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Engineering, University of Galway, Galway, Ireland, 2Teagasc, Animal and Grassland Research and
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Introduction: The mapping of soil properties, such as soil texture, at the field

scale is important Q6 in the context of national agricultural planning/policy and

precision agriculture. Electromagnetic Induction (EMI) surveys are commonly

used to measure soil apparent electrical conductivity and can provide valuable

insights into such subsurface properties.

Methods: Multi-receiver or multi-frequency instruments provide a vertical

distribution of apparent conductivity beneath the instrument, while the

mobility of such instruments allows for spatial coverage. Clustering is the

grouping together of similar multi-dimensional data, such as the processed

EMI data over a field. A neural network clustering process, where the number

of clusters can be objectively determined, results in a set of one-dimensional

apparent electrical conductivity cluster centers, which are representative of the

entire three-dimensional dataset. These cluster centers are used to guide

inversions of apparent conductivity data to give an estimate of the true

electrical conductivity distribution at a site.

Results and discussion: The method is applied to two sites and the results

demonstrate a correlation between (true) electrical conductivity with soil texture

(sampled prior to the EMI surveys) which is superior to correlations where no

clustering is included. Themethod has the potential to be developed further, with

the aim of improving the prediction of soil properties at cluster scale, such as

texture, from EMI data. A particularly important conclusion from this initial study

is that EMI data should be acquired prior to a focused soil sampling campaign to

calibrate the electrical conductivity – soil property correlations.
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1 Introduction

Soil is a fundamental natural resource that plays a pivotal role in

sustaining life on Earth (1, 2), acting as the foundation for 95% of

food production and 25% of all biodiversity (3). It forms one of the

three components of environmental quality, alongside air and water

quality (4) and is included in several Sustainable Development

Goals (5). Soil physical properties significantly impact agricultural

productivity and environmental health (6, 7). An accurate

understanding of the spatial distribution of soil physical

properties is essential at national and local levels to make

informed decisions regarding land use planning, agricultural

practices, and environmental conservation (8, 9).

Static soil properties (e.g., soil texture, mineral composition,

bulk density, and porosity), which relate to a soil’s capability to

function (7), remain generally constant over time and are not

significantly influenced by short-term environmental conditions

(10). In contrast, dynamic soil properties (e. g., soil moisture,

salinity and temperature) exhibit temporal variability and are

influenced by short-term environmental factors. These properties

have a significant impact on soil condition (i.e., fertility, nutrient

cycling, and carbon sequestration (10), making them essential to

consider in agricultural practices and ecosystem management (11).

Static properties provide a baseline characterization of soil while

dynamic properties offer insights into its responsiveness to varying

environmental conditions (4, 7). At national policy level, mapping

both static and dynamic soil physical properties is paramount for

efficient agricultural planning and policy development (2, 12).

At field scale, precision agriculture (13), an emerging practice that

utilizes site-specific information for decision-making, benefits from

accurate soil property data (14). Farmers can optimize input, such as

irrigation and fertilization (15), leading to improved resource

efficiency and reduced costs. Furthermore, understanding soil

property distribution allows farmers to assess the risks associated

with various agricultural practices, making informed choices to avoid

soil degradation and ensure long-term productivity and

sustainability (16).

Traditional mapping of soil properties (8, 17) involves labor-

intensive field surveys and sampling campaigns, where soil samples

are collected at points within a study area, before undergoing

laboratory analysis to determine static and dynamic properties.

These data are then interpolated to create soil maps, providing

insights into the spatial distribution of soil properties (9). While

offering valuable information, traditional methods are limited in

spatial and temporal coverage and are time-consuming and costly.

Non-invasive geophysical methods, such as electromagnetic

induction (EMI), offer efficient broader coverage and high-

resolution mapping capabilities for soil properties (18–21). Multi-

coil and/or multi-frequency EMI instruments allow several depths

to be sampled simultaneously and can be interpreted to provide the

underlying distribution of electrical conductivity (mS/m) (19). At

field scale, EMI measurements have been used to map soil texture
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(22), soil cation exchange capacity (23, 24), soil moisture (25), and

soil salinity (26, 27). EMI data have also been used to guide field

sample campaigns by clustering (grouping) similar EMI data into

management zones, which represent areas of similar soil properties

(22, 28) or anthropogenic effects, such as compaction (29).

There are several challenges in utilizing EMI data for soil

property mapping. Firstly, the measurements, known as the

apparent electrical conductivity (ECa), are the result of a complex

combination of several soil physical properties (18). Secondly, the

apparent electrical conductivity provides an average, or bulk,

measurement for the depth of soil through which the

electromagnetic field has passed (30). The depth of penetration is

dependent on the frequency of the applied alternating EM field, the

separation of the transmitter and receiver coils, and the true

electrical conductivity of the medium (31). ECa data can be

inverted to produce a model of true electrical conductivity (ECt)

distribution of the subsurface (32, 33). The ECt in soil can be

regarded as a combination of the conductivity associated with

electrical current flow in interconnected pore space and the

surface conductivity associated with current flow at clay grain

fluid interfaces (34). The ECt is needed for linking traditionally

sampled data to modern pedophysical models (35) which can use

electrical conductivity to predict soil physical properties.

