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Nature benefits from a progressive evolution over millions of years, always adapting and
finding individual solutions for common problems. Hence, a pool of diverse and efficient
solutions exists that may be transferable to technical systems. Biomimetics or bio-
inspiration has been used as a design approach for decades, revolutionizing products
and processes throughout various industries. Thus, multiple examples can also be found
in the space sector, since many characteristics found in biological organisms are also
essential for space systems like response-stimuli adaptability, robustness and lightweight
construction, autonomy and intelligence, energy efficiency, and self-repair or healing
capabilities. This review focuses on biomimetics within the field of aerospace
engineering and summarizes existing bio-inspired concepts such as drilling tools
(wood wasp ovipositor drilling), telescopes (lobster eye optics), or gasping features
(gecko feet adhesion capabilities) that have already been conceptualized, partially tested,
and appliedwithin the space sector. Amultitude of biologicalmodels are introduced and
how they may be applicable within the space environment. In particular, this review
highlights potential bio-inspired concepts for dealing with the harsh environment of
space as well as challenges encountered during rocket launches, space system
operations and space exploration activities. Moreover, it covers well-known and new
biomimetic concepts for space debris removal and on-orbit operations such as space-
based energy production, servicing and repair, and manufacture and assembly.
Afterwards, a summary of the challenges associated with biomimetic design is
presented to transparently show the constraints and obstacles of transferring
biological concepts to technical systems, which need to be overcome to achieve a
successful application of a biomimetic design approach. Overall, the review highlights
the benefits of a biomimetic design approach and stresses the advantage of biomimetics
for technological development as it oftentimes offers an efficient and functional solution
that does not sacrifice a system’s reliability or robustness. Nevertheless, it also underlines
the difficulties of thebiomimetic design approach andoffers some suggestions in how to
approach this method.
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1 Introduction

1.1 Biomimetics within industry

Biomimetics, bio-inspiration or biomimetic design describes the process of getting inspired
by nature and using biological concepts for the development of technical solutions. Features or
mechanisms of interest are extensively studied to understand their functioning, before they are
abstracted and transferred to technical applications, products and processes (Wanieck et al.,
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2017). Biomimetic design has been used for some time now and
several biomimetic concepts have been adapted and implemented as
different products and technologies, now well-established on the
market. Prominent examples are the lotus paint mimicking the
lotus leaves’ hydrophobic tendencies to repel dirt and water (Solga
et al., 2007; Spaeth and Barthlott, 2008), and Velcro inspired by the
hooks of thistles to achieve reusable fastening (Velco, 1955; Menon
et al., 2006). Many more concepts can be found in the prototype and
testing stage, with the goal to establish products and technologies
throughout industries. Within the maritime sector for example,
biomimetics has been heavily researched in relation to reducing the
frictional resistance of ship hulls on the example of shark skin (Figures
1A, B) (Ibrahim et al., 2021, 2018; Fu et al., 2017; Wen et al., 2014;
Oeffner and Lauder, 2012) and the salvinia plant (Oeffner et al., 2021;
Walheim et al., 2021), thereby significantly reducing the fuel
consumption and emissions associated with waterborne transport.
In the transportation sector, bio-inspired concepts have been applied
for the development of cars (puffer fish) (Kozlov et al., 2015), trains
(kingfisher bill) (Figures 1C, D) (Foo et al., 2017; Hu et al., 2018), and
even airplanes (winglets of birds) (Figures 1E, F) (Guerrero et al.,
2012). Furthermore, improved aerodynamic characteristics through
whale-mimicking tubercles on the edge of wind turbine blades,
ventilation fans, and windmills have been achieved within the
energy sector (Figures 1G, H) (Fish et al., 2011; Ng et al., 2017;
Zhang et al., 2020), and more efficient construction ways presented by
using fold structures based on tree leaves or insect wings and growth
patterns adapted from organism’s exoskeletons within architecture
and construction (Pohl and Nachtigall, 2015).

More recently, advances have especially been achieved in the fields
of robotics with e.g., elephant trunk-inspired robotic arms (Zhao et al.,
2018; Mazzolai et al., 2019) and compound eye-sensors (Bora et al.,
2018; Agrawal and Dean, 2019) among many others. Lastly,
biomimetics cannot only be used as direct design approach but has
also been proven to improve processes such as 3D-printing (Zhu et al.,
2021), design (Kamps et al., 2017), and manufacture and assembly
(Schranz et al., 2020). The examples mentioned above describe only a
small portion of available bio-inspired technical solutions, but already

demonstrate that biomimetics is a viable approach for the design of a
diverse range of solutions in extreme environments and under
competitive requirements.

Just as in other industries, biomimetics is not a foreign approach
when it comes to aerospace engineering. Since there is currently no
proof of biological life within the harsh environment that is space
anywhere but on Earth, no direct natural examples can be used as a
model. Therefore, the space sector presents a prime use case for
biomimetic design as it describes the process of understanding the
underlying natural mechanisms and transferring them into technical
applications no matter of the original biological function rather than
simply copying them. Several systems such as drilling tools [wood
wasp (Pitcher et al., 2020)], telescopes [lobster eye (Tamagawa et al.,
2020)], gasping features [gecko feet (Jiang et al., 2017)] and many
more have already been conceptualized and partially applied in space
technology development and present solutions, where conventional
technologies are not able to mimic and compete with the highly
optimised biological model.

The space environment, however, presents an especially
challenging setting due to the existing conditions of low to zero
gravity, high temperature fluctuations, elevated levels of UV,
electromagnetic and particulate radiation, reactive atomic oxygen,
as well as natural micrometeoroids and space debris (Finckenor
and Groh, 2015; Aïssa et al., 2019). Despite the initial assumption
that biological concepts may be unsuitable for the space environment
based on their evolution under significantly different environmental
conditions, biomimetics oftentimes offers an efficient and functional
solution that does not sacrifice a system’s reliability or robustness
(Menon et al., 2006). Due to the variety of features available in nature,
many different approaches for similar actions can be found and
selected based on specific system requirements. In addition, many
features formed in biological organisms are also essential for space
systems such as response-stimuli, adaptability, robustness and
lightweight construction, autonomy and intelligence, energy
efficiency, and self-repair or healing capabilities (Ayre, 2004; Egan
et al., 2015). Such biological characteristics can be transferred and
adapted to improve or even revolutionize traditional engineering

FIGURE 1
(A) Microscopic photograph of the riblet surface structure of shark skin. Reproduced from (Wen et al., 2014), with permission from COMPANY OF
BIOLOGISTS LTD, (B) photograph of a bio-inspired riblet foil. Reproduced from (Wen et al., 2014), with permission from COMPANY OF BIOLOGISTS LTD, (C)
sketch of a kingfisher bird. Reproduced under CC-BY-4.0, Hu et al. (2018), (D) photo of a train inspired by the kingfisher’s beak shape. Reproduced under CC-
BY-4.0, Hu et al. (2018), (E) photograph of a bold eagle showing of its winglets on its wing tip. Reproduced under CC-BY-4.0, Guerrero et al. (2012), (F)
biomimetic transfer of winglets onto commercial airplanes Reproduced from Pixabay. (G) photograph of a humpback whales fin with turbercles in its edge.
Reproduced from Pixabay, (H) concept transfer of turbercles onto a wind turbine blade. Reproduced from Fish, F. E. (2009), with permission from Spie
(Karleena Burdick, Assistant editor) and Dr. Frank Fish.
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methods. Hence, several studies and research activities have already
considered nature as model for aerospace technology development.

This article summarizes the most recent advances in biomimetic
research and developments within the space industry and presents
future-oriented concepts as well as ideas for various innovative
technologies that could lead future development and revolutionize
existing space systems. In addition, cutting-edge mechanisms that
have not yet been investigated in detail but present great promise to
improve conventional systems will be highlighted. Lastly, challenges
and limitations of the biomimetic design approach are introduced to
deliver a comprehensive overview over the potential and problems of
biomimetics in general.

All of the mentioned biological concepts are summarized in
Section 8 Supplementary Table S1 below, stating their feature or
function of interest together with a short description of how it
works as well as an example application within the aerospace
industry, other industries or sectors of application, and the
respective literature.

1.2 Literature review methodology

The interest in a biomimetic design approach applied to aerospace
engineering is rapidly growing as indicated by the graph in Figure 2,
showing an increase of articles, books and other scientific documents
over the past 10 years.

