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Modeling the electrical
conductivity relationship
between saturated paste
extract and 1:2.5 dilution in
different soil textural classes
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Boniface H. J. Massawe1, Ole Pedersen3, Joel L. Meliyo4

and Kadeghe G. Fue5

1Department of Soil and Geological Sciences, Sokoine University of Agriculture, Morogoro, Tanzania,
2Mlingano Centre, Tanzania Agricultural Research Institute (TARI), Tanga, Tanzania, 3Department of
Biology, University of Copenhagen, Copenhagen, Denmark, 4Hombolo Center, Tanzania Agricultural
Research Institute (TARI), Dodoma, Tanzania, 5Department of Agricultural Engineering, School of
Engineering and Technology, Sokoine University of Agriculture, Morogoro, Tanzania
Regression models were developed to estimate the electrical conductivity of

saturated paste extract (ECe) from the electrical conductivity of soil-water ratio

(EC1:2.5) for different soil textural classes. ECe is a crucial parameter used to

indicate the presence, type, and distribution of salinity in soils. However,

determining ECe is demanding, time-consuming, requires considerable skill to

accurately identify the correct soil saturation point, and is not routinely

performed by soil testing laboratories. Many laboratories, instead, commonly

measure the electrical conductivity of soil-water extracts at various dilutions,

such as EC1:1, EC1:2.5, or EC1:5. In this study, 706 soil samples were collected from

depths of 0 - 30 cm across three rice irrigation schemes to determine EC1:2.5,

with 50% analyzed for ECe. ECe values were grouped based on soil textural

classes. The results showed a strong linear relationship between EC1:2.5 and ECe

values, with a high coefficient of determination (R² > 0.95). The Root Mean

Square Error values were low (1.4 < RMSE), and the Mean Absolute Error values

were similarly low (0.85 < MAE). Therefore, the regression models developed

provide a practical means of estimating ECe for various soil textural classes,

thereby enhancing soil salinity assessment and management strategies.
KEYWORDS

soil health, soil salinity, ECe prediction models, salinity management, regression model,
agricultural productivity
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1 Introduction

Salt-affected soils pose a significant threat to soil quality and

agricultural productivity, particularly in arid and semi-arid regions,

by affecting crop yields and soil health (1, 2) hence directly affecting

food security (3–6). Consistent with food insecurity and

environmental unsustainability, the impacts of salt-affected soil

extend down to the individual farmers’ economies through crop

yield losses and reclamation costs (1, 7). Salt-affected soils are

characterized by the presence of cations such as sodium (Na+),

calcium (Ca2+), magnesium (Mg2+), and potassium (K+), while

common anions in salt affected soils are chlorides (Cl−), sulphates

(SO4
2−), carbonates (CO3

2−), and bicarbonates (HCO3
−) (8, 9).

However, based on sodium ion and salt concentrations, salt-

affected soils are classified as saline, sodic, and saline-sodic soils

(9). These soils can negatively affect plant physiological,

biochemical, and genetic properties, except for salt-tolerant plants

(10–13). Numerous studies have highlighted the negative effects of

salt-affected soils on plants, including inhibition of seed

germination, plant growth and development (14–17); ion toxicity

and nutrient imbalance (18, 19), inhibiting the functions of

microorganisms (20), and reducing water and micronutrients

uptake potential of the plant (21, 22). Further studies indicated

that salt stress impairs plant photosynthetic mechanisms, nutrient

transportation, gaseous exchange, and chloroplast metabolism and

reduces stomatal conductance (23–27). The extent of yield

reduction varies depending on the crop type and Ece threshold

(28). Many researchers have reported that most important crops for

humans are sensitive to different salt concentrations, but the degree

of sensitivity and tolerance varies depending on crop species and

growth stage (21, 29–32). Most crops are more sensitive to salts in

early growth stages (i.e., germination and seedling stages) (29).

