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Introduction: Rising fluoride levels in groundwater resources have become a

worldwide concern, presenting a significant challenge to the safe utilization of

water resources and posing potential risks to human well-being. Elevated

fluoride and its vast spatial variability have been documented across different

districts of Punjab, India, and it is, therefore, imperative to predict the fluoride

levels for efficient groundwater resources planning and management.

Methods: In this study, five different models, Support Vector Machine (SVM),

Random Forest (RF), Extreme Gradient Boosting (Xgboost), Extreme Learning

Machine (ELM), and Multilayer Perceptron (MLP), are proposed to predict

groundwater fluoride using the physicochemical parameters and sampling

depth as predictor variables. The performance of these five models was

evaluated using the coefficient of determination (R2), mean absolute error

(MAE), and root mean square error (RMSE).

Results and discussion: ELM outperformed the remaining four models, thus

exhibiting a strong predictive power. The R2, MAE, and RMSE values for ELM at the

training and testing stages were 0.85, 0.46, 0.36 and, 0.95, 0.31, and 0.33,

respectively, while other models yielded inferior results. Based on the relative

importance scores, total dissolved solids (TDS), electrical conductivity (EC),

sodium (Na+), chloride (Cl−), and calcium (Ca2+) contributed significantly to

model performance. High variability in the target (fluoride) and predictor

variables might have led to the poor performance of the models, implying the

need for better data pre-processing techniques to improve data quality.

Although ELM showed satisfactory results, it can be considered a promising

model for predicting groundwater quality.
KEYWORDS
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1 Introduction

Consumption of groundwater with fluoride (F−) levels between

0.5–1.5 mg/L is essential for proper bone and tooth development.

However, concentrations exceeding the recommended safe limit of

1.5 mg/L (1) can cause dental fluorosis (1.5–4.0 mg/L), skeletal

fluorosis (4.0–10.0 mg/L), and several other disorders, including

hypertension, renal failure, and cancer (> 10 mg/L) (2, 3).

Reportedly, elevated F− levels have already affected over 200

million people in 29 nations, including India (4). In India, F−

prevalence has been identified in 20 out of 29 states with 66 million

inhabitants, including 6 million children, under the grasp of

fluorosis (5, 6), with the numbers still expected to rise (7).

Fluoride-bearing minerals, like fluorite, amphibole, mica, apatite,

and biotite associated with host rocks like granite, mica, gneisses,

etc., are the primary natural sources. Groundwater chemical

conditions such as elevated alkalinity, reduced calcium levels, and

sodium bicarbonate water type favor dissolution and desorption of

metal oxides, causing F− enrichment. Additionally, arid and semi-

arid climatic zones have also reported increased F− concentrations

(8, 9) due to enhanced cation exchange capacity, dissolution from

F−-bearing minerals and longer groundwater residence times,

thereby increasing the interaction between the rock-water

interface (10, 11). Besides the natural factors, anthropogenic

activities, including phosphate fertilizer application, sewage and

sludge dumping, mining, coal combustion, and excess groundwater

extraction, also contribute to high F− levels (11, 12).

Innumerable studies across Punjab have provided an overall

picture of the state’s groundwater contamination problem. Fluoride

concentrations have been reported in all the districts, particularly in

the shallow aquifers, with more pronounced levels in the south and

southwestern districts. For instance, F− concentration in this region

ranged from 0.1–17.5 mg/L in Bathinda, 0.34–8.24 mg/L in Fazilka

(13), 0.15–11.6 mg/L in Mansa (14), and 1.5–9.2 mg/L in Patiala

(15). Thus, this region has emerged as a hotspot of F−-contaminated

groundwater (16, 17). The abundance of F−-bearing minerals, along

with agricultural activities and industrial operations in this region,

further enhance the contaminant levels in the groundwater system.

The region’s climate, surface, and sub-surface conditions are

conducive to dissolving, mobilizing, and enriching this

contaminant in the aquifers. Punjab experiences meagre

precipitation, high temperatures, and high evaporation rates

linked to high total dissolved solids (TDS)/salinity, particularly in

shallow aquifers. The aquifers are oxic and alkaline due to high

bicarbonate concentrations. Additionally, the nitrate levels are

prominent in shallow waters, probably due to agricultural runoff

(17). All of these hydrochemical factors have a direct influence on

F− concentrations and, therefore, tend to intensify the

contamination problem in this region. Hence, it is imperative to

develop methodologies by integrating the in-situmeasured variables

from field surveys with other advanced and efficient techniques to

strategize sustainable groundwater management plans and establish

robust monitoring systems (18). Field-based groundwater

monitoring is labor-intensive and expensive (19), in addition to

the lab-based analytical procedures, which are tedious, complicated,

and add a cost burden (20). In this context, various numerical and
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physical models, along with geospatial modeling, are often applied

to comprehend the groundwater contamination process and the

contributing factors (21, 22). However, these methods require huge

datasets and an adequate hydrogeochemical understanding, which

are mostly lacking in underdeveloped regions, leading to poor

model performance (18, 23). Furthermore, the difficulty in

interpreting the outputs of classical models and poor user-

friendliness widen the gap between model creators and users. To

bridge this gap, state-of-the-art machine-learning (ML) techniques

are now being widely used to predict groundwater contamination.

Machine-learning models have been adopted extensively in the

past several years to forecast a variety of contaminants in the

groundwater due to their strong algorithms, flexible constraints,

and reliable and accurate prediction performance (24). These

techniques can also handle the non-linear relationships between

the input and target variables efficiently, proving to be more robust

than the conventional methods (25). Random Forest (RF)

classification algorithm is widely used to forecast groundwater-F−

hazard areas globally (26), regionally (10), and locally (27) with an

accuracy of 0.89, 0.91, and 0.93, respectively. All of these studies

used continuous variables such as climate, soil, geology, and

topography for prediction modeling. Contrarily, limited studies

have considered water quality parameters for predicting F−

concentrations. The regression-based modeling for groundwater

fluoride prediction using hydrogeochemical variables obtained

superior accuracy for RF (> 0.89) over logistic regression (LR)

and artificial neural network (ANN) (28). Groundwater fluoride

was also estimated using LR, ANN, Support Vector Machine

(SVM), and K-Nearest Neighbor (KNN), where KNN and SVM

performed better than the other models (29). Gupta and Maiti (30)

compared six ML models, gaussian process (GP), long short term

memory (LSTM), Extreme Learning Machine (ELM), Multilayer

Perceptron (MLP), RF, and SVM. All the models achieved an

overall accuracy of > 0.85, implying satisfactory prediction

capability. In another study, ELM outperformed MLP and SVM

in predicting F− concentration (31). Furthermore, Nafouanti et al.