This literature review was conducted based on reviews, research
articles, book chapters, book reviews, and mini reviews from the
databases ScienceDirect, SpringerLink, Google Scholar, and
ResearchGate. The following keywords were used as sources of
search records: biomimetics, bio-inspired, bionic, aerospace, and
space. This review aims at presenting the most recent advances
within aerospace research and highlighting innovative and
prominent biomimetic concepts currently under consideration or
with significant potential for the aerospace industry. Therefore, the
results were filtered to include innovative research and studies from

2018 up to August 2022. Using the snowballing approach, more
background information about valuable and interesting concepts
was used to describe biological models in more detail and display
the full picture in terms of existing research of single concepts. Only
literature relevant to the research question was included, while articles
with controversial content, methods or conclusions were excluded.
Thus, this literature review provides context for the application of
biomimetics within aerospace engineering and delivers background
information for new research. It therefore acts as a general guide to
what is already known and applied in regard to biomimetics and
aerospace engineering, as well as what concepts and models hold
potential for future investigation.

2 Biomimetics for the space
environment

2.1 Defenses against the extreme space
environment

As mentioned above, the space environment presents multiple
extreme characteristics fatal to living beings on Earth. Nevertheless,
mechanisms can be found that show promising performances in the
protection of organisms to cope with ionization radiation, extreme
temperatures, electromagnetic interference, micro asteroids and space
debris.

In humans and other living beings as well as some fungi and
bacteria, the biopolymer Melanin is found in cells and is mainly
responsible to protect the cell from UV or ionizing radiation.
Therefore, synthetic Melanin was produced and investigated for its
wavelength absorbing and radiation protection potential with
applications in aerospace engineering and other industries (Turick
et al., 2011; LiW. et al., 2020; Vasileiou and Summerer, 2020). Another
biological mechanism to deal with high levels of radiation can be
found in bdelloid rotifers. They display a very effective DNA repair
mechanism to restore ionization radiation damage (Gladyshev and

FIGURE 2
Graph indicating the exponential increase in the number of publications published related to the topic of biomimetics for aerospace applications. Key
word search was conducted using the ScienceDirect database with the following key words: (biomimetics OR bionics OR bio-inspired OR bioinspired) AND
(aerospace OR space), from 2002 to 2022 (State 10.10.2022). Note that the number of publications in 2022 can be anticipated to increase slightly until the end
of the year.
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Meselson, 2008;Wiles and Schurko, 2020), whichmay be transferrable
or adaptable in the future to produce radiation-tolerant coatings and
materials. Especially for manned missions, the protection against UV
radiation is vital for the health and survival of humans spending
extended periods of time in space (Williams, 2022).

Due to the highly fluctuating temperatures within the space
environment and, therefore, the enormous range of extremes, heat
flow as well as temperature management and control are crucial steps
to maintain the integrity of space systems. By incorporating a
circulatory systems inspired by biological organisms into solar
panels, experiments have demonstrated the potential for a
symbiotic use of a single structure for a component’s structural
efficiency as well as thermal management (Williams et al., 2007).
Furthermore, bio-inspired porous carbon ablators were assessed
regarding their thermal protection of spacecrafts during the re-
entry process into planetary atmospheres, showing promising
results to produce enhanced thermal protection even at high
temperatures (Poloni et al., 2022).

On the other side of the temperature spectrum, many biological
organisms can be found with distinctly evolved mechanisms to protect
against freezing temperatures and the subsequent formation of ice
crystals in their cells and tissue. Examples for this are ice-binding
proteins or antifreeze proteins and glycolipids, which are currently
applied within the fields of agriculture, cryobiology and food

technology, but also hold great promise for material technology
and therefore, aerospace engineering by preventing metals from
frost formation and liquid materials from freezing (Bredow and
Walker, 2017; Li and Guo, 2018; Zhou et al., 2019; Białkowska
et al., 2020; Xiang et al., 2020).

Recently, researchers have taken first strides into developing
lightweight and flexible materials for the protection of structures
and equipment against electromagnetic radiation. Experiments
show that electromagnetic interference can be successfully shielded
by substituting conventional metal shields with ones inspired by
cellular architecture with tiny pores mimicking cell walls as
aerogels shown in Figure 3 (Liu et al., 2018; Zeng et al., 2020).

While micrometeoroids have been a threat to space systems since
the beginning of space flight, the likelihood of a collision with one is
rather small compared to the ever-increasing quantity of
anthropogenic space debris circulating Earth's orbits. Hence,
collisions with such debris become an ever more likely problem.
Two options are available for dealing with space debris in orbit:
avoidance maneuvers or shielding against collisions. Shielding is
very expensive, only possible to a certain degree (dependent on size
and velocity of debris) and adds to the mass of the system,
inadvertently reducing payload capabilities. Avoidance maneuvers
are often an alternative, sometimes, however, a must to escape
collisions with large debris. While maneuvers are not only fuel-

FIGURE 3
(A) Diagram how the electromagnetic interference shielding works with aerogels and a graphical representation of different sample performances
throughout literature. Reproduced from Zhou et al (2021), with permission from Elsevier, (B) Photograph of the microstructure in the longitudinal (g)) and
transverse (h)) planes of a MXene/CNF hybrid aerogels with 17wt% ultrathin cellulose nanofibrils content. Reproduced under CC-BY-4.0, Zeng et al. (2020).
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costly, they also require knowledge and tracking of existing debris
(OECD, 2020). Until 2020, the International Space Station (ISS),
continuously home to a crew of astronauts since 1999, was forced
to conduct 27 collision avoidance maneuvers. Another four instances
occurred, where debris was not detected in time, demanding an
emergency evacuation by the crew (Johnson, 2012; ODPO, 2020).
Other unoccupied space systems such as CubeSats, which are usually
not equipped with their own propulsion system, are not capable of
performing debris evading maneuvers. Besides these obvious
challenges, more costs associated with space debris are related to
the repair or replacement of spacecrafts, space situational awareness
activities, data-blackouts when evading maneuvers are conducted, and
insurance costs for operational space systems (OECD, 2020). Hence,
finding cost-efficient and effective ways for debris detection and
tracking can have enormous economic benefits and make space
travel even safer.

In nature, several concepts can be found that deal with similar
problems as well. Dragonflies, for example, are able to pursue their
prey within a turbulent environment and distracting stimuli, yet still
manage to capture a selected target with a 97% success rate. They do so
by using so-called small target motion detector neurons, which are very
sensitive to target contrast. Hence, they present an efficient and highly
adaptable visual processing system to prevent collisions with their
surrounding, which has already been modified and transferred into
tracking algorithms (Bagheri et al., 2017; Colonnier et al., 2019).
Investigations by Bagheri et al. (2017) showed that their dragonfly-
inspired algorithm presented a higher average success (47.6%) in
tracking small targets within a natural scene compared to
conventional algorithms (maximum average success: 41.9%).
Likewise, locusts demonstrate an attractive mechanism to avoid
collisions using their lobula giant movement detector neurons.
Those enable locusts to recognize approaching obstacles even in
low-contrast conditions or textured backgrounds in motion. Once a
collision alert is triggered, the locust can adapt its behavior mid-flight
to alter its trajectory and avoid the collision. Since this collision
avoidance mechanisms seems very promising, it has already been
considered for the implementation of smart vehicle technology and
robotic navigation with obstacle avoidance (Yue et al., 2006; Keil et al.,
2018; Wang et al., 2021b). Therefore, it shows potential for application
within the context of aerospace engineering and space exploration.

2.2 Vibration dissipation, fracture prevention
and self-healing

Space systems designated for the exploration of extra-terrestrial
bodies face an immense challenge right at the beginning of their
mission. The landing of unmanned spacecrafts on the surface of
another planet is oftentimes violent and associated with enormous
impact forces. Therefore, several actions and measures have been
taken to protect sensitive equipment and payloads against those forces.
Likewise, nature too deals with great impact forces and has spent
millions of years of evolutionary development cycles to evolve
perfectly matched strategies and extraordinarily sophisticated
systems to deal with the existing challenges such as great impacts.
Thus, space technologies that have only been developed over the
course of a few decades could highly benefit by learning from nature.

