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Soil nitrogen and phosphorus are directly related to soil quality and vegetation

growth and are, therefore, a common research topic in studies on global climate

change, material cycling, and information exchange in terrestrial ecosystems.

However, collecting soil hyperspectral data under in situ conditions and

predicting soil properties, which can effectively save time, manpower, material

resources, and financial costs, have been generally undervalued. Recent

optimization techniques have, however, addressed several of the limitations

previously restricting this technique. In this study, hyperspectral data were

taken from surface soils under different vegetation types in the wetlands of the

Shaanxi Yellow River Wetland Provincial Nature Reserve. Through in situ original

and first-order differential transformation spectral data, three prediction models

for soil carbon, nitrogen, and phosphorus contents were established: partial least

squares (PLSR), random forest (RF), and Gaussian process regression (GPR). The

R2 and RMSR of the constructed models were then compared to select the

optimal model for evaluating soil content. The soil organic carbon, total nitrogen,

and total phosphorus content models established based on the first-order

differential had a higher accuracy when modeling and during model validation

than those of other models. Moreover, the PLSR model based on the original

spectrum and the Gaussian process regression model had a superior inversion

performance. These results provide solid theoretical and technical support for

developing the optimal model for the quantitative inversion of wetland surface

soil carbon, nitrogen, and phosphorus based on in situ hyperspectral technology.
KEYWORDS
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1 Introduction

River wetland soils effectively maintain the stability of river

wetland ecosystems by filtering, fixing, and enriching various

elements (1–3). Of these, soil carbon is an important component

of the global terrestrial ecosystem carbon pool (4, 5). Additionally,

soil nitrogen and phosphorus are directly related to soil quality and

vegetation growth and are, thus, popular topics for research on

global climate change, material cycling, and information exchange

in terrestrial ecosystems (6–8).

In recent research on hyperspectral inversion for soil nutrients,

researchers have effectively improved prediction accuracy through

appropriate spectral data preprocessing and model construction

methods. In spectral preprocessing, methods include the first

derivative of the original spectral reflectance, correlation analysis,

and logarithmic transformation, among others (9, 10). Regarding

model construction, linear models are mainly used, such as

univariate linear regression and partial least squares regression.

Additionally, various data mining techniques, including random

forest and Gaussian process regression models, have also been

employed by numerous scholars in this field (11–13). Soil

hyperspectral technology can obtain continuous spectral

information for each soil element and can be used to perform

feature identification and component inversion (14). Specifically, a

visible near-infrared hyperspectral analysis of soil properties can

reduce labor needs, with a lower cost and higher efficiency than

those of conventional methods (15). Reports on soil in situ

spectroscopy in foreign countries emerged in the 1990s. In 1991,

Shonk et al. designed a device that measured soil spectral reflectance

in an in situ environment to model and predict soil organic carbon

content (16). Later, Suduth and Hummel estimated soil organic

matter content, cation exchange capacity, and moisture using soil

spectral reflectance data obtained in the field in 1993, with a much

lower accuracy than that of indoor spectra (17). Since these early

studies, there have been relatively few studies on the in situ visible

near-infrared spectroscopy of soil in the past decade. However, after

entering the new century, soil spectroscopy experts resumed their

focus on in situ visible near-infrared spectroscopy predictions in

soil fields. In 2003, Kooistra et al. measured the in situ spectral

reflectance data of soil under clear and cloudless conditions from

11:00 to 16:00 in summer at a height of 1 m above the ground. They

then used partial least squares regression to model soil organic

matter and clay content. The study found that the accuracy of the in

situ spectral model for predicting soil organic matter and clay

content was far inferior to that of the laboratory spectral model

(18). In 2009, Rossel et al. modeled soil organic carbon content

using both in situ and indoor visible near-infrared spectroscopy,

and their results showed that the root mean square error of the in

situ spectral model for soil organic carbon content was relatively

large (19). Moreover, in 2012, Kuang et al. found that soil moisture

negatively impacted the accuracy of estimating soil organic carbon

and total nitrogen content when comparing in situ visible near-

infrared spectroscopy in the field with visible near-infrared

spectroscopy in the laboratory. Therefore, they believed that in

situ visible near-infrared spectroscopy in dry soil was more suitable

for predicting soil organic carbon and total nitrogen content (20).
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In addition, scholars have improved the prediction accuracy of

soil content models through a series of optimization algorithms. For

example, in 2015, Shuo et al. selected 32 sampling points in the

sewage irrigation area of Longkou City, collected in situ

hyperspectral reflectance data of soil at each sampling point, and

measured the contents of nine heavy metals in the soil samples.