Salt hazards are assessed using the electrical conductivity of

saturated paste extract (ECe), for which crop thresholds differ (33,

34). Historically, the electrical conductivity of saturated paste

extract (ECe) has been used as an index to assess soil salinity and

soil health (8). It is themost accurate and recommendedmethod for

determining critical effects of soil salinity which has a direct

influence on plants (35). However, most laboratories determine

and report the electrical conductivity (EC) of the soil in suspensions

based on different ratios of soil: water (i.e., 1:1, 1:2.5, or 1:5). The

effect of dissolved salts on plant growth is determined primarily by

their concentration in the soil solution at a given time (36).High salt

concentrations can hinder plant growth by reducing water uptake

through osmotic stress and introducing toxic ions that can damage

plant tissues (20). According to Richards (8), the concentration of

the soluble salts in the saturation extract is about half the

concentration found in the soil solution at field capacity.

Conversely, it is about a quarter of the concentration observed at

the dry end of the available moisture range (8). Therefore, the salt

effect on soil can be accuratelymeasured when the soil is in a state of

saturation. Electrical conductivity (EC) is influenced not only by

the concentration of ions in the soil but also by the specific

properties of those ions and the overall salinity chemistry (37).

Different ions have different conductivities in soil, with factors such

as ion type, charge, and mobility affecting EC level (38). For
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instance, sodium (Na+) and chloride (Cl-) ions typically

contribute more to EC due to their high mobility compared to

less mobile ions like calcium (Ca2+) and magnesium (Mg2+) (39,

40). Likewise, sodium chloride (NaCl) dissociates completely in

solution and increasing EC, whereas salts like calcium sulphate

(CaSO4) are less soluble and contribute less to EC (37, 40). In

addition, the interactions between ions, soil properties

like texture and organic matter, soil pH, and environmental

conditions such as moisture and temperature further impact EC

(40). These complexities mean that EC values reflect more than just

ion concentration, highlighting the importance of using

standardized measurements electrical conductivity of the soil

paste extract (ECe) for accurate soil salinity assessments.

The linear relationship between ECe and EC1:2.5, has been

reported in several studies with different coefficients. According to

Shahid et al. (9), the correlation coefficients vary depending on the

region and soil type. Ismayilov et al. (37) also reported that the

proportionality coefficient of the relationship between ECe and EC

varies depending on the salinity type, ion-specific concentration.

Soil texture, which refers to the proportion of sand, silt and

clay particles, influences how salts are retained and move in the

soil (41). Coarse-textured soils such as sandy soils have larger pore

spaces, allowing for faster drainage and more effective leaching of

salts from the root zone. On the other hand, fine-structured soils

such as clay soils have smaller pore spaces, which leads to slower

drainage and higher water retention (41). These properties cause

salts to accumulate more easily in the root zone of clay soils,

potentially resulting in greater salinity stress for plants (41).Some

of the proposed equations for the correlation between ECe and

EC1:2.5 are given in Table 1. Electrical conductivity of a saturated

paste extract is a key indicator of soil salinity, which influences plant

growth anddevelopment (35).However, determination of electrical

conductivity using saturated paste extracts is challenging, time-

consuming, and requires more skills to determine the correct soil

saturation point, especially when analyzing a large number of soil

samples (35). In contrast, determination of regular EC in different

ratios of soil:water suspensions (i.e., 1:1, 1:2, 1:2.5, and 1:5) is much

simple and time-efficient (45). However, it’s measurement affected

by various factors including soil moisture, pH and temperature

(41). Therefore, according to Richard (8) the standard

measurement of soil salinity is ECe. For this reason, the easiest,

most efficient, and cost-effective way to obtain ECe values is to focus

on developing appropriate models to convert EC to ECe based soil

to water ratios. According to Shahid (42) conversion factor of EC to

ECe is site specific and their direct use in other areas with different

soils can be cautioned. It is recommended to develop similar

correlations at local conditions (42).