The seeds of trees fall from great heights to reach the bottom and
have therefore developed multiple different protection mechanisms

for the valuable payload of DNA contained within. The seeds of the
plant Tragopogon dubius, for example, are attached to stalked
parachutes, which have evolved to increase the aerodynamic drag
of the seed and therefore slow its descent, which not only allows the
seed to survive but also increase the distance travelled during its
descent from the tree in order to propagate the species as far as
possible (Pandolfi et al., 2012). While parachutes are the conventional
solution for slowing the descent of space systems, velocity reduction
may be optimized using parachutes of plants that have evolved over
centuries.

In contrast to slowing the seed and thereby reducing the negative
effects of hitting the ground, many species of nuts have evolved
differently. Instead, they produce a rigid layer of protective shell
around their seed, designated to protect it during impact (Islam
et al., 2021). Likewise, insects form very stiff cuticles to protect
against predators. These cuticles consist of hard composite structures
formed with chitin fibers arranged in distinct patterns, which enable
insects to cope with extensive amounts of strain and load. The
composite structure is able to adapt to external forces and change its
thickness, stiffness and orientation of fibers accordingly (Jullien et al.,
2020; Stamm et al., 2021). This bio-material on its own has shown to
produce a tensile strength of 130 MPa and an elastic modulus of
2,900 MPa, which can further be increased through combination
with other materials such as polymers or resins (Gadgey and
Bahekar, 2017; Hou et al., 2021). Marine species like mollusk shells,
too, make use of a multilayered structure called nacre to build their own
homes and as protection, which demonstrates a composite architecture
of impressive mechanical characteristics (Yaraghi and Kisailus, 2018).
Different species of shells produce different types of nacre some of
which present a Young’s modulus of 60–70 GPa and a tensile strength of
70–100 MPa. (Barthelat et al., 2016; Jiao et al., 2019; Askarinejad et al.,
2021). Nacre is also known for its great fracture propagation and
deflection properties based on their high stiffness and fracture
toughness. Gao et al. (2017) compared the mechanical properties of
the natural nacre produced by the species Cristaria plicata and artificial
composite materials, demonstrating higher flexural strength (267MPa)
and similar fracture toughness (1.9 MPa/m2) for the artificial material
compared to natural nacre (172MPa, 2.4 MPa/m2, respectively). Other
mechanical parameters of the artificial biomaterial like ultimate stiffness
and elastic modulus reached values of 18.6 GPa (Gao et al., 2017) and
11 GPa (Raj et al., 2020), respectively.

A third option of dealing with high impact forces is demonstrated
by the peel of the pomelo fruit. Instead of evolving hard materials
capable of preventing fractures of the plant’s fruit or slowing its
descent, the peel of the pomelo fruit demonstrates a thick layer
with open cell foam structure of varying pore size as depicted in
Figure 4A), which protects the fruit inside from damage when falling
from trees of up to 10 m in height. Experiments have uncovered a
dissipation of up to 90% of the impact energy while testing on free
falling pomelo fruits. They therefore present excellent impact damping
and energy dissipating capabilities (Ortiz et al., 2018). More recently,
the beneficial features of the pomelo’s peel have been recognized by the
scientific community and several articles have been published studying
and modelling the foam-like structure (Thielen et al., 2013; Bührig-
Polaczek et al., 2016; Ortiz et al., 2018; Li T.-T. et al., 2019). Hence,
artificial versions of the foam may be applicable to dampen the effects
of vibrations and reduce oscillations of space systems as well.

While some animals protect vital organs through fluid immersion,
which absorbs the shock rather than transferring it to the valuable
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payload, the woodpeckers and Australian cassowary are two types of
birds that have evolved different features to protecting their brains
from high impact forces. The woodpecker uses its elongated and
pointed beak to penetrate the bark of trees and find insects to feed on.
It achieves the penetration through high percussive speeds of up to
22 times per second, accomplishing frequencies between 20–25 Hz
and an acceleration between 600 g—1,000 g (Bian and Jing, 2014).
Hence, to protect its brain, the skull has formed so that the brain is
tightly held in its position, while its tongue reaches from its beak all the
way around the brain along the back of the skull. Hence, even under
extensive stress, the brain is protected and does not get damaged in the
process (Hollin, 2021). Likewise, the Australian cassowary uses its
head to ram it into tree trunks in order to knock down fruits. It has a
hollow fin-shaped protrusion of keratin on its head connected to its
skull that is filled with a soft, rubber-like matrix. This protrusion can
protect the bird from impact velocities up to 50 km/h and absorbs the
shock (Widholm and Jawaharlal, 2016).

Bio-inspired concepts like these are heavily researched for
applications on earth, such as the prevention of brain injuries, as
well as for the protection for sensitive equipment in engineering, and
thus, present valuable insights for the protection of space systems, too.

In contrast, an example for damage forestalling and injury
prevention is the natural principles of load flux dependent design.
Trees and bones demonstrate the ability to direct and redistribute cell

growth and therefore structural reinforcement in areas experiencing
high amounts of stress (Menon et al., 2007). Conch shells, on the other
hand, present curved lamellae that can increase fracture resistance by
about 30% compared to straight ones (Li and Li, 2019). Self-
reinforcing materials like these could significantly contribute to
extending the lifespan of space systems and react to unforeseen
internal and external system stressors.

Apart from high impact forces, space systems are also exposed to
brutal vibrations upon launch of the carrier rocket and need to be
securely fastened to prevent damages. Furthermore, moving parts in
spacecrafts are usually avoided to prevent the creation of unwanted
oscillations and rotational forces. Oftentimes, components are added
designated to counteract persisting vibrations and associated negative
impacts (Menon et al., 2007; Garcia-Perez et al., 2019; Guo et al.,
2019). Yet, these measures limit functionalities and influence the
system design. Even under consideration of major precautions,
micro-vibrations can be created during a spacecraft’s operation due
to faulty calculations or external impacts. Thus, mechanisms to reduce
oscillations and dampen the effect of vibrations find a broad range of
application within the space sector (Kamesh et al., 2010; Yu et al.,
2018).

Nature has brought forth multiple approaches to protect
organisms from large oscillations and vibrations. One method of
dealing with vibrations is their isolation as demonstrated by the

FIGURE 4
Pomelo peel as dampener, (A) Photographs of the honey pomelo’s peel. Reproduced from Pixabay, and a view under a digital microscope taken at
different regions of the peel at 150-timesmagnification (ⓒ E. Banken), (B) Photograph of an Aluminium foam sample with branched Al2O3-fibre bundles and a
magnified view of a fibre reinforced Aluminium-alloy foam sample showing the connection between the fibre bundle and the foammatrix, Reproduced from
Bührig-Polaczek et al. (2016), with permission IOP Publishing.

Frontiers in Space Technologies frontiersin.org06

Banken and Oeffner 10.3389/frspt.2022.1000788

https://pixabay.com/de/photos/honig-pomelo-grapefruit-fujian-2215031/
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2022.1000788


human middle ear using an auxiliary mass mechanism among others
(Kim and Kang, 2019; Wang et al., 2019; Yan et al., 2021). Fish, too,
present a natural vibration dissipation through their hierarchical
arrangement of scales in a compliant dermal tissue that allows for
flexibility. They offer reversible non-linear stiffening and exhibit an
interesting locking behaviour that is observed when the tissue is bent
or twisted. First experiments show a viscous damping performance
and direction-dependent frictional characteristics of the scales that can
be adjusted and manipulated through alterations of the scale’s
geometry (Ali et al., 2019). In the plant world, oscillation
dissipation can be observed as well. Plant roots as well as tree
trunks have been shown to provide structural dampening and
transfer of vibration energy throughout their branches (Barth,
2008; Kovacic et al., 2018).

If the force and experienced stress on single components or parts
gets too large, biological organisms and technical systems alike tend to
break, fracture, bend and deform. Nevertheless, nature displays
various mechanisms to deal with such damages and is able to
repair components to restore their mechanical and practical
function. Healing capabilities can be found in almost every living
being as it is crucial for survival to maintain structural integrity, fluid
balance, and function. Self-healing in organisms can take shape in
various different approaches, using stored elastic energy, hierarchical
structures, self-assembly systems, liquid exchange, cross-linking of
proteins and many more (Speck and Speck, 2019). During the wound-
closing and healing process, activities such as coagulation, cell
proliferation and matrix deposition are deployed to close holes and
fissures, restoring the organism back to almost its original state (Aïssa
et al., 2019). Bauer and Speck (2012) investigated the healing
capabilites of tree bark species and found a 55% restoration after
only 30 min of initial external injury. Thus, tissue can be sealed over a
short period of time, restoring the parts functionality without
repairing its full mechanical properties. Methods to structurally
repair any fissures and (partially) restore mechanical properties
exist too, however, take much longer (Speck and Speck, 2019).