Then, the in situ spectral data following a spectral transformation

were combined with heavy metal content data to establish a partial

least squares regression prediction model. Different spectral

transformation methods were used for various heavy metals, and

later modeling achieved more desirable results (21). Finally, in 2015,

Juanjuan et al. established prediction models for the soil total

nitrogen content of two soil types, air-dried rice soil samples and

field in situ soil samples, using two linear regression algorithms

combined with different spectral preprocessing methods. The

results showed that the prediction model achieved a highly

accurate quantitative prediction of soil total nitrogen content

through in situ spectroscopy (22).

The factors influencing soil spectra, especially the in situ spectra

collected in the field, are complex. Early studies primarily focused

on indoor spectra under controlled conditions, but the application

of in situ spectra in the field has considerable research potential,

despite a controversial history (23). Based on this potential, the

present study takes the soil of the Shaanxi Yellow River Wetlands as

the research subject. Through establishing prediction models for

soil organic carbon, total nitrogen, and total phosphorus content

using in situ hyperspectral data, our research aims to provide a

more convenient and rapid method for accurate detection of

wetland soil nutrient information, thereby helping to reduce costs

in wetland management.
2 Materials and methods

2.1 Study area

The Shaanxi Yellow River Wetland Provincial Nature Reserve is

located in the eastern part of the Guanzhong Plain in Shaanxi

Province (34°36′–35°40′ N, 110°10′–110°36′ E). and is an

important habitat for terrestrial wildlife. The total area of the

entire nature reserve is 45,986 hectares, with functional zones

classified according to three standard protected areas: core, buffer,

and experimental zones, accounting for 39.60%, 38.65%, and

21.75% of the total protected area, respectively. The riverbed at

the junction of the three main rivers (Yellow River, Weihe River,

and Luohe River) is composed of the water surfaces of the three

rivers, a mudflat along the bank, a floodplain, the riverbed, and a

small number of terraces; this junction is one of the main transfer

stations on the migration routes of land migratory birds in China

and serves as a habitat for the survival and reproduction of

numerous local and internationally protected birds in the central

and western regions. The study area has a warm temperate

continental semi-humid monsoon climate, characterized by four

distinct seasons and a concurrence of rainfall and heat. The annual

average temperature is 13.5°C, with annual precipitation ranging

from 529 to 574 mm. Spring is warm and dry with less rainfall,
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summer is hot and rainy, autumn is cool and moist with rapid

temperature decreases, and winter is cold and windy with sparse

rain and snow. The soil types in the area include saline, alluvial, and

marsh soils (24). The wetland plant flora in the protected area is

mainly composed of globally distributed species, with70 families,

236 genera, and 287 species of seed plants, including 20 species

unique to China and one species under national protection. The

dominant plant species in the wetland community are Phragmites

australis, Typha orientalis, Cyperus rotundis, and other

wetland plants.
2.2 Measurements of in situ
hyperspectral data

An ASD FS4 spectrometer (Analytical Spectral Devices, Inc.,

Boulder, CO, USA) was equipped with a soil spectral reflectance

testing probe in the wavelength range of 350–2500 nm. The

measurement of in-situ spectra in the field was completed prior

to the collection of soil samples. However, the collected soil samples

were separated according to different habitats, their spectral

reflectance data were obtained, and the data from each habitat

were averaged to obtain the average soil spectral reflectance.