The objective of this study is to develop and validate regression

models to convert EC1:2.5 to ECe across different soil textures,

facilitating easier soil salinity assessment. Our hypothesis assumed

that a linear relationship exists between ECe and EC1:2.5 when a

standardized method is used to determine the saturated paste

extract. The regression models developed here serve several

purposes: standardizing the reporting of salinity information,

enabling rapid assessment and monitoring of salinity, and

reducing the cost and time associated with laboratory analysis.
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2 Materials and methods

2.1 Description of the study area

The study was conducted across three rice irrigation schemes,

namely Mawala, Ndungu, and Uturo, strategically situated within

diverse agro-ecological zones as illustrated in Figure 1. Mawala

irrigation scheme lies within code (E1) on the map of agroecological
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zones of Tanzania (46), and corresponds to the Eastern Plateaux

andMountain Blocks. The landscape is characterized by plain to flat

surfaces. While Ndugu irrigation scheme belongs to E2, it lies on the

foot slope of the South Pare Mountains under Eastern Plateaux and

Mountain Blocks (46). The area is characterized by alluvial/colluvial

plain. Furthermore, Uturo irrigation scheme is under (Rukwa -

Ruaha Rift Zone - Alluvial Flats) abbreviated by R2, in the map of

agroecological zones of Tanzania (46). The landscape of the scheme
TABLE 1 Derived regression equations used by different studies to convert EC1:2.5 (soil:water) to ECe values.

Soil textural Class Regression Equations Country References

With intercept R2 Without intercept R2

Sandy soil ECe = 4 · 34LC + 0:18 ECe = EC1 : 2:5 � 4:77 N/A UAE (42)

Sandy soil ECe = 4:34EC1 : 2:5 + 0 · 17 0.99 ECe = EC1 : 2:5 � 4:41 0.99 Turkey (43)

Loamy soil ECe = 3:84EC1 : 2:5 + 0 · 35 0.99 ECe = EC1 : 2:5 � 3:96 0.99 Turkey (43)

Clay soil ECe = 3:68EC1 : 2:5 + 0 · 22 0.99 ECe = EC1 : 2:5 � 3:75 0.99 Turkey (43)

Clay soil ECe = 1:97EC1 : 2:5 + 0 · 38 0.92 ECe = EC1 : 2:5  �   2:24 0.89 Tanzania (44)

Combined soil textures ECe = 3:53EC1 : 2:5 + 0 · 13 ECe = EC1 : 2:5  �   3:49 0.95 Tanzania (44)
FIGURE 1

A map of Tanzania showing the location and distribution of sampling points in three irrigation schemes: IR1 = Mawala irrigation scheme; IR2 =
Ndungu irrigation scheme; IR3 = Uturo irrigation scheme; purple dot location of irrigation scheme; red dot distribution of sampling points. This map
was prepared using QGIS.
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is floodplains with a very gentle slope. The physiographic and climatic

characteristics of the irrigation schemes are shown in Table 2.
2.2 Soil sampling procedures and analysis

A 250 m spacing grid was generated using ArcGIS 10.8 under

the defined boundary for point soil sampling in each irrigation

scheme (Figure 1). A total of 706 soil samples were collected at 0-30

cm depth, i.e., 317 samples from irrigation scheme (IR1), 266

samples from irrigation scheme (IR2) and 123 samples from

Irrigation scheme (IR3). Given the predominantly flat nature of

the studied areas, the sampling protocol ensured an adequate spatial

distribution of sampling points, thereby established unique

representative sites. Collected soil samples were air-dried, ground,

and sieved through a 2 mm sieve, ensuring the homogeneity of the

samples for precise and reliable subsequent analyses.
2.3 Electrical conductivity (EC1:2.5) soil:
water ratio

10.0 g of dry soil was suspended in 25 ml of distilled water. The

mixture was shaken by a mechanical shaker for 30 minutes to ensure

thorough mixing, and then allowed to settle for 10 minutes. EC meter

prob was inserted in a supernatant (clear liquid above the settled

particles) for EC readings. The EC values were measured with an

electrical conductivity meter (Model: PH 8 BENCHTOP PH METER;

brand: Brand: Giorgio Bormac s.r.l) according to the method

described by Mclean (47).
2.4 Determination of electrical conductivity
of saturated paste extracts

Electrical conductivity of saturated paste extracts was determined

following FAO guidelines (39). 200 g of dry soil sample was weighed
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into plastic container, and distilled water was slowly added while

stirring until a saturated paste was achieved. The soil was properly

mixed to form a homogeneous paste and kept for 24 hours before

extraction. The extraction process was carried out with a vacuum

pump usingWhatman filter paper No. 42 with a diameter of 150 mm.