Self-healing and -repairing systems are crucial for space systems as
aerospace companies and manufacturers go through enormous efforts
to protect components and parts from structural or electrical failure.
Furthermore, maintenance operations are either very costly or not
existent at all. Hence, systems like self-repairing components can
extend the lifetime of spacecrafts and prevent total system failures due
to propagating fissures and cracks. Some mechanisms inspired by
animal, plant and human tissue have been abstracted and
implemented as self-repairing materials, especially for polymer
composite materials. Four main methods for repair have been
established, and come in either a capsule, particle form or an
organized net (filled with fluid or made from wires) that are spread
throughout the material and are triggered by internal or external
stimuli (Cohades et al., 2018; Aïssa et al., 2019). Liquid-filled fibers or
capsules incorporated into materials can excrete a dye for visual
detection of damages or a resin-hardener combination that fill any
occurring cracks and restore their mechanical properties (Nellesen
et al., 2011; Speck and Speck, 2019).

2.3 Planetary exploration and activities

In order to learn more about a planet or other extra-terrestrial body,
the gathering of as much information as possible is crucial. While

sensors and scans using optical and thermal equipment as payload on
satellite flyby’s deliver a great deal of data on those bodies, it is vital for a
deeper understanding to gather physical evidence and take samples of
variousmaterials to be analyzed formineral content but also for traces of
life (Zhang et al., 2022b). Eventually, this information will be used to
plan and execute in situ resource utilization to e.g., build a future space
base. Other applications include asteroid mining for rare elements and
finding life on other planets.

One of the most prominent applications for biomimetics within the
space industry are drilling processes for planetary exploration and sample
acquisition. Thus, multiple concepts exist that have conceptualized bio-
inspired methods and procedures to improve and enhance these activities.
One well developed biomimetic concept is based on the reciprocating
drilling motion of the wood wasp. Wood wasps use their serrated
ovipositors as depicted in Figures 5A,B to drill into the bark of trees
to deposit their eggs. They can achieve a drilling speed of approximately
1–1.5 mm/min, while its ovipositor is assumed to have a Young’smodulus
of about 10 GPa (King and Vincent, 1995). This drilling method exhibits
several favorable characteristics like its drilling efficiency and low overhead
mass requirements. In addition, it circumvents the major challenge of
rotarymotion associated with conventional planetary drill designs. Several
prototypes exist that have been tested intensively in a wide range of
substrates ranging from fine regolith simulants to icy substrates as the one
shown in Figure 5C. Sakes et al. (2020) developed a wood wasp inspired
micro-drill prototype for minimal invasive surgery capable of achieving a
stroke velocity of 4–8.77 mm/s and a transportation rate of up to 5.82 mg/
s. Still, a wood-wasp inspired drills for aerospace applications have yet to
be deployed and tested within the space environment (Gao et al., 2006;
Gouache et al., 2010; Pitcher et al., 2020; Alkalla et al., 2021).

A similar concepts is demonstrated by the locust digging into the
soil to deposit their eggs by pulling their abdomen into the hole while
simultaneously clearing the debris out of the digging path (Gao et al.,
2007). Other biomimetic concepts exist based on the earthworm or
mole and operate with a similar approach (Kubota et al., 2007; Lee
et al., 2019).

Other organisms besides earth-dwelling animals have proven
effective ways to drill into substrates, too. Plants heavily rely on
their roots to form a secure and permanent attachment to the soil
and the distribution of water and nutrients to enable the development
of a seedling able to outcompete its competitors and go on to grow into
a mature plant. Hence, roots of different plants have developed various
ways to achieve effective anchoring. One great example is displayed by
the seeds of the plant Erodium cicutarium, which bury themselves into
substrates. This mechanism is thought to have developed improving
the seed dispersion process of the plant. Its fruits develop a seed with
an elongated and spirally twisted tail that, once in contact with the
ground, is humidity driven and causes the seed to autonomously bury
itself into the material (Pandolfi et al., 2012; Mancuso et al., 2014).
Developing such a passive drilling mechanism dependent on abiotic
conditions in the surrounding environment could provide a very
useful, resource-saving and energy efficient mechanism to allow
probes to bury themselves into the surface material of planets.
Furthermore, the formation of complex networks of smaller and
bigger roots may offer great possibilities for underground
pathfinding and mapping of structures under the surface, which
can help to determine geological compositions, traces of water and
other valuable resources (Menon et al., 2006; Seidl et al., 2008).

In order to transport different probes or scientific equipment
across planetary surfaces from one interesting spot to another,
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autonomous or remote-controlled robotic systems are required. Extra-
terrestrial terrains are often found to be difficult with many obstacles
and rough surface textures, which frequently display challenges and
limitations to conventional wheeled robotic systems (Armour et al.,
2007). Many bio-inspired concepts exist and present different
characteristics dependent on the local demands and requirements.
Limbed robots, for example, are useful for rough terrain with large
obstacles and are often designed to mimic multi-legged organisms
such as spiders due to their high stability, range of motion and surface
adhesion (Gasparetto et al., 2008; Dürr et al., 2019; Lopez-Arreguin
and Montenegro, 2020). Other concepts are based on the jumping
mechanisms of locusts, frogs, kangaroos and shrimps dismissing the
highly complex control systems and the maximum height of obstacles
(Armour et al., 2007).

After the success of the first-ever human-made flying object on
Mars, the Ingenuity Mars Helicopter has paved the way for a new level
of extra-planetary exploration (Balaram et al., 2018). Hence, flying
drones and other flight systems have become of more interest for the
exploration and investigation of foreign bodies throughout the
Universe. On Mars, one of the most significant challenges is the
thin atmosphere, which makes the generation of sufficient lift and
thrust necessary to get a system airborne difficult. Nature offers a
range of locomotion types for different media, and therefore provides a
large pool of propulsion systems to get inspired by. Babu Mannam
et al. (2020), for example, investigated several biological examples of
flapping wings for their potential use in light atmosphere
environments and summarized a design methodology and relevant

hydrodynamic aspects to evaluate bio-inspired concepts for their
application to different environmental conditions found on planets.

Eventually, the long-term goal of many space enthusiasts is to
create manned habitats on other planetary bodies, elevating humanity
from a single planet-based species to one that wonders the Universe.
Hence, biomimetic concepts involved in the creation of habitats and
continuously sustaining life under adverse environmental conditions
will eventually become of much more interest. And with it, all of the
biomimetic concepts already widely applied throughout many
industries nowadays on Earth. This includes radiation protection,
nutrition, waste management, as well as medical care (Jemison and
Olabisi, 2021). ESA’s Advanced Concepts Team even investigated the
possibility of mimicking the hibernation behavior of mammalians
(e.g., Spermophilus tridecemlinneatus) to achieve human
hypometabolic state for long duration journeys (Menon et al., 2007).

One example with great potential are the water-living lotus plants,
which have developed superhydrophobic surfaces that cause water
droplets to simply roll off, naturally keeping the leaf clean and
continously guaranteeing access to oxygen in the surrounding air.
Another water-living plant species is Salvinia molesta, which is able to
trap air on the leaf’s surface and therefore can retain an air layer on top
of their leaves in times where the leaves are temporarily fully
submerged in water (Barthlott et al., 2016; Gobalakrishnan et al.,
2020). Those mechanisms have been abstracted and applied
throughout multiple industries but also hold merit for aerospace
engineering. In fact, they have been proposed to prevent icing in
small airplanes (Piscitelli et al., 2020) and water retention in a human

FIGURE 5
Wood wasp reciprocating drill, (A) Photograph of a wood wasp, (B)magnified view of its ovipositor consisting of two serrated valves, Reproduced from
King and Vincent (1995), with permission from the authors, (C) schematic picture of a micro drill for aerospace applications. Reproduced under CC-BY-4.0,
Pitcher et al. (2020).
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life support system in spacecrafts (Rasheed and Weislogel, 2019).
More importantly, such surfaces have been conceptualized for
reducing dust and ice on solar panels on Earth (Wu et al., 2022),
which is also of relevance for orbiting systems. Likewise, animals, too,
have self-cleaning abilities similar to plants. The toe pads of geckos and
tree frogs (Crawford et al., 2012; Hawkes et al., 2015) or the rigid
forewings of dung beetles (Sun et al., 2012) present interesting
methods keeping water from settling onto the surface of functional
body parts. Mechanisms like these have been proposed for their
implementation for anti-reflection, anti-fogging, micro-
manipulators and self-healing in space systems (Xu et al., 2016),
and are especially useful for things like lenses and visors, sensitive
instruments such as batteries and power systems (Williams, 2022).