The key to in situ soil visible near-infrared spectroscopy

measurements is to eliminate the limiting effects of weather

conditions on spectroscopic measurements and minimize the

influence of environmental stray light. In addition, conducting

measurements in areas with soil surface conditions such as

stones, plant root tissues, and debris should be avoided. In

summary, in situ spectral measurements require strong weather

conditions and stable light intensity under clear and cloudless

conditions to reduce the impact of changes in the light incidence

angle and light intensity on spectral measurements. Therefore,

measurements were taken between 10 am to 2 pm Beijing time,

under clear and windless weather conditions. The soil surface at the

points to be measured was cleaned prior to the measurements. A

fixed stand was used to stabilize the position of the spectral probe so

that the probe was oriented vertically downwards, with a height

maintained at approximately 45 cm above the ground. Before each

spectral data measurement, a standard whiteboard calibration was

performed, and the arithmetic mean of the 20 spectra was taken as

the original spectral data for the entire band of the soil sample. To

provide, the visible near-infrared spectra of the soil measured in this

case will be collectively referred to as “in situ spectra” from hereon.
2.3 Chemical determination of soil carbon,
nitrogen, and phosphorus nutrient content

The soil organic carbon (SOC) content was determined using

the potassium dichromate–ferrous sulfate titration method, the

content of total nitrogen (TN) in the soil was determined using

the semi-micro Kjeldahl method, and the content of total

phosphorus (TP) in the soil was measured using the sulfuric

acid–perchloric acid digestion–molybdenum antimony anti

colorimetric method (15).
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2.4 Spectral data preprocessing

Spectral data were extracted using the Viewspec Pro software

(25). First, the spectral curve was modified using a parabolic

correction function to avoid jumps in the connection points

during spectral data collection. The spectral reflectance curve was

then smoothed through ten consecutive points to eliminate

reflectance errors caused by background noise during spectral

data collection (26).

To emphasize the correlation between soil spectral reflectance

data and soil element content, two spectral mathematical

transformations were used: raw spectral reflectance (RAW) and

first-order differential reflectance (FD) data (25). The

transformation formula was conducted using Equation 1 below:

FDR(li) =
R(li+1) − R(li−1)

Dl
(1)

where li is the wavelength of each band, FDR(li)   is the first-
order differential spectral value of wavelength li, and Dl is the

wavelength value from band i to band i +1.

In addition, due to the redundancy in many hyperspectral data

bands, raw spectral reflectance (RAW) and first-order differential

reflectance (FD) were used as independent variables in Pearson’s

correlation analysis with soil carbon, nitrogen, and phosphorus

contents to improve the accuracy of the model. This process was

implemented using the R language (27).
2.5 Construction and verification of
inversion models

The dataset was gradient-sorted according to the organic

carbon, total nitrogen, and total phosphorus contents of the soil

samples. The samples with the three sorting intervals in the total soil

spectral reflectance dataset were grouped into the same sample

sublevel, resulting in four sublevel samples. All samples were

divided into two groups at a 3:1 ratio, with a total of 357 soil

samples from three sublevels used as the modeling set. The other

group included 119 soil samples from a small sample level to

validate the constructed model. Using the Weka3.8 software, we

constructed a model for predicting soil ecological stoichiometric

characteristics, and three models were selected for the study: partial

least squares regression (PLSR), random forest (RF), and gaussian

process regression (GPR). PLSR is an operational method based on

Principal Component Analysis, which aids in data dimensionality

reduction. RF is an ensemble learning algorithm used for

classification and regression tasks. GPR is a popular machine

learning technique used for analyzing, classifying, and performing

regression analysis on the provided data. The evaluation of the

inversion accuracy of the SOC, total nitrogen, and total phosphorus

content prediction models was mainly carried out by calculating

and comparing the magnitudes of the coefficients of determination

(R2, Equations 2) and root mean square error (RMSE, Equation 3).

Specifically, when the value of R2is larger and closer to 1, and the

RMSE is smaller, the prediction accuracy of the prediction model is

higher; otherwise, the estimation accuracy of the prediction model
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is lower (28).