After extraction, ECe was measured using an ECmeter probe (Model:

COND8 BENCHTOP CONDUCTIVITY METER; Brand: Giorgio

Bormac s.r.l). Out of 706 soil samples collected, 355 were randomly

selected for the determination of saturated paste extract.
2.5 Soil texture

Soil texture which is the relative proportions of sand, silt, and

clay determined by hydrometer method (48). This method involves

dispersing soil particles in a liquid and measuring the rate at which

they settle, which varies depending on particle size. Textural classes

were determined using USDA soil texture triangle (49). The similar

textural classes were grouped and used to develop to develop

specific regression models.
2.6 Soil salinity classification

This study adopted the salinity classification based on ECe and

crop yield responses as described by (50) as shown in Table 3. This

classification categorizes soils into different levels of salinity, which

helps predict impacts on crop yields. Different crops have different

ECe thresholds, meaning they tolerate different levels of soil salinity

before yield loss occurs (51).
2.7 Model development, validation
and comparison

Statgraphics Centurion statistical package (version 19) was

used, and different regression models were applied to establish the
TABLE 2 Physiographic and climatic characteristics of the study sites (irrigation schemes).

Items Irrigation schemes

Irrigation scheme (IR
1, Mawala)

Irrigation scheme (IR 2, Ndungu) Irrigation scheme (IR 3, Uturo)

Geographical
Location

Latitude 3°5’ to 3°39’ S and
longitude 37°14’ to 37°36’ E

Latitudes 3°47’ to 4°36’ and longitude 37°27’ to 38°24’ E Latitude 7°37’ to 8°56’ S and longitude 33°
33’ to 34°58’ E

Altitude (m)
above mean sea
level (amsl)

750–1,500 1,100–2,462 1,000–1800

Annual rainfall
characteristics
(mm)

1,000–1,500 (February – May) long
rainy season and
(November – December) short. The
dry spells are normally from July
to September

500–800 (March – June) long rainy season and from
(November-December) short rainy season. The dry spells are
normally from July to October

450 - 800 (October – May), experience
unimodal rainfall pattern. The dry spells are
normally from June to September

Temperature
range (°C)

16 - 30, with the highest
temperature in October and the
lowest temperature in July

24 - 34, with highest temperature in October and the lowest
temperature in July

19 - 32, with the highest temperature in
November and the lowest temperature
in July
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best correlation between EC1:2.5 and ECe values. To ensure that a

robust model is developed, the training and validation data sets

were splits in ratios of 80:20, i.e., 80 percent of the data used for

training and 20 percent for validation as suggested by Joseph (52)

and Dobbin and Simon (53). Statistical parameters including the

root mean square error (RMSE), mean absolute error (MAE) and

coefficient of determination (R2) were used to select and validate

models, ensuring accuracy and reliability. These evaluations were

conducted with significance level at p-values of 0.05. Outliers were

identified using studentized residual plots, with observations

exceeding an absolute value of 3 flagged for further investigation.

Observations that had studentized residuals exceeding an absolute

value of 3 were classified as outliers, justifying further investigation

on their validity, as suggested by Kargas and Londra (35). A good

residual plot was characterized by a dense distribution of points in

close proximity to the origin, while maintaining symmetry around

the origin. Further detailed descriptions of the statistical parameters

used in the model selection and validation process can be found

in Table 4.
2.8 Statistical analysis

Descriptive statistics, including mean, standard deviation (SD),

coefficient of variation (CV), range, median, minimum, maximum,

skewness and kurtosis were employed to provide an overview of the

salinity levels in different irrigation schemes. In addition, an

assessment of the normality of the data distributions was

conducted using Q-Q (Quantile-Quantile) plot in the Software

Package for the Social Sciences (SPSS) version 20. Correlation

analysis between ECe and EC was done followed by establishing

simple liner regression models for estimation of ECe using EC as

inputs in the models.
3 Results and discussion

3.1 Physical and chemical properties of
the soil

3.1.1 Soil texture
Soil texture of the studied soils was dominated by clay (46.8%),

followed by sandy (32.0%, and silt (21.2.0%), as shown in Table 5.
Frontiers in Soil Science 05
Soil texture plays an important role in influencing soil salinity

