frequency Advantages Limitations

(% traversed distance) (Hz)

WO 10 10–100 -simple structure
-not computationally demanding

-high drifts for uneven
and deformable terrains

IO 5–10 10–100 -self contained
-not computationally demanding

-error accumulation
of accelerometers

VO 1–5 0.5 -immune to error accumulation
-independent of terrain

-computationally demanding
-low-speed operation

Combined 1–2 10 -enhanced accuracy -complex structure
-low-speed operation
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velocity updates with periodic stops. The autonomous stopping

times through estimating and monitoring wheel slip were

investigated in (Kilic et al., 2021). However, these methods

sacrifice accuracy for traverse rate. In (Malinowski et al.,

2022) the effect of integration of predicted slip in WO and

VO was investigated using an EKF architecture.

3.3 Terramechanics and dynamics

Terramechanics studies soil properties and wheel-terrain

interactions to find normal and shear stresses developed at the

contact areas using, e.g., empirical Bekker-Wong models

(Bekker, 1969; Wong and Reece, 1967) and their recent

modification (Higa et al., 2015). The Mars rover Sojourner

performed parameter estimation of Martian soil to identify

cohesion and internal friction angle relying on Earth-based

analyses (Matijevic, 1997a). However, Earth-in-the-loop

procedures are time consuming and inefficient. Online

estimation of these parameters were proposed in

(Iagnemma et al., 2004) based on simplified terramechanic

equations and a least squares technique that identifies the

parameters using measurements of the rover configuration

sensors, encoders, potentiometers, and six-axis force/torque

sensors. The simplified terramechanics-based models were

also used in (Ishigami et al., 2007) to deal with longitudinal

and lateral slip during steering manoeuvres on deformable

soil. However, the accuracy of the estimations is under doubt,

since simplified models are not a good representation of real

interactions. In (Higa et al., 2016), six-axis force/torque

sensors and five types of custom-built contact sensors were

used to obtain the three-dimensional stress distribution at the

wheel-terrain contact area on lunar regolith simulant. The

method, however, for a single wheel results in an error of

1–11%. Real-time estimation of terrain parameters was also

addressed in (Li et al., 2018) using semi-empirical

terramechanic equations and EKF for WMRs driving on

deformable slopes. However, this method is not useful for

untraversed areas as it requires a history of measurement data.

To measure the terramechanic parameters ahead of the rover,

(Zhang W. et al., 2022b), proposed use of an articulated

wheeled bevameter equipped with force and vision sensors

to predict the slip and sinkage of wheels. An in-situmethod for

estimating sinkage was given in (Guo et al., 2020) that defines

a new reference line of wheel sinkage and simplifies

terramechanics into closed-form equations using force/

torque sensors. The method is limited to moderate and

high-traction terrains.

3.4 Machine learning approaches

These approaches are mainly based on classification or

regression techniques to respectively provide discrete or

continuous estimates of the quantities of interest. A terrain

classifier was trained using vibration signals measured by an

accelerometer, which is subject to noise and bias (Brooks and

Iagnemma, 2005). The training process was also offline making

the method inappropriate for unknown environments. To

alleviate its shortcomings, the same authors proposed a self-

TABLE 2 Summary of mobility and traversability enhancement methodologies for planetary WMRs.

Approach Potential applications Advantages Disadvantages

Direct signal-based -hazard avoidance
-slip estimation

-odometry correction

-simple structure -extra hardware cost
-requiring accurate
measurements

-no single systematic
approach

Estimation and kinematics -odometry correction
-slip estimation

-immobilization detection
-terrain properties estimation

-well-studied tools
-systematic solutions
-improved reliability
using sensor fusion

-errors in system and noise models

Terramechanics and dynamics -soil properties estimation
-slip estimation
-stress estimation
-sinkage estimation

-applicable on
deformable and
uneven terrains

-modeling errors
-requiring special

hardware
-wheel-level tests

Machine learning -hazard avoidance
-slip estimation

-terrain properties
estimation

-improved autonomy -computationally demanding
-depending on
training process

-vulnerable to noise

Global sensing -odometry correction
-hazard avoidance

-improved accuracy -computationally demanding
-depending on resolution

of global maps
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supervised learning method that predicts the terrain properties

using two distinct classifiers (Brooks and Iagnemma, 2012).