R2 = o
n
i=1(y − yi)

2

on
i=1(�y − yi)

2 (2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(y − yi)
2

n

s
(3)

where y is the measured value of the soil element content, yi is

the predicted value of the soil element content model, �y is the

average measured value of the soil element content, and n is the

number of samples.
3 Results

3.1 Spectral curve characteristics of
outdoor and indoor soil in different
habitat types

This study selected four typical habitat types in the Shaanxi

Yellow River Wetland Nature Reserve: bare flats, Phragmites

australis, Typha orientalis, and Cyperus rotundus. Figure 1 shows

the spectral reflectance curves of soil with a particle size of 0.2 mm

and a moisture content of 0% after thorough drying in the four

different habitats, as well as the spectral reflectance curves in situ
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without any treatment in the field. We selected soil samples with a

particle size of 0.2 mm and a moisture content of 0% after thorough

drying to obtain indoor spectral data, this approach was used because

both soil particle size and soil moisture content have a significant

impact on the accuracy of predicting soil organic carbon, total

nitrogen, and total phosphorus content based on soil hyperspectral

data. As shown in Figure 1, the reflectance of in situ spectra is

significantly lower than that of indoor spectra. Although the spectral

reflectance of soil samples varied in different habitats, the overall

trends of the spectral reflectance curves were similar.

After drying the soil samples, the spectral reflectance of the soil

in the four habitats ranged from 0.1 to 0.5. The spectral reflectance

curves of the soil in each habitat were nearly parallel and in the

wavelength range of 350–2500 nm, with similar fluctuations. The

absorption peaks and valleys appeared in the same wavelength

band, with differences in reflectance sizes. In the visible light band–

350–400 nm, the soil spectral reflectance data decreased, followed

by an increase in the 400 nm band. With the growth of the band, the

soil spectral reflectance rapidly increased and then continued to

decrease until the 760 nm band. The rate of increase in soil spectral

reflectance began to slow and plateau. The soil spectral reflectance

curves in various habitats showed two obvious absorption peaks in

the 1400 and 1900 nm bands. Prior to these two absorption peaks,

the soil reflectance curves were originally in a gentle upward state

but suddenly decreased before the absorption peak with a

large amplitude.
B

C D

A

FIGURE 1

Soil spectral reflectance curves for soil samples from four different habitats: bare flat (A), Phragmites australis (B), Cyperus rotundus (C) and Typha
orientalis (D).
frontiersin.org

https://doi.org/10.3389/fsoil.2024.1364426
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Nie et al. 10.3389/fsoil.2024.1364426
3.2 Construction and evaluation of soil
element content model based on in
situ spectroscopy

This study incorporated the original spectral reflectance data

and first-order differential spectral reflectance data of in situ soil in

the Shaanxi Yellow River Wetland Nature Reserve. PLSR, GPR, and

RF inversion models for soil organic content (SOC), total nitrogen

(TN), and total phosphorus (TP) contents were established, and the

prediction accuracies of different soil elements were compared. The

modeling and validation results are listed in Table 1.

In comparing the performance of the in situ original spectrum

and first-order differential spectrum data types, showed that the

prediction accuracy of the three models based on the first-order

differential was higher than or equal to that of the original spectrum.

During model validation, PLSR and GPR, based on the original

spectrum, had a higher validation accuracy and lower RMSE than

first-order differential modeling. However, when the RF model was

used to invert soil TN and TP, the validation accuracy based on

first-order differential modeling was slightly higher than that based

on the original spectral modeling, and the RMSE was also lower.

Therefore, for PLSR and GPR, modeling based on the original

spectrum will have more desirable inversion results, whereas for RF,

further exploration is needed to determine which data type to use

based on the required inversion element type.

Comparing the differences in prediction accuracy of soil SOC,

TN, and TP elements, the R2 range for soil SOCmodeling was 0.70–

0.98, and the validation R2 range was 0.36–0.65; the R2 range for soil

TN modeling was 0.75–0.98, and the validation R2 range was 0.44–

0.59. The R2 range for soil TP modeling was 0.62–0.97 and the

validation R2 range was 0.26–0.65, indicating the worst soil TP

content prediction accuracy.