dynamics, and influences how salts are distributed, leached, or

retained in the soil matrix (54, 55). According to Uri (56) and

Gelaye et al. (57), fine-textured soils such as clay retain more water

and salts, resulting in higher salinity, while coarse-textured soils like

sand allow for faster drainage and leaching of salts. In addition, fine-

textured soils influence capillary rise, potentially bringing salts to

the surface, especially in dry regions (54). Therefore, soil textural

classes influence water retention, drainage, and the movement of

water and solutes within the soil profile, ultimately influencing the

distribution of salts (58).
TABLE 3 Classification of soil salinity based on soil saturated paste
extract (ECe) and their effect in crop yield response (50).

ECe
(dS m−1)

Classification Crop Yield Response

0–2 Non-saline not affected

2–4 Slightly saline
sensitive crop affected (e.g., rice at
ECe 3)

4–8 Moderately saline many crops affected

8–16 Strongly saline only tolerant crops (e.g., date palm)

>16 Extremely saline a few very tolerant crops
TABLE 4 Statistical parameters used for model selection and validation.

Statistical
parameter

Equation Description

Root Mean
Square
Error (RMSE)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Pi −Mi)2

n

s
The RMSE shows how far
predictions fall from measured
true values using Euclidean
distance.
The values closer to 0 indicate
better fitting models

Mean absolute
error (MAE)

MAE =
1
no

n

i=1

Mi − Pij j Mean Absolute Error (MAE) is
a metric that calculates the
average magnitude of the
absolute errors between the
predicted and actual values
The closer the MAE value to
zero, the better the prediction.

Coefficient of
determination
(R2)

R2 = 1 − o
n
n=1(Mi − Pi)

2

on
n=1(Mi − �M)2

It indicates the extent of
predictability (i.e., how well
dependent variables can be
accurately predicted). A value
closer to 1 indicates a high level
of prediction
(model performance).
∗ n is the sample size; Mi is the measured value for the ith observation in the dataset; Pi is the
predicted value for the ith observation in the dataset; �M is the mean of the measured values
TABLE 5 Summary statistics of the parameters for establishing
relationships between ECe and EC1:2.5.

Variable EC ECe Sand Silt Clay

dS m-1 %

Mean 1.82 6.18 32.0 21.2 46.8

SE 0.20 0.67 0.91 0.62 0.67

Median 0.00 1.00 28.82 22.04 47.68

Variance 12.10 134.09 248.33 117.35 136.73

Std. Dev 3.48 11.58 15.76 10.83 11.69

Minimum 0.04 0.16 0.56 5.4 13.76

Maximum 14.34 48.27 83.68 59.0 79.76

Range 14.00 48.00 83.12 64.5 66.00

Skewness 2.03 2.08 0.906 0.257 0.26

Kurtosis 2.86 3.00 0.704 0.167 0.22

n 355 355
fron
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3.1.2 Salinity indicator
The study recorded a wide range of EC and ECe values of the