3 Biomimetics for space debris removal

3.1 Existing bio-inspired debris removal
concepts

Space debris has become a major topic of concern, as defunct
satellites, rocket upper stages and fragments are starting to threaten
the operation of functional satellites, thereby endangering satellite
communication, weather observations, and climate monitoring on
earth (Sannigrahi, 2017; ESA, 2019; OECD, 2020). Hence, recent
efforts have concentrated on space debris removal and mitigation
measures (Ansdell, 2010), and options for more sustainable
mission design as well as the establishment of mitigation
guidelines have been proposed. These guidelines include
provisions for incorporating removal systems such as drag sails
into spacecraft design prior to launch for their eventual end-of-life
(United Nations, 2010; Stokes et al., 2019). Especially drag sails
have already been discussed within the scope of biomimetic design
in terms of efficient folding and storage mechanisms, and several
alternatives have been proposed, mimicking seeds and their
dispersal mechanisms (Pandolfi et al., 2012; Pandolfi and Izzo,
2013) or tree and plant leaves (de Focatiis and Guest, 2002; Jasim
and Taheri, 2018).

While space agencies and companies have focused on space debris
capture and developing removal missions, to date no such mission has
ever been performed. The first-ever operation simulating debris
removal was conducted during the controlled activities of the
RemoveDEBRIS mission in 2019, where a harpoon and a net were
deployed to capture a previously released and well-known target body
(Aglietti et al., 2020; Forshaw et al., 2020). In a joined venture of ESA
and Cleanspace, the first debris removal mission Cleanspace-1 is
scheduled to perform the first debris removal service of a VEGA
secondary payload adapter as early as 2025 (Biesbroek et al., 2021).
While these efforts displays a huge leap in space debris removal and
tests showed promising results, harpoons are still associated with high
risks of additional debris production due to the forces required to
penetrate the target’s surface material while preventing a large impulse
generation and thus pushing the target from its current course.
Furthermore, complex rope dynamics between chaser and target
have not been investigated in this mission and present a technical
challenge (Zhang et al., 2021). Both, nets and harpoons offer great
opportunities for their adaptation by using biological models as
inspiration. Nets have frequently been under investigation in
biomimetic research ranging from textiles (Blamires et al., 2020;

Gu et al., 2020) to optical fibers (Tow et al., 2018). Harpoons, too,
have been studied extensively and concepts have been proposed for
surgical tools, modelling tips and shafts after the bee’s stingers
(Sahlabadi and Hutapea, 2018) and mosquito’s probiscis (Li A. D.
R. et al., 2020), among others.

One of the most prominent and probably furthest developed
biomimetic example for space applications is the gecko tape. The
tape exhibits a specifically structured surface modelled after the
example of a gecko’s feet. Each toe of the gecko presents a highly
adaptive microstructure with hundreds of hairs called setae as
depicted in Figure 6A), each exertig a van der Walls force onto
components, allowing the gecko to carry its own body weight up
vertical surfaces or hang upside down (Kim et al., 2008). This
mechanism has been replicated by multiple companies in form of a
reusable adhesive tape with different microstructures as shown in
Figure 6B), and tested extensively for various applications and
consumer needs (Brodoceanu et al., 2016; Alizadehyazdi et al.,
2020; Busche et al., 2020; Cauligi et al., 2020; Sameoto et al., 2022).
One of these tapes was even sent to the ISS in 2019 to test its
adhesive capabilities under micro-gravity conditions (Parness,
2017). Hence, gecko-inspired tape presents a great alternative
that can achieve lasting and reusable attachment to objects in
space. While some parameters such as the lasting adhesive
capability or the effects of space dust on its performance still
need to be explored further, gecko tape presents a great example
for a substitute product within the space environment.

Current robotic arms used for extravehicular operations on the ISS
(Roa et al., 2017) and debris capturing concepts (Estable et al., 2020)
suffer from shearing areas, reserve movement capabilities or chaser
movement among other things (Behrens et al., 2012; Estable et al.,
2020). Several of these limitations can be improved by taking
advantages of nature’s diverse range of available biological
examples. Octopi, for example, make use of eight identical and
flexible arms for locomotion, grasping and reaching, as well as
capturing food. These arms consist of mostly muscle tissue, which
is able to selectively contract and therefore control their movements
very efficiently (Cianchetti et al., 2015). Robotic systems inspired by
octopi arms range from multi-actuator systems (Zhao et al., 2020) to
soft robotics (Mazzolai et al., 2019) and have already been proposed
for space debris removal (Le Letty et al., 2014; Shan et al., 2016; Jia
et al., 2017). Their great mobility, maneuverability and adaptability
makes them very suitable to wrap around complex target shapes.
Likewise, other interesting biological models for similar tasks are
presented by elephant’s trunks or seahorse tails. The trunks of
elephants are highly flexible organs with multiple degrees of
freedom and therefore presents higher obstacle avoidance
capabilities and an increased workspace flexibility (Yang and
Zhang, 2014; Zhao et al., 2018). A similar segmented approach is
demonstrated by seahorses, which use their tail mainly for grasping
activities involving different diameter objects such as plant stems.
Seahorses present a continuously decreasing square cross-section in
their tail made from four individual plates connected through special
joints. This arrangements provide the seahorse with great bending and
torsion abilities for grasping, especially of a diverse range of shapes and
sizes. In addition, thanks to its specialized construction, their tails
shows great fracture resistances under crushing and impact forces
(Porter et al., 2015). The concept has been transferred into a multitude
of prototypes for robotic arms (Porter and Ravikumar, 2017; Li L.
et al., 2019; Zhang et al., 2022a), one of which is displayed in Figure 7.
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3.2 The BIOINSPACED project

Within the scope of the ESA-funded BIOINSPACED project
(acronym for bio-inspired solutions for space debris removal)
conducted from June 2020 to February 2022, several bio-inspired
space debris removal scenarios were established, incorporating a
diverse range of biomimetic concepts. The project aimed to support

ESA’s initiative to mitigate space debris and reduce its negative impact
on current and future missions. After analyzing the technical
requirements for space debris removal missions, nature’s pool of
organisms was investigated to find suitable concepts and
mechanisms with distinct benefits for space applications. Collected
ideas were assessed to identify the most promising ones, that were
then integrated into holistic mission scenarios. As the last step, one of

FIGURE 6
From gecko feet to adhesive tape, (A)Gecko foot andmagnified view of themicrostructures responsible for the adhesion thanks to van der Waals forces.
Reproduced from Sameoto et al. (2022), with permission from Elsevier, (B)Magnified view ofmicrostructures of different adhesive tape inspired by gecko feet,
Reproduced from Aksak et al. (2007) Copyright 2007 American Chemical Society. Republished with permission; Reproduced from Murphy et al. (2007), with
permission from Taylor and Francis.

FIGURE 7
Seahorse tail inspired robotic arm. (A) nano-CT image of a seahorse tail skeleton, (B)CADmodel of the square cross-sectioned prototype during twisting
and bending movements, (C) photograph of a square cross-sectioned 3D printed prototype, Reproduced from Porter et al. (2015) , with permission from The
American Association for the Advancement of Science.
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these scenarios was selected for a low-tech implementation in the form
of a simple demonstrator depicted in Figure 8, underlining the benefits
and variety of applications for bio-inspired technical solutions for space
debris removal (Banken et al., 2021, 2022).

Besides the final demonstrator, the project also generated a
comprehensive overview over biomimetic concepts and scenarios
with further potential for aerospace engineering. One mission
scenario conceptualized the use of the swarming behavior of

ants to enable autonomous communication among several small
and lightweight spacecrafts as shown in Figure 9A). These were
theorized to organize themselves in specific patterns without
requiring manual input commands, and therefore converge and
arrange around a target object autonomously (Gro et al., 2006;
Garnier et al., 2007; Divband Soorati et al., 2019). Processes like
this can deliver a greater amount of details on target behavior,
especially tumbling and rotational motion, which are important

FIGURE 8
Photographs of the simple demonstrator developed within the BIOINSPACED project and the project logo.