(32) compared the prediction performance of RF, Extreme Gradient

Boosting (Xgboost), Light Gradient Boosting (LightGBM), and

Hybrid Random Forest Linear Model (HRFLM) estimating the F−

levels in the Datong basin, China. They achieved an overall accuracy

of > 0.88 for all the models. These outcomes indicate that different

ML models may give distinctive predicted outcomes when tested for

the same dataset (30). Moreover, predictive modeling will aid in the

early detection of the contamination, further help undertake

remedial steps and allocate resources to prevent pollution

efficiently. In this regard, the present study compares the

performance of five different ML models, including the commonly

used RF model, to predict groundwater F− contamination using the

water quality parameters as potential predictor variables.

Groundwater F− contamination is a typical phenomenon in arid

and semi-arid zones like Punjab. However, the lack of monitoring

programs for F− estimation in this region poses a possible health

risk for humans from drinking contaminated water. In addition, the

study area opted for this work lacks ML-based prediction studies for

groundwater F− estimation. Therefore, with this in view, five ML

models with distinct algorithms were chosen to predict F− levels in
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the groundwater. Several researchers have thoroughly tested the

selected models, and we attempted to replicate them using our

results for our study region. The objective of the current work is to

determine the most suitable predictive model that can be applied to

predict F− concentration in groundwater of the Punjab, India.

Henceforth, the performance evaluation and comparison of RF,

SVM, Xgboost , ELM, and MLP was performed using

hydrogeochemical variables commonly estimated from the study

area. The influence of different predictor variables on the model

performance was also assessed to identify the most significant water

quality parameters responsible for groundwater F− contamination

in Punjab. Based on these parameters, the best-performing model

can aid in optimizing data collection, transmission, and analysis

time, resulting in a rapid resolution to the contamination problem.

This effort will be beneficial in determining the possible F− levels

with the help of physicochemical parameters in locations lacking

regular groundwater quality monitoring. This information will

provide new research directions and help develop management

plans to boost the availability of safe drinking water in the region.
2 Study area description

The north-western state of India, Punjab, is 200 meters above

mean sea level and comprises an area of 50,362 km2. It stretches

between latitudes 29° 32′–32° 28′ N and longitudes 73° 50′–77° 00’ E,
sharing boundaries with Pakistan on the west, Jammu and Kashmir on

the north, Himachal Pradesh on the northeast, Haryana and Rajasthan

on the south. Punjab is further subdivided into the Malwa region,

consisting of 11 districts of the south and southwest, the northern sub-

mountainous region of Majha, and the semi-arid central plains of

Doaba (33). The state has three major rivers, Sutlej, Beas, and Ravi, and

an extensive irrigation canal system widely used for crop irrigation.

Approximately 86% of the state comprises agricultural land

(Figure 1A) (37), with paddy and cotton as principal Kharif crops

and wheat as the major rabi crop cultivated in the region. The climate

varies from semi-humid to semi-arid type in the north, while arid

conditions are prominent in the southern and southwestern districts.

The rest of the state experiences semi-arid conditions (Figure 1B). The

overall temperature in this region ranges from 5–50 degrees Celsius

with hot summers starting from mid-April and cold winter months

from December to February. Punjab lies on a flat alluvial plain of the

Indo-Gangetic basin (IGB) surrounded by Quaternary sediments

deposited by the Indus River and its tributaries. These sediments

constitute a continuous groundwater system forming the north-

western portion of the IGB aquifers. The aquifers in the central

districts experience the maximum hydraulic conductivity

(approximately 10–90 m/day) and the minimum in the southwestern

region (4–8 m/day). The soil is primarily loose, consisting of sand and

calcareous materials, gravel, silt, and clay. Kankar, a nodular structure

of impure calcium carbonate, is often found 60–200 cm underneath the

surface and sporadically at the surface of some agricultural lands (38).

The groundwater is found in partially confined/confined deeper

aquifers and unconfined shallow aquifers fed by rainfall and canal

water (16, 39, 40), with north and central districts having fresh

groundwater and the southwestern region dominated by saline
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groundwater. The elevated mountains and hill regions in the

northern and northeastern Punjab are responsible for groundwater

recharge from where the water flows towards the lower elevation areas

in southwest regions (Figure 1C). Therefore, southwestern districts

such as Bathinda, Muktsar, Fazilka, and Ferozepur have shallow

groundwater and often experience water-logging and highly saline

soil conditions, resulting from evaporation of canal water and continual

movement of water from canals and distributaries (16). Punjab receives

most precipitation from July to September from the southwest

monsoon, which ultimately aids in the replenishment of the

groundwater table (16). The rainfall varies from 800–1,200 mm in

the north and 400–800 mm in the central plains, with the lowest of <

400 mm in the southwestern region (Figure 1D).
3 Materials and methodology

3.1 Data collection, database creation,
and processing

Groundwater quality analyses from across the entire state of

Punjab were retrieved from various published reports and research

articles. We collected a total of 17,317 F− observations: 1,705 data

points from Central Groundwater Board (CGWB), 433

observations from Central University of Punjab (CUPB), 745

observations from Duggal and Sharma (41), 11,226 from Khattak

et al. (8), 59 observations from Sharma et al. (42), 38 observations

from British Geological Survey (BGS) (43), and 3,111 from

Department of water supply and sanitation, Punjab government.

Besides F−, the availability of groundwater physicochemical

parameters such as pH, Electrical Conductivity (EC), Total

Dissolved Solids (TDS), Chloride (Cl−), Nitrate (NO3
−), Sulphate

(SO4
2−), Phosphate (PO4

3−), Bicarbonate (HCO3
−), Sodium (Na+),

Potassium (K+), Calcium (Ca2+), and Magnesium (Mg2+) is

essential for model development. In conjunction with the

groundwater quality determinants, the depth of the collected

samples was also considered an important parameter for this

study. These variables were selected based on their established or

suspected association with the discharge and accumulation of F− in

groundwater and were further used to screen the data.

Although these attributes are often measured during

groundwater monitoring assessments, some were missing from

the datasets collected from different sources. Data collected from

research papers (8, 41, 42) did not contain all of this information

and, hence, was not included in the final database. In comparison,

almost all variables were present in data collected from BGS,

CUPB, and CGWB. Although CGWB data was collected from

2013–2015 and 2018–2020 (44–49), only the recent data of the

year 2020 was used for prediction modeling. Also, the

observations from locations monitored in the previous years but

not in 2020 were considered for prediction modeling. This

resulted in a total of 298 observations from CGWB.

Furthermore, CUPB data consisted of some samples collected

from canals and other surface water sources, which were excluded,

resulting in a total of 420 data points. Besides the water quality

variables and sampling depth, information on the geographical
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coordinates of the sampling locations was also considered as an

essential screening criterion. For sampling points lacking the

georeferenced location, Google Earth Pro was used to determine

the same by using the name of the sampling location. Therefore,

the final database that was finally used for creating a suitable
Frontiers in Soil Science 04
prediction model for groundwater F− concentration contained a

total of 756 data points from CGWB, CUPB, and BGS (Figure 1A,

Table 1). The final data was also classified into two classes as per

the depth at which the samples were collected (optimum depth

was considered to be 60 m) (52, 53).
TABLE 1 Detailed information of the groundwater fluoride dataset compiled from different sources.