Comparing the three inversion models, the modeling R2 range

of PLSR was 0.76–0.98 and the validation R2 range was 0.38–0.80,

the modeling R2 of GPR was 0.62–0.97 and the validation R2 range

was 0.28–0.92. The modeling R2 range of RF was 0.96–0.99, with an
Frontiers in Soil Science 05
R2 validation range of 0.26–0.91. Taken together, RF had a superior

inversion efficacy on the soil SOC, TN, and TP contents, whereas

PLSR demonstrated a more stable inversion performance.

Figure 2 presents scatter plots of the in situ original spectra and

first-order differential spectra of the soil SOC, TN, and TP contents,

as well as full-band PLSR, GPR, and RF estimations. The modeling

and prediction accuracies of the three models differed, specifically, the

RF modeling set points for soil SOC, TN, and TP contents were

mostly distributed near a 1:1 line, and only an exceedingly small

number of modeling set points deviated from the 1:1 line, resulting in

an extremely high modeling accuracy. However, the validation and

modeling sets deviated significantly, thereby lowering the accuracy.

The sample points of PLSR deviated slightly from the 1:1 line, but the

difference between the fitted lines in the modeling set and the fitted

lines in the validation set was small, indicating high stability.
4 Discussion

4.1 Modeling using in situ spectral data

In comparing the prediction accuracies of soil organic carbon,

total nitrogen, and total phosphorus content based on in situ

spectral reflectance data and indoor spectral prediction models

established in this chapter, we selected soil samples with a particle

size of 0.2 mm and a moisture content of 0% after thorough drying

to obtain indoor spectral data. This is because both the soil particle

size and soil moisture content have a significant impact on the

accuracy of predicting soil organic carbon, total nitrogen, and total

phosphorus content based on soil hyperspectral data (29–31). Soil

conditions exhibit heterogeneity in time, space, and depth,

including, but not limited to, changes in soil surface conditions,

soil moisture content, and deep soil conditions. This phenomenon

poses certain challenges to ensuring the accurate collection of soil

spectra for in situmeasurements, such as increasing the difficulty of

extracting effective information on soil properties and reducing the
TABLE 1 Modeling and evaluation of soil organic carbon, total nitrogen, and total phosphorus based on in situ full-band spectroscopy using three
different models and two dataset types.

Elements Model

Original First derivative

Modeling set Validation set Modeling set Validation set

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Soil Organic Carbon (SOC;
g/kg)

PLSR 0.81 0.90 0.58 1.40 0.88 0.72 0.46 1.59

GPR 0.70 1.11 0.65 1.23 0.98 0.33 0.36 1.69

RF 0.97 0.38 0.65 1.21 0.98 0.34 0.63 1.26

Total Nitrogen (TN; g/kg)

PLSR 0.83 0.10 0.55 0.16 0.90 0.07 0.50 0.18

GPR 0.75 0.12 0.59 0.15 0.98 0.05 0.44 0.19

RF 0.97 0.04 0.53 0.17 0.98 0.04 0.57 0.15

Total Phosphorus (TP; g/kg)

PLSR 0.75 0.06 0.59 0.07 0.83 0.07 0.49 0.10

GPR 0.59 0.08 0.55 0.08 0.96 0.03 0.51 0.09

RF 0.97 0.02 0.48 0.08 0.97 0.03 0.61 0.07
fro
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accuracy of using in situ spectra to monitor soil nutrient content

(32–34). Studies have also confirmed that the predictive accuracy of

in situ spectra can be improved through spectral preprocessing,

model algorithm selection, and other aspects (35, 36), which is

consistent with the results of the present study. In this study,

original spectral and first-order differential spectral reflectance

data of soil in four habitat types were selected, and the partial

least squares, random forest, and Gaussian process regression

models were used to estimate the soil nutrient contents of organic

carbon, total nitrogen, and total phosphorus. Compared with

previous research results (37, 38), the prediction accuracy of the

model in this study was improved or similar.
Frontiers in Soil Science 06
4.2 Differences in accuracy of soil element
inversion using hyperspectral data

Soil carbon and nitrogen contents have a direct impact on

reflectance (39). Visible near-infrared hyperspectral technology

indirectly obtains information on multiple soil components through

the combined and harmonic peaks of hydrogen groups in the soil (40,

41). The vast majority of nitrogen in soil exists in organically bound

forms and is strongly correlated with the soil carbon content.