FIGURE 9
Sketches of the scenarios developed within the scope of the BIOINSPACED project. (A) Chaser vehicle carries several sub-units capable of observing,
attaching, and deorbiting a target object in unison based on swarm algorithms (e.g., ant behaviour after Katiyar et al. (2015), (B) Chaser vehicle with tactile
sensing appendages passively wrapping around slow-moving target upon contact modelled after the trunk of elephants (ⓒ 12138562, pixabay.com).

Frontiers in Space Technologies frontiersin.org11

Banken and Oeffner 10.3389/frspt.2022.1000788

http://pixabay.com
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2022.1000788


factors for contact maneuvers (Stacy and D’Amico, 2018). In
addition to target inspection, they can be used for target capture
in the form of attachment to the debris and removal, using their
own propulsion in unison to deorbit the object.

Another interesting feature identified during the project was tactile
sensing within the space environment displayed in Figure 9B). Currently,
most existing spacecrafts rely on optical sensors to determine a target’s
speed, rotation, and overall orbital mechanics. Yet, systems like these are
known to suffer from e.g., dynamic illumination conditions or solar glare
(Yilmaz et al., 2017). Nature provides a board range of organisms, which
make use of tactile sensing as primary sensory input like mammals with
vibrissae and insect antenna’s. Some have already been explored in the
field of robotics (Pearson et al., 2011; Lee et al., 2022). Paired with haptic
sensors mimicking human skin and touch receptors capable of
recognizing stimuli such as force, vibration and temperatures, as well
as detecting hardness, force, slip, shapes, and textures (Yi et al., 2018), they
offer great opportunities for on-orbit operations involving close contact
with (un-)cooperative targets (Haschke, 2015; Pacchierotti et al., 2015; Xin
et al., 2016; Yi et al., 2018), where high levels of flexibility and sensitivity
are of great importance.

Further biomimetic concept extracted during the BIOINSPACED
project with great benefits for aerospace systems are potential
vibration sensors on the example of elephant feet (Lane et al.,
2020), and touch recognition modelled after thigmotropism of
plants (Vidoni et al., 2013, 2015).

Activities such as the BIOINSPACED project support the
identification of new and innovative approaches for technical
problems, while delivering an overview over existing concepts. Within
the scope of the project, many promising concepts and scenarios were
identified where mimicking a biological model could improve
conventional aerospace systems or overcome current challenges. While
none of the presented concepts comes without their challenges, they offer
great alternatives and innovative ideas to approach conventional
engineering limitations and disrupt existing constraints.

4 Biomimetics for on-orbit operations

4.1 Biomimetics for space-based solar energy

Solar-based power generation is one of the main sustainable
energy carriers used on Earth. With ever-increasing global energy

demands and rising pressure to switch to more sustainable fuel
alternatives enforced by legislations and regulations such as the
European Green Deal (specifically to reduce emissions by 55%
until 2030 and to net zero by 2050 (European Commission, 2019),
research has focused on improving solar-based efficiencies, storage
capacities and overall performances.

Space-based solar power generation, which has recently become
more of a priority to major space agencies around the globe (ESA,
2022), has clear advantages over Earth-bound solar power, because it
does not suffer from a limited period for power generation. It is
possible to produce solar energy independent of day- and night-times
as well as atmospheric losses. Especially weather conditions, which
usually highly impact production and storage capacities with risk of
damaging involved devices, are eliminated with space-based systems.
Hence, the main portion of collected solar energy can be converted
into microwave power, which can then be beamed to any location on
Earth as illustrated in Figure 10 free to use (Gosavi et al., 2021).
Especially since the development of space-based solar cells is funded
on the existing use of solar power as main sources of energy for many
spacecrafts and satellites, technological development is rapid and in
high demand.

Multiple biological examples can be found that use solar radiation
to their advantage and either require it for internal temperature
regulation [invertebrates, amphibians, reptiles (Norris and Kunz,
2012)] or photosynthesis (Hammarström and Wasielewski, 2011)
for example. These effects can be adapted and transferred to
technologies and processes involved in solar energy generation.
Butterfly wings demonstrate periodic nanostructures producing an
antireflective effect used to heat their flight muscles, which has been
conceptualized and applied as lightweight solar concentrators. Similar
nanostructures can also be found in the eyes of moths (Chen et al.,
2011, 2014; Shanks et al., 2015; Vasileiou et al., 2021).

Solar cell development has also been influenced by the model of
leaves, which present very efficient approaches for capturing and
utilizing solar radiation. The combination of different types of
tissue cells as well as intercellular air space was mimicked,
producing a highly flexible organic solar cell with power
conversion efficiencies of ca. 16% (Qu et al., 2020; Meng et al.,
2021). Furthermore, to increase the wavelength spectrum
absorbable by conventional solar cells, the charge transfer
properties of biomolecules have been used as inspiration, adapted
and transferred to achieve absorption of x-ray radiation (Cook et al.,

FIGURE 10
(A) Photograph of the Pachliopta aristolochiae butterfly, (B) Photograph of the nanostructure referred to as ‘disordered nanoholes’ that enhance light
absorption, (C) Bio-inspired nanoholes etched into an amorphous silicon based photovoltaic absorber, Reproduced from Landgraf (2017), with permission
from Julia Rohnstock (Assistant editor KIT).
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2009b). Other applications for bio-inspired concepts include
improved thermal characteristics of solar power systems mimicking
hierarchical porous leaf structures (Shi et al., 2021), structural
assembly and deployment of solar arrays on orbit, and radiation
tracking (Sharma and Purohit, 2014; Jasim and Taheri, 2018).

4.2 Servicing, manufacture and assembly in
space

Current research and developments for orbital spacecraft
operations can be separated into on-orbit servicing, focused on
extending the life of an existing spacecraft in orbit, and on-orbit
manufacture and assembly, describing the construction of a new
structure from modular components (Piskorz and Jones, 2018).
Both operations have already been demonstrated successfully: on-
orbit servicing by remotely inspecting and repairing the Hubble Space
Telescope during its five servicing missions, allowing the telescope to
deliver valuable science today, roughly 30 years after its launch (Boyd
et al., 2017); and on-orbit assembly by the construction of the ISS
starting in 1998, demonstrating the first multi-system structure
designed for assembly in space. Over the past two decades, this
structure has grown extensively, and with it its level of autonomy
and control capabilities (Piskorz and Jones, 2018). Nevertheless, many
of the previously specified bio-inspired concepts applicable to space
debris removal can also be beneficial for servicing and repair activities.
Contactless containment of a small satellite based on the example of a
mouth or Venus flytrap (Shahinpoor, 2011; Banken et al., 2022), for
example, would allow safe repairs and maintenance without the risk of
spare parts, tools and spacecraft appendages to escape as additionally
generated space debris. The Venus flytrap has already been used as an
inspiration for advances in the fields of robotics (Shahinpoor, 2011;
Falk et al., 2022; Tauber et al., 2022).

In addition, to make future space travel and exploration feasible
from an economic and environmental standpoint, the lifetime of space
systems need to be extended.While eco-design and self-repair can go a
long way in preserving the function of operative systems (Ceschin and
Gaziulusoy, 2016; Aïssa et al., 2019), they eventually fall victim to
damages or their natural end-of-life. Hence, servicing, exchange and
repair are proposed to re-use still functional parts and only replacing
impaired or outdated components. The main biomimetic concepts
found for on-orbit maintenance and repair are docking and grasping
mechanisms for a servicing spacecraft to attach to an orbiting system.
These include, for example, the previously introduced gecko adhesion
and insect-like crawling robots (Xie et al., 2021). Furthermore, bio-
inspired grasping and robotic manipulation have also already been
discussed frequently for their use and application for on-orbit
servicing and repair (Dai et al., 2020; Ellery, 2020; Ogundipe and
Ellery, 2020).