Data source Total
data
points

Districts covered Max./median
concentration
(mg/L)

Year Reference(s)

Central Ground Water
Board (CGWB)

298 All 9.2/0.6 2020 (48)

Central University of Punjab (CUPB) 420 Barnala, Bathinda, Fatehgarh Sahib,
Fazilka, Ludhiana, Roop Nagar,
SBS Nagar

2.59/0.57 2016 (13, 50, 51)

British Geological Survey (BGS) 38 Hoshiarpur, Jalandhar, Kapurthala,
SBS Nagar

5.76/0.62 2016 (43)
A B

DC

FIGURE 1

(A) Location map of Punjab showing the land-use and land cover distribution in 2021 (34) along with the fluoride data points at high and low
concentrations; (B) aridity (2002); (C) elevation (35); (D) rainfall map of Punjab (36).
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The values of some of the abovementioned variables were

missing in the final dataset, which was estimated with the help of

standard formulas. One such missing parameter was TDS in

CGWB data that was determined using the following formula

(Equations 1, 2) (54):

TDS 
mg
L

or ppm
� �

= EC 
dS
m

� �
� 640  when EC ranges from 0:1 − 5

dS
m

� �
(1)

TDS 
mg
L

or ppm
� �

= EC 
dS
m

� �
� 800  when EC is greater than 5

dS
m

� �
(2)

Similarly, a few other parameters were reported below their

respective detection limit (BDL). These values were then replaced

by dividing the BDL value by two. Furthermore, the values of all the

parameters were converted to their respective similar unit to ensure

uniformity in the dataset. All the anions, cations and TDS were

represented in mg/L, EC in μS/cm, and depth in meters, while pH is

unitless. Of the final 756 F− measurements, 609 (~81%) were under

the permissible limit of 1.5 mg/L, 100 (~13%) ranged from 1.5–3

mg/L, and the remaining 47 (~6%) were greater than 3 mg/L.
3.2 Groundwater hydrochemical
characterization and depth distribution

To understand the nature of the distribution of groundwater F−

levels and their corresponding physicochemical parameters at

different depths, graphical and statistical inference methods were

adopted. The compiled dataset was characterized by enumerating

its descriptive statistics (minimum, maximum, mean, median,

coefficient of variation, first and third quantiles, and percentage of

samples exceeding the respective permissible limits). The normality

for all the variables was tested using Kolmogorov–Smirnov test.

Testing whether the data is normally distributed is necessary,

especially for geochemical and other environmental data, because

they are generally skewed, consisting of outliers and originating

from varied sources (55). Normality testing further aided in

selecting the appropriate statistical treatments for the data. Since

most parameters are not normally distributed, Spearman’s rank

correlation coefficient was enumerated to identify the potential

associations of the F− concentrations with the concurrently

evaluated physicochemical attributes and sampling depth. All the

statistical analyses and graphical plotting were performed in the R

software version 4.3.2.
3.3 Model description and development

Machine learning algorithms were further applied to uncover

the hidden patterns between the compiled F− concentrations and
Frontiers in Soil Science 05
the physicochemical variables and well depth and develop an

optimized model for predicting F− concentration in the study

domain. In this study, F− is the output or target (y) variable that

will be determined using the input or predictor (x) variables, i.e., the

abovementioned physicochemical attributes and the sampling well

depth. Five different machine learning models, i.e., Extreme

Gradient Boosting (Xgboost), Random Forest (RF), Support

Vector Machine (SVM), Extreme Learning Machine (ELM), and

Multilayer Perceptron (MLP), were implemented and tested on the

final dataset. All of these models have been frequently used in the

literature for groundwater-based investigations and, hence,

considered for groundwater F− prediction modeling. R software

version 4.3.2 was used to develop these proposed models. Before the

implementation of these models, a pre-processing step was involved

in which data standardization was performed using the Z-score

method with the following formula (Equation 3) (56):

�xi =
xi − m
s

(3)

where �xi denotes the standardized ith variable, xi   is the i
th variable,

s   denotes standard deviation, and m is the mean. Following

standardization, the entire dataset was randomly shuffled, and a

cross-validation technique was employed to further split the data

for training and testing the model. 80% of the data was used for

training the model, and the remaining 20% was used for validation.
3.3.1 Random Forest
Random Forest is one of the widely recognized and extensively

implemented ensemble machine learning methods that has

successfully solved real-world issues (56). RF algorithm generates

numerous decision trees (hence called a ‘forest’), each of which is

built from a random subsample of the data used to train the model

(and therefore, the name ‘random’). The algorithm uses the

bootstrapping method to select samples randomly, thereby using

different combinations of the information in the training dataset.

This aids in reducing the semblance among the trees, ultimately

making the model more robust. The remaining samples of the input

sub-sample set used to train the model are referred to as ‘out of bag’

samples or OOB samples that are utilized for internal cross-validation

of the trained model (57). Furthermore, the model opts for a random

subset of independent or predictor variables in order to split the data

at each node for growing an unbiased tree. The creation of several trees

and considering the average number of decisions made for these trees

minimizes the problem of overfitting, which is an issue when

considering a single decision tree. This aggregation of decisions

from different trees enhances the generalization capacity of the

Random Forest model (58). To develop an effective RF model,

optimization of two hyperparameters, i.e., the total number of trees

and the least number of leaf sizes, is required. For this work, four

physicochemical parameters as predictor variables were used at each

node split. These predictor variables were split by applying a curvature

test to grow an unbiased tree. The decision trees count ranged from 1

to 500, and the random search approach was employed for

determining the minimum number of leaf sizes.
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3.3.2 Support Vector Machine
Support Vector Machine is a structural risk minimization-based

statistical learning method that was first proposed by V. N. Vapnik

(59). In contrast to the neural network (NN) technique, which may

have overfitting and generalization issues, the upper limit of

extended risk is reduced in SVM, which enhances its

generalization capability (60). Instead of considering a two-

dimensional plane, SVM employs hyper-planes to specify decision

boundaries between the data observations of distinct classes by

using a kernel method (61). An in-depth explanation of the SVM

model is given by Ceryan et al. (62). In this study, several kernel

functions, such as polynomial, linear, and radial basis kernel

functions, were tested, and the best-performing kernel was further

selected for prediction. In our study, epsilon value, gamma, and cost

were the hyperparameters selected for this model. The epsilon value

influences the number of support vectors, which lowers the chances

of the model overfitting. In this study, the hyperparameters were

optimized by the Bayesian optimization technique, where the

Epsilon value was searched in the range of (10−3, 102) and box

constraints in the range of (10−3, 103).