Therefore, using hyperspectral technology to establish soil carbon

and nitrogen content models can quickly estimate soil carbon and

nitrogen contents with a high prediction accuracy (42). In this study,
B

A

FIGURE 2

Modeling and validation of the carbon, nitrogen, and phosphorus levels based on field spectra using the partial least-squares regression (PLSR),
random forest (RF), and Gaussian process regression (GPR) models. RAW, raw reflectance (A); FD, first derivative reflectance (B).
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the prediction accuracy for the soil TP content was lower than that of

the soil SOC and TN contents, which was consistent with the results of

the correlation analysis. The accuracy of the prediction model and

correlation analysis was poor, possibly because of the low phosphorus

content in the soil, which increased the prediction difficulty (43).
4.3 Impact of different models on the
accuracy of soil element inversion

The summative results on spectral modeling and predictions of

soil carbon, nitrogen, and phosphorus elements are listed in Table 2.

Currently, most researchers use the RF and PLSRmodels, both of

which perform with relative stability and accuracy. The RF model is

an integrated machine-learning algorithm used for classification and

regression and is constructed by combining the results of various

decision trees and packaging the original dataset to select samples (38,

48). The GPRmodel is a popular machine-learning technique used to

analyze, classify, and regress provided data (49). The PLSR model

integrates various analyses, such as correlation, principal component

analysis, and multiple linear regression, to identify the main control

factors affecting the dependent variable from high-dimensional data

as well as reduce the dimensionality of the spectral analysis, thereby

increasing the robustness of the constructed model (45). In this study,

the optimal inversion model for soil elemental content was RF, which

had a higher R2 and lower RMSE than those of the other two models;

however, PLSR had a more stable influence on the inversion of soil

elemental content.
5 Conclusions

This study focuses on the surface soil of the wetlands in the

Shaanxi Yellow River Wetland Provincial Nature Reserve. In situ

spectral data were collected, and the PLSR-Partial Least Squares,

RF-Random Forest, and GPR-Gaussian Process Regression models

were established for soil carbon, nitrogen, and phosphorus contents
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using both the original spectral data and the first derivative

transformed spectral data. The conclusions are as follows:
(1) In comparing modeling incorporating in situ original

spectra versus first-order differential spectra data, the soil

organic carbon, total nitrogen, and total phosphorus

models, established based on first-order differential data,

had a higher modeling accuracy. During model validation,

the PLSR-Partial Least Squares model was based on the

original spectrum data, but the GPR-Gaussian Process

Regression model had a stronger inversion performance.

(2) In comparing the differences in prediction accuracy of soil

organic carbon, total nitrogen, and total phosphorus, the R2

range for modeling soil total phosphorus content was 0.62–

0.97, whereas the validation R2 range was 0.26–0.65,

indicating the weakest prediction performance.

(3) In comparing the three inversion models, the RF-Random

Forest model had a stronger inversion influence on the soil

organic carbon, total nitrogen, and total phosphorus contents,

the R2 range for the model was 0.96–0.99, and the validation

R2 range was 0.38–0.80. The R2 range for PLSR-Partial Least

Squares model was 0.76–0.98, and the validation R2 range was

0.38–0.80, indicating a more stable inversion performance.
This study, based on field in situ soil spectral data, estimated the

contents of SOC, TN, and TP in the soil using different models. This

approach established accurate spectral processing methods and

models for estimating their content and variations, with the aim

of providing technical and theoretical support for the rapid and

accurate monitoring of nutrient contents in wetlands.
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