analysed soil samples, ranging from 0.04 to 14.34 dS m−1 and 0.16 to

48.27 dS m−1, respectively across three irrigation schemes (i.e.,

Mawala, Ndungu and Urturo). In Mawala irrigation scheme EC

values ranged from 0.02 to 15.27 dS m−1 and 0.06 to 48.27 dS m−1

for ECe. Ndungu irrigation scheme, the EC values ranging from

0.01 to 12.25 dS m−1 for EC and 0.04 to 39.27 for ECe, while Uturo

irrigation scheme the values ranging from 0.02 to 1.2.27 dS m−1 for

EC and 0.06 to 2.7.87 dS m−1 for ECe. Based on the classification by

Richards (1954), 68.7% of the soil analyzed had low ECe values,

ranging from 0 to 2 dS m−1, indicating that these were non-saline

(normal soils). On the other hand, 7.6% had ECe values in the range

of 2 to 4 dS m−1 indicating that these were slightly saline, and 4.2%

fell into the moderately saline salinity category, with ECe values

ranging between 4 and 8 dS m−1. Notably, 5.6% showed elevated

ECe values ranging from 8 -16 dS m−1, and the remaining 13.8%

had ECe values exceeding 16 dS m−1 indicating that these were

extremely saline.

Based on the results, the existence of ECe values above 4 dS m-1

indicates a substantial rice yield loss in the studied irrigation

schemes since rice cannot tolerate such high salinity levels.

According to Solis et al. (59), rice is a relatively very salt-sensitive

crop, where an ECe threshold (3 dS m−1) can lead to yield losses

(60). Furthermore, grain quality is also severely above the threshold

of 8 dS m-1 (61, 62). According to Bundó et al. (63) rice is more

tolerant to salt stress during germination and vegetative stages than

during seedling and reproductive phases. Linh et al. (64) reported

yield loss of 12% in rice at a salinity of ECe of 3 dSm−1, and yield
Frontiers in Soil Science 06
loss of about a 50% was recorded at a salinity of ECe value

of 6 dSm−1.
3.2 The relationship between ECe and
EC1:2.5 under different soil texture

The correlation analyses were carried out for different soil

textures, as shown in Figures 2–4, to determine conversion factors

between two measures of electrical conductivity: EC1:2.5 and ECe.

The results showed a strongly linear relationship between ECe and

EC1:2.5 across different soil texture with R2 value above 0.95. RMSE

values are low (1.4 < RMSE) and MAE values were similar low (0.85

< MAE). Despite the consistent linearity, the coefficient of the

regression models varied depending on soil texture class. These

results have similar trend with reported previous research findings

on the same soil water ration other researchers (43, 65, 66), which

also found linear relationships between saturated paste extracts and

soil-water ratios (1:2.5). Notably, Research by Isdory, et al. (44)

conducted in a relative environment observed a comparable linear

relationship, especially combined textural model, although with

slight variations in conversion factor. However, high difference of

the coefficient was observed in clay regression equation Table 1. It is

important to note the differences observed in the conversion factors

derived in this study if compared with those reported by other

researchers at the same soil water dilution ratio of (1:2.5) may

attributed with several factors. These factors include the clay

content and type clay mineral of soil samples (42, 43), which

affect water retention and ion exchange properties of the soil, type
FIGURE 2

Linear regression models for estimation of ECe to EC1:2.5: (A1) regression equation for sandy clay soil (n = 59), (A2) corresponding studentized
residual plot; (B1) regression equation for sand clay loam soil (n = 83), (B2) corresponding studentized residual plot.
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FIGURE 4

Linear regression models for estimation of ECe to EC1:2.5: (E1) regression equation for loam soil (n = 32), (E2) corresponding studentized residual
plot; (F1) regression equation for combined textural classes (n = 355), (F2) corresponding studentized residual plot.
FIGURE 3

Linear regression models for estimation of ECe to EC1:2.5: (C1) regression equation for clay soil (n = 140), (C2) corresponding studentized residual
plot; (D1) regression equation for clay loam soil (n = 41), (D2) corresponding studentized residual plot.
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of salts present (8, 67), gypsum and calcium carbonates (8), chemical

composition of the soil solution, as well as the equilibration time and

the preparation and extraction process determination (68), and

percentage variations of sand and clay content in the soil (42, 67).

Another factor that likely influenced differences between themodels is

ECe range of soil samples used to develop the conversion equations

(66).However, it is important to note that the quality of the filter paper

material used to extract the saturated paste is crucial. The consistency

of the developedmodels,which closelymatchesfindings fromdifferent

studies, increases the reliability of the linear relationship between ECe

and EC1:2.5 across different soil textures. On the other hand, a

regression equation of loam soil was developed, which had not been

previously reported. This finding provides new insights to the field, as

illustrated in (Figure 4, E1). Table 6, it summarizes the developed

models in this study and their performance using key statistical

parameters R2, RMSE and MAE.