3.3.3 Extreme Gradient Boosting
Chen et al. (63) developed the Xgboost model, which is an

advanced and improved version of the gradient-boosting machine

(GBM). As compared to GBM, Xgboost has a faster learning speed

and higher accuracy. It can be employed for both classification and

regression problems. It is an ensemble method composed of

numerous decision trees where the data splits according to the

features. The prediction errors of previous trees are rectified by the

addition of new trees for model fitting. Based on the values of the

input parameters, each sample is allocated to a set of leaves in a tree

that each have a certain numerical weight. The model’s projected

output for a particular sample is calculated by adding the sum of the

leaves allocated to that sample for each regression tree (64). Step-

wise information about Xgboost is provided by Osman et al. (65). In

order to achieve better modeling performance and prediction

efficiency, it is essential to calculate the optimization parameters.

For this study, four hyperparameter algorithms were applied such

as Grid Search, Adaptive Random Search, Genetic Algorithm, and

Bayesian Optimization, for optimizing the model parameters

(nround, eta, lambda, and alpha).

3.3.4 Extreme Learning Machine
ELM is one of the most commonly used ML models due to its

incredibly quick learning speed and ability to achieve the minimum

training error with the smallest weight norm (66). It is being

frequently utilized in various scientific domains such as picture

recognition, text classification, biomedicine, environmental

forecasting, and others (67–69). ELM is a feedforward neural

network that has a single hidden layer between an input layer and

an output layer with a strong generalization capacity.

Interconnected networks or neurons link the input and hidden

layers and also the hidden and output layers. The input weights and

biases are generated randomly during the training stage, while the

least-square method determines the output weights. Consequently,
Frontiers in Soil Science 06
output weights are established analytically, and therefore, the model

is generalized efficiently (66). The performance of this model can be

enhanced by optimizing the number of neurons of the intermediate

hidden layer and the activation function. In this study, the

optimized count of hidden layer neurons was determined by

increasing from 1 until the best model was obtained (70). In this

study, the activation functions such as rectified linear unit, sigmoid,

hard-limit, triangular basis, radial-basis, satlins, and tansig were

explored, and the function performing optimally was selected to

build the ELM model.

3.3.5 Multilayer Perceptron
Multilayer Perceptron or MLP model is among the most

popular neural network models that mimic the human brain for

decision-making and problem-solving (71). A comprehensive

explanation of the entire model is described by Haykin (64).

However, in a nutshell, this model’s structure is composed of an

input and output layer with one or more intermediate layers known

as hidden layers. The input layer consists of source nodes or

neurons that transfer input information to the subsequent hidden

layer. Similarly, the hidden layer(s) computes the information

provided by the units in the input layer and distributes it further

to the output layer. All the input signals are processed by the

neurons of hidden and output layers by assigning weights to them.

Also, an extra unit known as a bias node is attached to each layer,

which primarily generates a signal as an output to the neurons of

the current layer. Weights are applied to each input node, which is

further integrated and processed by a transfer function that

regulates the signal strength discharged through the output nodes

(72). Among the various activation functions in MLP architecture,

the most frequently used, i.e., the sigmoid activation function, was

considered in this study (73). MLP was developed based on a back-

propagation technique of the Levenberg–Marquardt (LM)

algorithm, which, on further training, acquired the bias and

optimal weight (74). The random search method was applied to

tune the learning rate of the LM algorithm, which ranged from 0.1–

0.9. In this study, a single hidden layer was used to build the MLP

model. Also, since the hidden neurons’ count is considered a

significant factor in MLP architecture, it was also optimized to

prevent the model from overfitting. The number of neurons was

tuned by increasing from unity until the model was optimized (70).

3.3.6 Model performance evaluation
The performance of ML models adopted for groundwater F−

prediction was assessed using three measures: coefficient of

determination (R2), root mean square error (RMSE), and mean

absolute error (MAE) (31, 75). R2 shows the degree of correlation

between two linearly related variables. If the value is close to 1, it

indicates a good correlation between the predicted and observed

values. Contrarily, RMSE and MAE values close to zero would

indicate an excellent fit between the predicted and observed values.

The equations for all the three statistical performance measures are

provided as follows (Equations 4–6) (76, 77):

R2 = ½oN
i=1(Pi − �P)(Oi − �O)�2½oN

i=1(Pi − �P)2(Oi − �O)2�−1 (4)
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RMSE = ½N−1oN
i=1(Pi − Oi)

2�0:5 (5)

MAE =
1
No

N
i=1 Pi − Oij j (6)

where N is the total number of observed data, predicted and

observed values are denoted by Pi and Oi, respectively, and the

average of the predicted and observed values are given as �P and �O,

respectively. The entire methodology has been summarized

in Figure 2.

3.3.7 Determination of variable importance
The influence of different explanatory variables on the model’s

performance was determined using the ‘varImp’ function of the

‘caret’ package in the R environment. This commonly used function

helps rank all the input variables with a standardized measure of

importance ranging from 0–100%.
4 Results

4.1 Hydrochemical characterization

Knowledge of the hydrochemical conditions of groundwater is

indispensable for identifying potential contaminants to safeguard

human health. The descriptive statistics for summarizing the

hydrochemical characteristics of the groundwater samples compiled

from different sources for this study are presented in Table 2. The pH

value for the entire dataset ranged from 6.0 to 9.1 (Table 2), with

median values of 8.05 and 7.33 at depths within and exceeding 60

meters (Figure 3), respectively, indicating the predominance of alkaline

conditions in the aquifers of this region. Likewise, EC and TDS ranged

from 41–16,760 mS cm−1 and 29–13,408 mg/L (Table 2), respectively,

with median values higher in shallow (809 mS cm−1 and 531.6 mg L−1,
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respectively) than in deeper (601 mS cm−1 and 419.2 mg L−1,

respectively) waters (Figure 3). According to Freeze and Cherry’s

groundwater classification (78), shallow groundwaters in Punjab can

be majorly considered as brackish (1000 < TDS < 10000 mg L−1), while

deeper waters are classified as freshwater (TDS <1000 mg L−1).

Furthermore, the results also show the occurrence of both cations

and anions in excess, particularly in shallow depths. Dominant cations

in shallow groundwater include Ca2+, Mg2+, Na+, and K+, and anions

such as Cl−, NO3
−, SO4

2−, F−, and HCO3
−, whereas, in deeper waters

were Mg2+, Na+, Cl−, and HCO3
−. Based on overall median

concentrations, the cations and anions were arranged in the

following order: Na+ > Mg2+ > Ca2+ > K+ and HCO3
− > Cl− >

SO4
2− > NO3

− > F− > PO4
3−, respectively. Furthermore, it was also

observed that the median concentrations of Cl−, NO3
−, SO4

2−, Mg2+,

Na+, Ca2+, and K+ were also elevated in shallow waters compared to

deeper waters. The median values of Mg2+ and F− were slightly higher

in deeper waters than in shallow aquifers (Mg2+: 35 and 34.39 mg L−1,

respectively; F−: 0.71 and 0.57 mg L−1, respectively). Similarly, the

median concentration of HCO3
− was much higher in deeper waters

than in shallow waters. Therefore, it is evident that the majority of the

ions, along with other water quality parameters, are in excess in the

shallow aquifers than the deeper groundwater (Figure 3).