On the ISS, several measures have been put in place for manual
maintenance and smaller repairs, such as handrails along the entire
outer module body for astronauts to safely maneuver to areas of
interest. Hence, several intelligent, human-like robots have been
developed within the past few decades, designated to perform tasks
alongside astronauts and execute servicing on the space station (Jiang
et al., 2022). One of them is the MonkeyBot with hands at the end of
four appendages to navigate on the outside of the space station and
carry out visual inspections (Wang et al., 2013). Other concepts for
servicing the space station include chameleon-like (Ni et al., 2013),

vine-like (Wooten andWalker, 2015) and tendril-like robots (Mehling
et al., 2006).

Moreover, sustainable space exploration will and cannot be
limited to earth-bound manufacture, assembly, and subsequent
launch from Earth. This is especially valid for large structures,
requiring an enormous payload capacity or multiple launches of
separated subcomponents, leading to astronomical expenses (Sacco
and Moon, 2019), and huge quantities of emissions contributing to
climate change (Ross and Vedda, 2018). Hence, it has become
apparent, that sustained future space exploration can only be
achieved using in situ resources from other planets or asteroids
(Ghidini, 2018), and manufacturing and assembling entire
structures on-orbit (Rognant et al., 2019). On-orbit manufacture
and assembly are not new ideas within aerospace engineering. They
have been discussed for decades, and concepts and demonstrations
have focused on the assembly of pre-made structures, enabling the
construction of much larger erections than could be launched in a
single spacecraft (Easdown, 2020). These present features like
interfaces designed for modularity and connection to additional
systems in space. In fact, the first mission including a structure for
self-assembly, namely the new JamesWebb Telescope was launched in
December 2021, and its successful erection will act as flagship for
large-scale structures for autonomous self-assembly in space (Roa
et al., 2019).

Another, even larger structure to be deployed within the space
environment is the idea of the International Planetary Sun Shield
(IPSS). Global temperatures are rising, and climate change is moving
quick, resulting in several goals and actions by international
policymakers. Despite ongoing efforts of politicians and legislators,
climate goals are predicted to remain unfulfilled until 2050, which
would have disastrous temperature increases of 2°C as a consequence
(IPCC, 2019). The IPSS concept presents a futuristic idea aiming to
reduce global warming by expanding a huge ultra-light Sun shield in
space to indirectly shade Earth from radiation. In order to present an
effective outcome, this shield requires an enormous reflective surface
area in the range of million square kilometers to be positioned rather
close to the Sun at Sun-Earth Lagrange 1. At this size, launching parts
and components separately from Earth becomes unrealistic and
expensive, creating the need for on-orbit manufacture and assembly
for the required solar sail (Centers et al., 2020; Jehle et al., 2020;
Fuglesang and Herreros Miciano, 2021; Roy, 2022). Here,
biomimetics could be a valuable attribute when looking for
pioneering and ground-breaking solutions for extravagant applications.

Additive manufacturing is the most frequently discussed technique
for the production of systems and components in space, and describes a
process where a component is first sliced into 2D layers, and then traced
with lines of material in a pre-defined manner to produce an entirely
new 3D component (Dordlofva et al., 2016). The best known additive
manufacturing technique by the public is 3D printing, where a variety of
materials such as polymers, but also metals, biological substances and
ceramics are layered to form a part (Gralow et al., 2020). This type of
manufacturing offers a more diverse range of possible applications as it
becomes easier to produce very complex geometries than with
conventional subtractive manufacturing methods. Like the
excitement and success of additive manufacturing on Earth, the
space industry has been exploring these processes as a valid option
for on-orbit manufacturing. Starting with printing individual spacecraft
sub-systems to be included and launched in real life satellites (Sacco and
Moon 2019), NASA launched the first 3D printer to the ISS and tested
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its printing capabilities in zero gravity, demonstrating the possibility for
in-space production of parts (Prater et al., 2019). Since then, additive
manufacturing has been investigated for its potential and feasibility for
on-orbit manufacture ranging from single components to entire
spacecrafts, as well as using “local” or in situ resources by sourcing
the Lunar and Martian surface regolith (Grundström et al., 2021; Laot
et al., 2021).

Additive manufacturing is particularly interesting for biomimetics
because it is based on similar principles as can be found in nature. Intricate
structures can be manufactured and formed while making efficient use of
raw materials and available energy. As presented in Figure 11A), many
biological concepts can be used for a diverse range of applications within
the field of additive manufacturing (Yang et al., 2018), ranging from
mechanics [formation of mollusk shells (Yang et al., 2018; Yaraghi and
Kisailus, 2018)] and optics [compound eye of insects (Zhao et al., 2017; Yu
et al., 2020)], to electrics [mechanoreceptors (Yi et al., 2018)] and shape-
changingmechanisms [phototropism of sunflowers (Sharma and Purohit,
2014)] and medical applications [artificial organs and tissue (Zhu et al.,
2021)]. Furthermore, biomimetics can be applied to achieve structural
optimization, producing a part that uses less material but presents the
same structural integrity as conventionally crafted parts. This allows the
manufacture of more complex and new components without sacrificing
any mechanical properties (Gralow et al., 2020; Yang et al., 2022).

Once individual components and parts are produced on-orbit, they
need to be assembled. Assembling subsystems into highly stable
constructs are common principles in biology on a micro- and
macroscopic scale. Beavers, for example, demonstrate a great ability to
build large structurally sound dams using wood to limit water flow in
rivers. Their construction behavior is of great interest, since they are able
to adapt to a range of hydrological features and species of wood, and still
manage to build constructions comparable to human structures (Cheng
and Hou, 2016). One advanced concept for on-orbit assembly was
demonstrated by the SpiderFab, a self-fabricating satellite inspired by a
spider spinning its web. Instead of a web, the system, as depicted in
Figure 11B), is employed to build and assemble large apertures and
multifunctional structures (Hoyt et al., 2013). On amicroscopic scale, cells
and organic components such as peptides have been under investigation

for their self-assembly capabilities, especially in molecular biology and
precision medicine (Levin et al., 2020; Yang and Jiang, 2020). Yet, it may
be possible to learn from these assembly methods and apply them on a
much larger scale for the application in space.

More processes involved in on-orbit manufacture and assembly can
benefit from bio-inspiration, such as artificial intelligence [neural
networks (Krichmar et al., 2019; Wang et al., 2021c)], robotics
[gripping (Jiang et al., 2015; Jia et al., 2017)] (see Section 3), and
resource acquisition [drilling (Pitcher et al., 2020)] (see Subsection
2.3). Therefore, biomimetics demonstrates an application potential in
almost every aspect when it comes to on-orbit processes. They may vary
in impact and benefit for the resulting system, and use different biological
forms, functions, or processes as a model. Nevertheless, the existing
literature and current increase of prosperity as well as the growing interest
in the field of biomimetics imply that further research activities should be
focused on including bio-inspired design into aerospace engineering.

At the pinnacle of on-orbit manufacture and assembly stands a very
forward-thinking concept for long-duration space explorationmissions of
self-replicating robots. Space systems are equippedwith all necessary parts
and systems to be able to replicate parts and components that allow it to
extend and exchange their own parts on demand. Self-replication in itself
can already be considered a bio-inspired process based on the natural
propagation and reproduction of species (Ellery, 2017). Nevertheless,
other bio-inspired technologies and components necessary for the self-
replication of space systems have already been tested and proven by e.g.,
the production of bio-inspired semiconductors for electronic integrated
circuits manufacturing (Girish et al., 2022).

5 Challenges of biomimetic design

The literature presented in this review summarizes merely a snippet
of the vast diversity of biological concepts and mechanisms available.
The review highlights how they can be adapted and transferred to
improve, optimize, and advance technical solutions within the space
sector. It demonstrates the potential of biodiversity and offers insights
into innovative design approaches by highlighting unconventional ways

FIGURE 11
(A) Biomimetic concepts and their possible influence within different aspects of 3D printing and additive manufacturing. Reproduced from Yang et al.
(2018), with permission from John Wiley and Sons. (B) Photograph of a spider spinning its net, (C) Model of SpiderFab, the bio-inspired assembly robot
developed to construct large structures in space. Reproduced under CC-BY-4.0, Hoyt et al. (2013).
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for the development and design of processes, products, and interactions.
Especially in terms of innovative and environmentally-friendly design,
bio-inspiration has proven beneficial over the past decades. Therefore, it
presents a multitude of advantages that might be explored within the
fields of aerospace engineering and possibly support the evolution of a
range of new products and processes necessary to pursue future-
oriented goals within space exploration.