The Support Vector Machine (SVM) proprioceptive

classifier analyzes vibration signals or combination of

torques and sinkage to generate labels for training an

exteroceptive terrain classifier. The second SVM classifier

uses stereo imagery to identify potentially hazardous terrains

from a distance. However, this training method is uni-

directional where vibration signals are only used to train

the visual classifier. To improve the training procedure,

(Otsu et al., 2016), proposed a bi-directional training

technique where the two classifiers train each other. In

the context of slip estimation, Omura and Ishigami (2017)

proposed a SVM learning technique based on the

measurements of the normal force and contact angle at

the wheel-terrain interaction area to generate correlation

labels for the slip and classify wheel slip into three levels:

non-stuck, quasi-stuck, and stuck. (Gonzalez et al., 2018a).

compared the performance of supervised (artificial neural

networks and SVM) and unsupervised (self organizing map

and k-means) classification techniques in detection of three

discrete levels for longitudinal slip (low, moderate, and high)

based on the measurements of IMU, encoders, and motor

currents. A vision-based classification method was proposed

in Endo et al. (2021) to predict wheel slip via estimating

terrain slopes. The computational cost of image processing

limits the use of visual approaches. Deep learning techniques

were also proposed for proprioceptive terrain classification

based on the measurements of motion states and wheel

forces/torques (Vulpi et al., 2020). At best its error is

around 8.6%. The main limitation of these methods is that

slip cannot be estimated in a continuous manner and the

outputs are only useful to avoid hazardous terrains. In

(Angelova et al., 2007), continuous slip was predicted

from a distance based on visual data and non-linear

regression models that correlates terrain appearance and

geometry with slip. The applicability of the method is

under doubt since, it uses visual sensors and it has some

difficulties to determine the terrain types. In (Gonzalez et al.,

2018b) Gaussian Process Regression (GPR) is used to predict

continuous slip and its variance based on the measurements

of IMU and motor torques. However, the computational

effort of GPR is high as it uses the history of features to

perform its predictions. The GPR was also employed on

China’s Mars rover Zhurong to estimate the average of

longitudinal and lateral slip using the measurements of

IMU, encoders, and motor currents (Zhang T. et al., 2022a).

3.5 Global sensing

Global localization solutions are incorporated to bypass

limitations of the odometry and correct its position drifts. A

tele-communication link between Mars orbiter Odyssey and

MER platforms enabled the navigation system to obtain

position accuracy of about 10 m around 3 days (Guinn,

2001). Skyline signature matching between images

captured by a WMR and a global map was proposed in

(Chiodini et al., 2017) to initialize the vehicle position after

landing on Mars. (Matthies et al., 2022). proposed an

onboard global localization technique which involves

mapping Lunar craters from orbit and then using stereo

cameras or LiDAR for detecting the craters landmarks. The

accuracy of this method depends on the resolution of global

maps. Learning algorithms such as Siamese Neural

Networks were proposed for global localization on Mars

and Moon respectively in (i Caireta, 2021) and (Wu et al.,

2019).

3.6 Summary and potential future
directions

Table 2 summarizes the methodologies discussed

throughout this section and indicates their potential

applications for improving mobility and traversability of

planetary WMRs. The level of feasibility of these solutions

leaves plenty of room for improvement. One major problem is

computational limitations of embedded systems within these

robots, and future research must be directed toward

developing computationally efficient software solutions on

available hardware. Distributed sensing, either sensor-level

or track-level fusion, can be used in the estimation

architecture to enhance its performance. To achieve greater

level of autonomy, the prospective learning solutions should

be designed based on multi-directional communicating

training techniques. Novel terramechanics models based on

updated information on planetary surfaces (e.g., soil

composition, surface geometry) are needed to

simultaneously enhance fidelity and efficiency of the

traditional models. Fast and robust vision-based algorithms

must be developed to detect and match features in harsh

lighting conditions and featureless environments of

extraterrestrial bodies. Another prospective solution is

combining different approaches, reviewed in this section, to

design robust systems for high-speed navigation of future

planetary WMRs.

4 Conclusion

This paper surveyed dozens of methodologies for

mobility analysis and mission planing of planetary WMRs.

The performance of the currently implemented odometry

methods was compared and potential solutions for

improvement of these methods were discussed. Further
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research is still demanded to improve the practicality and

performance of the proposed methods. Future research

should be directed toward reducing computational

burdens on embedded systems, use of distributed

estimation and multi-directional learning techniques,

developing terramechanics models for planetary interfaces,

and designing fast and robust vision-based algorithms for

high-speed operation of planetary WMRs.
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