All the hydrochemical parameters except pH displayed a greater

degree of coefficient of variation [CV (%)] (Table 2), as well. This

clearly implies a wide range of variability within each of the water

quality parameters in the study region, arising from various natural

sub-surface and surface phenomena and anthropogenic influences.

In addition to this, the physicochemical attributes of most of the

groundwater samples, particularly sampled from the shallow

aquifers, exceeded the recommended safe limit by the World

Health Organization (1) (Table 2). The overall percentage of

samples exceeding their respective permissible limit for each

parameter is as follows (total % exceeding/% exceeding in shallow

groundwater samples): EC: 32%/29%; TDS: 48%/40%; Cl−: 13%/
FIGURE 2

Flow diagram demonstrating the methodology applied for groundwater fluoride database creation and the comparison of different machine-learning
models to predict fluoride concentration.
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TABLE 2 Descriptive statistics for characterization of fluoride (F−) and concurrently measured physicochemical variables in the alluvial aquifer
of Punjab.

Variable Min Max Mean Median CV (%) Q1 Q3
% exceeding (WHO

limit) (1)

Depth (meter) 0.34 518.29 42.24 28.12 105.87 11.60 60.97 –

pH 6 9.1 7.75 7.61 8.29 7.2 8.35 - (6.5–8.5)

EC (mS cm−1) 41 16760 1092.72 715 112.01 507 1218 32% (1,000)

TDS (mg L−1) 29 13408 745.56 486.76 123.98 345.6 808 48% (500)

Cl− (mg L−1) 1.61 4023 104.75 42 221.28 21 97.46 13% (200)

NO3
− (mg L−1) 0.5 1448 41.82 16 246.05 3.08 38 20% (50)

SO4
2− (mg L−1) 0.05 3354 124.98 36.03 233.78 12.32 102.39 26% (100)

HCO3
− (mg L−1) 49 1025 350.46 342 45.88 215.5 452 38% (400)

Na+ (mg L−1) 0.05 2200 141.83 68 160.51 33.72 158.13 20% (200)

K+ (mg L−1) 0.05 467 16.94 6.48 285.77 3.67 9.84 19% (12)

Ca2+ (mg L−1) 0.05 493 64.98 45 92.86 20 100 3% (200)

Mg2+ (mg L−1) 0.05 900 125.8 62.33 104.69 27 215 54% (50)

F− (mg L−1) 0.02 9.2 0.99 0.6 108.73 0.38 1.09 19% (1.5)
F
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Min, minimum; Max, maximum; StDev, standard deviation; Q1 and Q3, First and third quartile, respectively; CV, coefficient of variation; TDS, total dissolved solids; EC, electrolytic conductivity.
FIGURE 3

Box plots showing the variations in groundwater physicochemical parameters and F− concentration in shallow (< 60 meters) and deeper (> 60
meters) aquifers.
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12%; NO3
−: 20%/18%; SO4

2−: 26%/24%; HCO3
−: 38%/24%; Na+:

20%/18%; K+: 19%/17%; Ca2+: 3%/2.6%; Mg2+: 54%/34%; F−:

19%/15%.

Furthermore, the Kolmogorov–Smirnov test verified that all

the groundwater quality variables did not follow a normal

distribution. In shallow waters, F− had a weak to moderate

positive correlation with almost all the variables except Ca2+.

The Spearman’s rank correlation coefficients of F− with all the

variables are: Depth = 0.14 (p<0.01); pH = -0.23 (p<0.01); EC =

0.41 (p<0.01); TDS = 0.44 (p<0.01); Cl− = 0.31 (p<0.01); NO3
− =

0.14 (p<0.01); SO4
2− = 0.35 (p<0.01); HCO3

− = 0.34 (p<0.01);

Na+ = 0.30 (p<0.01); K+ = 0.22 (p<0.01); Mg2+ = 0.31 (p<0.01);

Ca2+ = 0.05 (p>0.01). EC and TDS had the highest influence on F−

concentration, thus indicating an increase in its concentration

with an increase of these parameters.
4.2 Predictive performance evaluation
of models

The utilization of groundwater physicochemical parameters as

predictor variables for forecasting F− contamination levels through

ML approaches has been well established (31). In this study, five

different models with diverse architectures, such as RF, SVM,

Xgboost, ELM, and MLP, were employed for predicting the

groundwater fluoride concentration in the aquifers of Punjab. The

model performance was evaluated based on the R2, RMSE, and

MAE values. These are some of the commonly used metrics for

determining the predictive ability of ML models. In the case of the

Xgboost model, the Adaptive random search function among the

other functions had the highest R2 value and the lowest RMSE and

MAE values in the testing stage (Table 3). This implies that the

Adaptive random search function is the best activation function for

Xgboost in the current study, which was further considered for

comparing the prediction performance with all the proposed

models. For SVM, the radial basis kernel function (RBF)

performed better than polynomial, sigmoid, and linear kernel

functions as it can handle non-linear datasets (31) and, therefore,

selected for prediction purposes in our study. This superior

performance of RBF over other kernel functions was also
Frontiers in Soil Science 09
confirmed by Rajasekaran et al. (79), Wu and Wang (80),

Amirmojahedi et al. (81). Also, among the various activation

functions in the ELM model, the ‘tansig’ function had the most

satisfactory output and, therefore, was selected for further

prediction-performance comparison between the selected models.

The overall statistical evaluation criteria for all the models

yielded poor to satisfactory results, implying that a few models

outperformed others in predicting the F− levels. Based on the 80% of

the total dataset used for training purpose, the R2 achieved for

different models are 0.42 (RF), 0.52 (SVM), 0.34 (Xgboost), 0.85

(ELM), and 0.21 (MLP) (Table 3). Ideally, R2 close to unity display

greater proximity between the observed and simulated values.

Although R2 provides an indication of how well the model fits the

data, with values close to 1 implying a better fit, it does not provide

information about the magnitude of the errors between the actual

and predicted values. Hence, RMSE and MAE values were

computed along with R2 to assess the performance of the different

ML models. The RMSE values were 0.77 (RF), 0.70 (SVM), 0.84

(Xgboost), 0.46 (ELM), and 0.10 (ML), and MAE was 0.47 (RF),

0.41 (SVM), 0.49 (Xgboost), 0.36 (ELM), and 0.06 (MLP). Both

RMSE and MAE values closer to 0 suggest little error between the

actual and predicted values. Based on these values in the testing

stage, MLP had the least amount of error followed by ELM, SVM,

RF, and Xgboost. Despite the lowest RMSE and MAE values, MLP

had the lowest R2, suggesting unreliable performance for F−

determination in this study. Furthermore, RF also trained very

poorly, which is evident from the low R2 and significantly greater

RMSE and MAE. In addition to MLP and RF, SVM and Xgboost

were also trained unsatisfactorily as per the R2, RMSE, and MAE

values. On the contrary, relatively lower MAE and RMSE values and

greater R2 value of the ELMmodel indicates superior training ability

relative to the other four models.