Nevertheless, despite the efforts conducted in this field of research,
several challenges exist that hinder a persistent use of biomimetics
throughout industries, which are listed in Table 1. The study of
biomimetics has only experienced increasing momentum in recent
years with more and more publications available over the past decades
as presented in Figure 2 (Wanieck et al., 2017; Wanieck, 2022), even
though the first ideas and methods have been identified as early as the
1950s in arts and design history (Montana-Hoyos et al., 2022). This
phenomenon is attributed to three main limitations:

1. Lack of understanding and investigatory techniques of the
biological system and its functioning

2. Missing tools and methods to assess, investigate and determine
biomimetic concepts

3. Expertise barriers causing a lack of communication between fields

Many very interesting biological concepts remain poorly
understood, since their function has mainly been linked to specific
characteristics rather than putting them into context with the entire
system (Bechtel, 2012). Therefore, part of the research is based on
(educated) assumptions and ideas rather than proven knowledge about
mechanisms and processes. Furthermore, nature oftentimes works on a
microscopic level, with a multitude of tiny structures, arrangements and
conditions that collaboratively achieve a function on a higher level.
Hence, it is very complex to investigate the functionality of micro- and
nanostructures as well as their interaction within the organism and what
they are responsible for (Hwang et al., 2015). Even after system
functionalities have been identified, much research has to be invested
into the repeatability and scalability of concepts, which usually
demonstrates to be the more difficult part for an adaptation and
transfer (Sharma and Sarkar, 2019).

Moreover, biomimetic design and the process of investigating
biological models is associated with great uncertainty as research
does not always pan out to be applicable to technology. While this is
true for most fields of research, the lack of systematic approaches,
strategies and guidelines highlights this uncertainty further (Graeff et al.,
2021). Even when biological models are sufficiently understood, their
complexity often exceeds available technical capabilities and thus need

to be scaled back during the implementation phase. The difficult part is
to do that while keeping the biomimetic function in tact. Oftentimes,
secondary effects or accompanying solutions help maintain or produce
the desired function in the first place (Habib, 2011; Gralow et al., 2020).
For example, while shark-skin inspired riblet hull coatings still suffer
from some degree of fouling, sharks do not deal with the same issue.
Their skin structure and body undulation are much more complex and
interact with one another, which is assumed to prevent a permanent
attachment of marine biomass (Ibrahim et al., 2021). Furthermore,
during the implementation phase, technological constraints and
manufacturability often become a limiting factor. While additive
manufacturing techniques, for example, have come a long way and
enable the production of very advanced shapes and products of various
materials, they still present limitations that have to be considered when
designing bio-inspired systems (Habib, 2011; Gralow et al., 2020). Once
a biomimetic mechanism and technology performs well in a laboratory
setting, it needs to be scaled up to match their real world application,
which is just as difficult.

Within problem-driven design, it is important to determine
the appropriate requirements and constraints that must apply to a
solution. However, since biomimetics remains a relatively recent
design approach, the quantity and quality of tools and methods to
investigate biological organisms and evaluate the suitability of
their function for technical applications is limited (Sharma and
Sarkar, 2019). At the other end of the process, it is important to
evaluate the value and functionality of the innovation and if it
actually improves the desired aspects compared to the
conventional product to achieve a competitive advantage (Yen
et al., 2014).

Furthermore, the lack of communication and information
dissipation between disciplines further impedes the use of the
biomimetic design approach. In order to overcome expertise
barriers, several entities and organizations are working on
establishing and maintaining databases that are user-friendly and
can easily be used to find solutions for experts of different sectors
(e.g.,BiOPS, IDEA-INSPIRE, BioTRIZ) (Wanieck et al., 2017;
Wanieck, 2022). The website AskNature.org even provides a
publicly available database with more than 1700 biological
strategies developed by living things that achieve thousands of
different functions (Deldin and Schuknecht, 2014; Biomimicry
Institute, 2021). Their intention is to provide readily available
information for engineers, technicians, and scientists to adapt and
transfer biological mechanisms onto technical products, processes,
and systems. Yet, due to the vast diversity of models available in
nature, these databases struggle to demonstrate the complete picture of

TABLE 1 List of benefits and challenges of the biomimetic design approach covered within this review.

Benefits Challenges

• multitude of solutions for similar technical problems (development of different
ecological niches)

• Lack of understanding and investigatory techniques of the biological system and
its functioning

• evolution over hundreds of years (long optimization process) • Missing tools and methods to assess, investigate and determine biomimetic
concepts

• resource-efficient erection and creation of structures, features and components • Limitations of available Manufacturing technologies (especially for nano
configurations in surface structures)

• collaboration of interdisciplinary experts in various fields like biology,
biotechnology, engineering, medical science, architecture, and many more

• Expertise barriers causing a lack of communication between fields
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the enormous possibilities. In addition, included models oftentimes
refer to certain areas of application or types of organisms and appear
skewed, thereby only providing an imbalanced array of models (Graeff
et al., 2020). Moreover, tools and databases focusing on biological
systems alone oftentimes neglect their extended use and function
throughout the environment and their role among species, which can
reduce comprehensibility of concepts drastically and cause loss of
information. Hence, while many of these databases support
biomimetic design, they can lead to misinterpretations and transfer
failures, inevitably resulting in the abandonment of the entire
approach (Graeff et al., 2021). Another problem for non-biology
experts is how to find appropriate models to investigate regarding
their suitability to technical challenges. On the one hand, existing
literature involving biomimetic design has been found to lack the
appropriate labelling, making it difficult to find. On the other hand,
papers have falsely been branded ‘biomimetic research’, thereby not
only confusing experts of different fields but also causing frustration
(Lepora et al., 2013).

Since this issue was recognized by experts throughout various
sectors and fields of research, they have come together to form
networks such as BIOKON (German), The Biomimicry Institute
(United States), Biomimicry Innovation Lab (United Kingdom),
and the Global Biomimicry Network (international), to overcome
these challenges and facilitate knowledge of biological phenomena
into other disciplines like engineering (Sharma and Sarkar, 2019).
However, one remaining constraint has been determined to be the
difference in terminology throughout the disciplines, which has
hampered the communication of concepts, benefits, and
limitations among experts. In addition, concepts are often found
to be too complex to compare them with anything known to the
opposite party, thereby prohibiting the propagation of a detailed
understanding of principles and systems required to transfer them
into a working technical design (Yen et al., 2014). Therefore, to
achieve the most effective biomimetic design approach, companies
often prefer to have an interdisciplinary team of biologists,
chemists, engineers, technicians and scientists working closely
together to close the existing gaps and enable a more efficient
and successful design process (Graeff et al., 2021). Still, transition
gaps between the idea, its implementation and the creation of a
profitable product persist (Sharma and Sarkar, 2019). Thus,
biomimetics does not always deliver ideal solutions that can be
perfectly and easily transferred onto technical systems. It can be
viewed as more of an inspirational source that can deliver crucial
input and understandings into the development process of
products and processes (Wanieck (2022)).

6 Conclusion

This summary presents the most prominent currently existing
biomimetic concepts, technologies and processes developed for
space technologies and highlights innovative ideas to be
investigated in the future. While the majority of these concepts
and approaches are still under investigation and present a low
technological readiness level, their benefits and potential to
improve common aerospace technologies and strategies has been
demonstrated. Due to the vast quantity of mechanisms and features
found in nature, biomimetics can be applied to almost any area of
technological advancements and can support traditional

engineering in a large field of applications. This is especially
related to the topics discussed in this review: protection against
the harsh space environment, space debris capture and removal as
well as on-orbit operations.

Certainly, more biological concepts with potential for
adaptation and transfer into technical systems within the space
sector exist. Nevertheless, the presented concepts provide a broad
overview and insight into the diversity and multitude of
possibilities available. Moreover, concepts were highlighted and
proposed for some of the most interesting areas of application
within the aerospace sector to date, namely planetary exploration,
space debris removal, space-based solar power as well as on-orbit
servicing, manufacture, and assembly.

Lastly, several challenges associated with biomimetic design have
been identified that hinder the use of bio-inspiration during the
development of innovative technologies for future applications. Yet,
biomimetics has been proven to provide multiple helpful observations
and can improve conventional space systems by proposing novel and
creative ideas, even when dealing with the extremely challenging
environmental conditions of space.
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