In coarse-textured soils, such as sandy soils, the conversion

factor used to estimate ECe from EC1:2.5 measurements tend to have

a higher value compared with fine-textured soils like clay soils (43,

69). This is due to the lower water retention and lower cation

exchange capacity (CEC) of sandy soils, which result in salts being

more easily leached and less tightly bound to soil particles.

However, this condition may vary depending on chemical

composition of the soil solution as well gypsum and calcium

carbonates (8).
3.3 Model accuracy and
uncertainty evaluation

Table 6 presents developed models for estimating ECe from

EC1:2.5 soil water ratio in different soil textural classes. The

proportionality ratio of 80:20 for training and validation gave the

best fit to the developed regression equations. The validation used

independent soil samples thatwere distinct from those used in creating

the regressionequations.Acrossdifferent textural classes, generally, the

models had high R2 values ranging from 0.953 to 0.982, indicating

goodness of fit. The relatively low error metrics of both RMSE and

MAE indicate that the models are highly reliable for predicting ECe

from EC1:2.5. Interestingly, both individual and combined models

provide the best ECe prediction from EC1:2.5, as shown by their error

metrics.However, the accuracy of these predictions is likely to improve

when models with specific soil texture classes are used. Figure 5

illustrates the relationship between measured and predicted values of
Frontiers in Soil Science 08
soil saturation ECe using a combined model that includes all soil

texture classes. The conversion factor of the validation models is

approximately 1, indicating a strong linear correlation between the

measured and predicted values. According to Zhang et al. (2005), if

predicted values of ECewere exactly the same asmeasured ECe values,

the slope would be equal to 1.0, and R2 would equal 1.0.
4 Conclusions

The study derived the regressionmodels for the estimation of ECe

from the EC of the soil water ratio (1:2.5) under different soil textural

classes. The results showed a strong relationship between ECe and EC

of the developedmodels, with higher coefficients of determination (R2)

ranged from (0.953 to 0.982), and lower values of RMSE and MAE.

This indicates that the models have a high level of precision in

predicting ECe from the EC1:2.5 water dilution ratio. Interestingly,

the results also showed ahigh linear correlation betweenmeasured and

predicted values tested in the combined linear regression model.

Determining soil salinity using the electrical conductivity of

saturated paste extracts is a standard method, but it is challenging

due to the extraction time requirement and the need for more

specialized skills often not offered by most soil testing laboratories.

Therefore, the regressionmodels developed in this study can help in i)

standardizing the reporting of salinity information, ii) rapid

assessment and monitoring of salinity, and iii) minimizing the cost
FIGURE 5

Relationship between measured and predicted ECe using a
combined regression equation (n = 355).
TABLE 6 Summarized statistics of accuracy and uncertainty of the developed models.

Texture class No of samples Models R2 RMSE MAE

Sandy clay 59 ECe = 3 · 499*EC1:2 : 5 0.953 1.301 0.583

Sandy clay loam 83 ECe = 3 · 381*EC1:2 : 5 0.969 0.869 0.533

Clay 140 ECe = 3 · 663*EC1:2 : 5 0.964 0.692 0.189

Clay loam 41 ECe = 3 · 452*EC1:2 : 5 0.982 1.193 0.606

Loam 32 ECe = 3 · 100*EC1:2 : 5 0.974 1.332 0.817

Combined texture 355 ECe = 3 · 338*EC1:2 : 5 0.963 1.149 0.662
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and time spent on laboratory work. Therefore, this study concludes

that established models can serve as useful tools to predict ECe values

fromECmeasured in 1:2.5 dilutions, andwhen the soil textural class is

known, using a specific soil texture conversion factor can increase the

accuracy of the ECe prediction. The study recommends the use of a

combined regression model for unknown soil textural classes. Further

research should validate thesemodels in other regions and soil types to

enhance their generalizability and accuracy.
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