After model training, the remaining 20% of the dataset was

utilized for testing the model, and the same evaluation metrics were

applied to analyze each model’s predictability. The trend of the

performance evaluation criteria for all the models was almost

similar. The order of the proposed models in terms of the R2

values was ELM (0.95) > Xgboost (0.70) > SVM (0.66) > RF (0.44) >

MLP (0.33) (Table 3). Satisfactory R2 values were observed for ELM,

Xgboost, and SVM. Furthermore, error metrics RMSE and MAE for

MLP were 0.10 and 0.06, respectively, which were the least among

all the models. However, the lowest R2 value for MLP obtained from

the trained data implies poor model performance and proved

unreliable for groundwater fluoride prediction in this region.

After MLP, the RMSE (0.31) and MAE (0.33) values for ELM in

the testing phase were minimal among the remaining models,

emphasizing good prediction ability. From comparing the

statistical performance metrics of the training and testing stages

of different models, it is evident that only ELM had the optimum

values and can be considered for modeling F− concentrations in

Punjab. It is noteworthy that MLP and ELM have relatively less

complex topology and training algorithms than the remaining three

models (30). Nevertheless, their performance varied greatly in

predicting the groundwater fluoride concentration in the

study domain.
TABLE 3 Performance measures in the testing and training stages of
proposed models.

Model Training Testing

R2 RMSE MAE R2 RMSE MAE

RF 0.42 0.77 0.47 0.44 1.03 0.58

SVM 0.52 0.70 0.41 0.66 0.56 0.38

Xgboost 0.34 0.84 0.49 0.70 0.96 0.54

ELM 0.85 0.46 0.36 0.95 0.305 0.33

MLP 0.21 0.10 0.06 0.33 0.10 0.06
RF, Random Forest; SVM, Support Vector Machine; Xgboost, Extreme Gadient Boosting;
ELM, Extreme Learning Machine; MLP, Multilayer Perceptron; R2, Coefficient of
determination of Rsquared value; RMSE, Root mean square error; MAE, Mean absolute error.
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In order to better comprehend the accuracy of model

prediction, the observed F− concentrations and their

corresponding predicted values after model training were plotted

in a scatter diagram (Figure 4). From Figure 4, it is quite evident

that the distribution of predicted F− values in relation to the

observed F− concentrations is quite closely placed to the best

fitting line as opposed to other models, which validates the
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robustness of the ELM model. Besides ELM, the predicted values

of SVM, Xgboost, RF, and MLP did not closely match the actual

values, which is substantiated by poor R2 values (Figure 4).

Spatial distribution maps were prepared to better visualize the

actual and predicted F− concentration values for all five models

(Figure 5). The predicted values of ELM, Xgboost, SVM, RF, and

MLP were compared with the original F− concentrations, and a
FIGURE 4

Observed versus predicted fluoride (F−) concentrations in groundwater for the test data of ELM, SVM, Xgboost, RF, and MLP models. (ELM: Extreme
Learning Machine; SVM: Support Vector Machine; Xgboost: Extreme Gradient Boosting; RF: Random Forest; MLP: Multilayer Perceptron).
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significant difference between the model outcomes was noted.

The south and southwestern regions of Punjab have elevated F−

levels (> 1.5 mg/L) in its groundwater system (Figure 5A),

whereas the remaining areas exhibited relatively lower

concentrations. A significantly similar F− distribution pattern of

the ELM predicted values (Figure 5B) with the original F−

concentrations was observed, implying a substantial prediction

accuracy. Central Punjab had concentrations ranging between

0.5–1.0 mg/L, with parts of northwestern districts having

groundwater fluoride surpassing 1.5 mg/L, identical to the

original F− distribution and ELM predicted map. Furthermore,

based on the concentration values predicted by the remaining

four models, excess F− levels were evident across the entire

Punjab state. Although central and northern regions had

relatively safe groundwater fluoride levels (< 1.5 mg/L)

(Figure 5A), contradictory F− distribution as per the predicted

values of Xgboost, SVM, RF, and MLP was observed (Figures 5C–

F), implying poor model performance. Also, the regions falling in

the south and southwest had a greater magnitude of F− content

than the original F− levels, indicating an overestimation of excess

contaminant levels. These spatial distribution maps of the

proposed ML models, in comparison to the original F−

distribution, are evidently in accordance with the performance

evaluation metrics, i.e., R2, RMSE, and MAE (Table 3, Figure 4).

Consequently, it can be stated that ELM outperformed the
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remaining four models in groundwater fluoride levels in the

study region.
4.3 Variable importance by ML models

The predictor (input) variables govern the robustness and

stability of the prediction models (82, 83), and therefore, the

relative importance ranking of these variables aid in determining

the significant variables or factors influencing the contamination.

The ranking of the variables was found to be consistent in ELM and

SVM (Figure 6), while other models displayed certain variations. In

both ELM and SVM, the variables contributing the most to model

prediction were TDS, EC, Cl−, Na+, and Ca2+, each with relative

importance greater than 15% (Figure 6). These variables also

displayed a significant correlation with F−. Based on the relative

importance scores, TDS, EC, and Na+ were the top three variables in

these two models in the order TDS > EC > Na+, indicating their

potential role in mobilizing and enhancing F− in the groundwater of

the study domain, particularly in the shallow aquifers. The variable

importance of the abovementioned factors was also observed to be

significant in the remaining three models; however, it was not in the

same order as ELM and SVM. Based on the relative importance

scores, the order of the variables was EC > TDS > Na+ in Xgboost,

TDS > Na+ > EC in RF, whereas EC > Ca2+ > Na+ > TDS in MLP
A B C

D E F

FIGURE 5

Spatial comparison of observed F− concentration values with the model predicted F− concentration values. (A) Observed F− concentration; (B) ELM
predicted F− concentration; (C) Xgboost predicted F− concentration; (D) SVM predicted F− concentration; (E) RF predicted F− concentration; (F) MLP
predicted F− concentration.
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was observed. The relative importance of Cl− and Ca2+ ranked 4th

and 5th in ELM, SVM, and RF, while Xgboost (Ca2+ and Cl− ranking

4th and 5th, respectively) and MLP (Ca2+ and Cl− ranking 2nd and

5th, respectively) displayed slight variation. The variable SO4
2−

attained the least importance in ELM (0.5), SVM (0.2), Xgboost

(1.1), RF (0.3), and MLP (0.3) (Figure 6). The ranking discrepancies

between these variables in all the five models could have resulted

due to the differences in model algorithms (24).
5 Discussion

5.1 Groundwater fluoride and other
physicochemical characteristics

The occurrence of elevated F− concentrations in the

groundwater of the Punjab basin is attributed mainly to geogenic

origin (84), which results from the interplay of multiple complex

interdependent hydrogeochemical processes (85). Naturally

occurring F− in minerals and rocks are nearly insoluble in water.

However, favorable conditions facilitate the dissolution of these

minerals, further releasing F− into the groundwater (86).

Dissolution of fluoride-bearing minerals, in particular fluorite,

under suitable conditions, such as alkaline pH with excess EC and

TDS, as observed in the aquifers of Punjab, favors F− enrichment.
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The alkaline nature of the groundwater could be attributed to the

presence of sediments containing abundant carbonate minerals

(85). Elevated EC and TDS could be a consequence of the rapid

and greater degree of rock and mineral weathering, waterlogging,

and dissolution of salts (17, 56). Furthermore, anthropogenic inputs

from agricultural and industrial practices and groundwater recharge

through shallow aquifers also contribute to high EC and TDS (87).

An increase in EC and TDS elevates the water’s ionic strength and

major ion concentration. This results in a greater competitive effect

between ions and F− from soil exchange sites and mineral surfaces

through the ion exchange process, thus reducing the adsorption

potential of F− and enhancing their mobilization (84, 88). Sodium

and chloride ions, responsible for TDS/EC, also significantly

correlated with F−. Calcite precipitation (decrease in Ca2+)

enriches F− in the groundwaters, hence the negative correlation

between the two. Also, F− and all other hydrochemical parameters

in shallow aquifers surpassed their respective permissible limits

compared to the deeper water samples. Shallow waters are easily

accessible for human consumption and other activities, and

therefore, raises concern over affecting human well-being.

Besides the groundwater hydrogeochemical conditions, the

prevailing arid and semi-arid climate in the study region increases

evaporation rates relative to humid areas. High rainfall inputs and

subsequent dilution effect in humid climatic zones result in lower

groundwater fluoride levels compared to drier environments. Also,
FIGURE 6

Relative importance ranking of hydrochemical parameters for ELM, SVM, Xgboost, RF, and MLP models. (ELM: Extreme Learning Machine; SVM:
Support Vector Machine; Xgboost: Extreme Gradient Boosting; RF: Random Forest; MLP: Multilayer Perceptron).
frontiersin.org

https://doi.org/10.3389/fsoil.2024.1407502
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Kerketta et al. 10.3389/fsoil.2024.1407502
the groundwater movement in arid/semi-arid regions is generally

slow, thereby increasing the contact time between the water and

rock, which further causes F− enrichment in water (85, 89).
5.2 Model output and performance

Excess groundwater fluoride incidence in arid and semi-arid

regions is a common phenomenon (90, 91), as observed in the

aquifers of Punjab. Furthermore, due to its geogenic origin, the

concentration of F− depends directly on the hydrogeochemical

conditions. Also, relatively limited studies have forecast F− levels in

arid and semi-arid locations using hydrochemical characteristics.

Therefore, developing a predictive model for determining F− levels

using water quality variables in locations lacking monitoring

assessments is essential. This study proposed five different ML

models (RF, MLP, SVM, ELM, and Xgboost) and determined the

best-performing model based on the evaluation metrics (R2, RMSE,

and MAE). Out of all the models, MLP trained extremely poorly for

the dataset and is, therefore, unsuitable for making reliable

predictions of groundwater fluoride concentration in our study

area. This finding is contrary to Nafouanti et al. (28) and Gupta

and Maiti (30), where MLP performed accurately in predicting F−

concentrations in the Datong basin (China) andMaharashtra (India),

respectively. The poor performance of MLP in our study could be due

to its incapability to extrapolate beyond the data used for training,

which further leads to overfitting issues during the training phase (92,

93). The worst prediction performing model in both the training and

testing stages was MLP, which contradicts Bui et al. (94). The MLP is

based on neural network architecture that can generate more accurate

results on a badly structured dataset than on tree-based models such

as RF (94). On the contrary, the RF model overcomes overfitting

issues by combining many trees, thereby free from bias, resulting in

enhanced prediction performance (32). Regardless, RF performed

poorly in the training phase as well. Both MLP and RF generated

values that deviated greatly from the original values, implying

unsatisfactory performance. MLP tends to overfit from the training

data, interfering with its ability to infer the remaining data (test/cross-

validation dataset) (28). Gupta and Maiti (30), in their work, also

stated that MLP, RF, and SVM are less effective in uncovering the

intricate non-linear association between the target and predictor

variables. Unsatisfactory training values of MLP, RF, SVM, and

Xgboost could have resulted from a very wide variability in the

range of both the target (output) and predictor (input) variables

within the compiled dataset. This adds a limitation to model fitting in

our study, resulting in inaccurate prediction results. Data pre-

treatment involving outlier suppression and logarithmic

transformation can be a possible solution to further improve the

prediction accuracies (30). However, these pre-processing steps on

the raw dataset and their influence on the model performance need

further evaluation. Gupta and Maiti (30) also emphasized on the

limited prediction efficiency of the ELM model due to its design and

direct inverse in estimating the bias and weights. Irrespective of this

fact, the ELM model with relatively higher R2 value and low RMSE

and MAE values in the training phase in comparison to the

remaining models implies good generalization capability for our
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dataset without undergoing much pre-processing, unlike other

models tested in this study.

Classification-based ML models have been commonly used in

groundwater fluoride level prediction (10, 26, 27, 95, 96), with very

few studies on regression-based prediction modeling of the same

(30, 31). The complexity and accuracy of the datasets, diverse

algorithm architectures, and type and number of input

parameters significantly influence the performance of the models,

and therefore, there is no universal agreement on which ML model

performs the best for all prediction-related studies (94). For

instance, groundwater fluoride concentration in the Datong basin,

China, was modelled using RF, Linear regression (LR), and MLP-

based Artificial neural network (ANN), where RF proved to be the

best prediction model (28). Similarly, the RF model displayed

higher prediction accuracy for other contaminants, such as

nitrate, than the enhanced regression tree, classified regression

tree, and multiple linear regression (97). Khosravi et al. (98),

instead, reported that the M5P model had the highest predictive

power than Instance Based Learner (IBK), KStar, Locally Weighted

Learning (LWL), and Regression by discretization (RBD) that were

tested for predicting F− in the aquifers of Maku plain in Iran.

Similarly, F− levels in the groundwater of Sindhudurg district in

Maharashtra, India, were predicted using six different models, out

of which ELM yielded the most unsatisfactory results (30). On the

contrary, Barzegar et al. (31) compared the performance of three

different models and determined ELM to be the best for forecasting

F− in the Maku Valley of Iran, which is in accordance with the

findings of the current study. Therefore, it is advisable to test diverse

algorithms with the same dataset and assess their performance in

terms of prediction before selecting the best.

The ELM model has a simple architecture and an uncomplicated

training process and is generally known for its efficient computational

power, requiring fewer hyperparameters for model tuning and

training. The parameters of the hidden layer in this model do not

require manual adjustments and are also independent of the input

data. It only determines the weights of the output analytically and thus

has rapid learning speed and lower computation complexity (99) than

the other models proposed in this work. Additionally, ELM also has

good generalization capability for high dimensional datasets by

initialization of weights and biases stochastically to avoid overfitting

problems and thus making the model more robust (100). The superior

predictive performance of ELM over other models was also confirmed

in other works (69, 101–104).

It is worth nothing that most of the studies conducted in the

Indian subcontinent have reported RF and MLP to be the best

models for predicting F− concentrations in groundwater. However,

these models did not take into consideration the groundwater-

physicochemical parameters and used only continuous variables

such as climate, soil, geological, and topological parameters as

predictors (10, 27, 96). Machine learning algorithms are designed

to perform both classification and regression-related tasks.

Classification-based ML models have been commonly applied for

studies in India that facilitated in forecasting the contamination-

risk prone areas (105–107). Nevertheless, it is equally essential to

develop models for predicting the concentration of the

contaminants based on the driving factors that directly influence
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its enhancement and mobility. In this context, regression-based

modeling will prove to be much more beneficial than classification

models. This study attempted to achieve this goal; therefore, such

contrasting results could be due to these reasons.
5.3 Hydrochemical drivers affecting the
model performance

The different variables influencing groundwater fluoride

contamination in any region are complex and require an in-depth

understanding to identify the potential parameters for proper

groundwater resource management. The variable importance

ranking in the present work highlighted that TDS, EC, Na+, Cl−,

and Ca2+ were the most crucial factors and were highly correlated

with F− content in the study region. The increase in TDS and EC

results in increased ionic strength and higher concentration of major

ions dissolved in water. These factors enhance competition between

ions and F− frommineral surfaces and soil exchange sites through the

ion-exchange process, which further minimizes the adsorption of F−

and makes themmore mobile (84, 88). Sodium, one of the important

parameters responsible for EC and TDS, forms compounds with F−,

such as NaF, which further dissolves in water and becomes more

mobile (108). Other factors, such as Cl− and Ca2+, contributed

significantly to the model performance at varying degrees. The

primary source of F− in this region is fluorite mineral (CaF2),

which undergoes dissolution further releasing F− and Ca2+ and the

latter precipitates in the presence of excess bicarbonate (HCO3
−),

thereby resulting in free F− ions (109). On the contrary, the chloride

ion undergoes ionic exchange with F− from the aquifer substrate,

bringing about the discharge of F− ions from these surfaces.

Furthermore, the significant contributions of the top 5 variables,

i.e., TDS, EC, Na+, Cl−, and Ca2+, in all the five models, irrespective of

their prediction accuracies, indicate their potential in determining F−

levels in regions lacking groundwater quality monitoring practices.

However, the variability in the accuracy post-tuning of the different

models might have impacted the outcomes. In other words, data

quality, input parameters, hyperparameter tuning process, and

varying algorithm architecture play a significant role in the

prediction of the target variable. Moreover, the top contributors

and their influence on groundwater F− concentration are clearly

highlighted from their relative importance scores in all the models,

particularly in the ELM model (Figure 6). In addition to this, the

maximum prediction accuracy of ELM relative to other proposed

models (Table 3, Figures 4, 5) makes it an acceptable method for

groundwater quality assessment investigations.
6 Limitations and future
research directions

The study compiled a huge amount of data from different

sources, introducing varying degrees of discrepancies within the

complete dataset. Diverse analytical techniques and procedures

might have been adopted in determining F− and the other water

quality parameters among the different data sources, affecting the
Frontiers in Soil Science 14
consistency within the final dataset. In addition to this, the seasonal

factor, which plays a key role in the contaminant levels in the

aquifers, was not considered as a screening criterion in our study. A

small proportion of values of certain variables were missing in the

complete dataset, which was estimated based on established

formulae reported in the literature. All of these factors might

have introduced some inconsistencies within the data, which were

ultimately used for prediction modeling. Furthermore, the number

of samples within each district of the state of Punjab varied greatly,

providing an incomplete picture of the study region. Also, the

outlier impact post data treatment was also still quite significant.

Therefore, the predictive performance of the models might have

been affected by all of these factors. The resulting uncertainty

among the different models might have originated from the

amount of data and noise within the data and variables. The

number of variables might have affected the performance of the

models. Yet, the results obtained offer satisfactory results regarding

a reliable F− prediction model, i.e., ELM. This model accurately

captures the role of the different hydrochemical parameters and

delivers precise concentration values, proving to be reliable for

groundwater fluoride estimation in the region.

This study highlights the significant role of outliers in impacting

the prediction model performance. This implies the further need for

data pre-processing for environmental datasets that often exhibit

non-normal distribution. De-noising and efficient data

transformation methods should be explored to enhance the data

quality and predictive performance. Furthermore, more advanced

and hybrid models can be applied to this kind of dataset to build a

more robust contamination prediction system. The prediction

performance of the models based on the varying number of

potential input variables should also be assessed to enhance its

applicability. These same models can also be tested for other

groundwater contaminants and compared to determine the best

predictive model. As mentioned earlier, classification-based ML

modeling for groundwater contaminants, including F−, is

commonly applied with very limited work on regression-based

contaminant concentration modeling. Therefore, this issue should

be addressed more, particularly in the Indian sub-continent, where

various locations exist without any monitoring assessments.
7 Conclusion

In this work, a comparative performance ability of five different

models for predicting F− concentrations in the alluvial aquifers of

Punjab was assessed. Models including ELM, SVM, MLP, RF, and

Xgboost models were developed, and performance was evaluated

using R2, RMSE, and MAE. Except for ELM, the remaining four

models performed very poorly both during the training and testing

phases. Excess variability within the target and predictor variables

post data normalization might have impacted the model

performance. Although ELM performed satisfactorily, it can be

improved with the further pre-treatment of the dataset. Hybrid

models can also produce superior prediction accuracy for such

complicated environmental problems that need to be explored.

Furthermore, similar regression-based modeling studies should be
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conducted to thoroughly understand the groundwater fluoride

problem. Input variables such as TDS, EC, Na+, Cl−, and Ca2+

contributed significantly to the model performance. Evidently, the

dynamics of groundwater chemistry are highly complex and vary

from location to location. The groundwater fluoride prediction

based on the corresponding water quality parameters is crucial for

sustainable groundwater management, planning, and further

safeguarding human health. Therefore, it is essential to build

robust non-linear models to resolve this problem efficiently.
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