Non-linear iterative inversion is a computational method that

refines ECt models by iteratively adjusting inversion parameters to

minimize the difference between observed ECa and predicted ECa.

Inversion usually requires an estimation of the starting ECt model.

(24, 32). Specifically, knowledge of an initial ECt model can

significantly improve the results (36). Often a single initial

conductivity model is defined and used at every datapoint across

a site. Given the importance of this initial model, this may not be an

optimum approach for an inversion, so it is proposed here that a

spatially variable initial model is explored prior to inversion.

This study presents a technique to improve the transformation of

ECa, to a property (ECt) of the soil column beneath an EMI

instrument via a non-linear iterative inversion algorithm. It

provides an objective method to determine a spatially variable

initial electrical conductivity model to guide an inversion of

measured ECa across a field site. The methodology utilizes a

machine learning clustering algorithm alongside inversion software

to produce the highest appropriate number of initial models for a

study site. These initial models are then used as input to Q3D

inversions to produce true conductivity distribution on field sites in

Germany and Ireland, where soil samples have already been taken.

These inversions are compared to results from the traditional

approach in which a single, uniform, initial model for a site is used

within the inversion. The methodology may allow for a Quasi-3D

(Q3D) inversion of measured EMI data on field sites where little or

no ground sample data exist, or where a ground sampling campaign

is planned. This study also proposes that an EMI survey has the

potential to be an initial tool of a soil surveyor, performed prior to

and used to guide traditional soil sampling campaigns.
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2 Materials and methods

2.1 Electromagnetic induction

EMI estimates the electrical conductivity of the subsurface by

inducing alternating electromagnetic fields using a transmitting

(Tx) coil (19). This primary field induces electrical currents in the

subsurface, which then generate secondary electromagnetic fields

(Figure 1). These secondary fields are then detected by a receiving

(Rx) coil and the ratio of the primary to secondary field allows for a

value of electrical conductivity to be estimated (37, 38). The depth

of investigation depend on the frequency of the alternating current

in the transmitting coil (1 – 100 kHz), the orientation of the Tx and

Rx coils (vertical, horizontal, coplanar), the separation of the Tx and

Rx and the electrical conductivity of the subsurface (19, 37).

In this study a CMD Mini-Explorer Special Edition (39) was

used on a site in Germany and a CMD Mini-Explorer 6L (39) was

used in a site in Ireland. These instruments have a constant Tx

frequency and six Rx coils at various separations, allowing for six

simultaneous EMI measurements. The instruments differ only in

the coil separations. Both instruments were operated in “Hi” mode,

or horizontal coplanar coil orientation, allowing for a maximum

depth of investigation of ~ 2 - 3 m, with the effective depth of a

measurement ~ 1.5 times the coil separation (37). As the EMI

instruments and acquisition techniques were very similar on both

sites, an identical processing flow was applied to both study sites

(Figure 2). This included (where necessary) the correction of GPS

antenna location to the instrument center, resampling to 1 Hz

spatial sampling frequency, averaging of duplicate spatial samples,

correction for the presence of a sled, removal of large (> 1 mS/m)

variations between measurements, application of a histogram filter

(33), a Principal Component Analysis filter (40) and a temperature

correction to 25°C (as per Brogi et al. (22)), to remove the effect of

temperature differences between surveys. Measured data, with GPS
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accuracy < 1 m, were then interpolated to a 1 m x 1 m grid using

default parameters in the bSpline interpolation in QGIS v3.20.
2.2 Forward modelling and inversion of
EMI data

Forward modelling refers to a mathematical process to convert a

one-dimensional (1D) layered model of ECt to ECa, the data acquired

by an EMI instrument (Figure 1) at the surface of this model. The

Maxwell Equations (38) can be used to solve the non-linear 1D

forward problem without any restrictions, and with the advent of

modern computers can be easily and quickly applied to EMI data (41).

Inversion is a mathematical process that translates measured ECa data

into a 1D subsurface model of ECt. It involves creating a hypothetical

1D layered subsurface model (Figure 1), then forward modelling to

simulate ECa, measured at the instrument at a known height above the

ground surface. The process is iterative and uses regularization

techniques to refine the model, aiming to minimize the difference

between observed ECa and predicted ECa. Typically, an inversion and

forward modelling is carried out at a single datapoint at a time before

moving on to the next, thereby building a 2D/3D model from a series

of EMI datapoints acquired across a site. Several inversion algorithms

have been developed (42, 43) to include lateral or spatial constraints

during inversion to ensure geological consistency between surrounding

1D models. The technique is known as Quasi-2D/3D (Q2D/Q3D)

inversion as it still relies on a 1D forward model for each data point.

An important factor in the inversion process is the choice of an

initial ECt model. Traditionally this is a 1D model with a starting

conductivity value, which can be a uniform half-space (26) or a

representative layered vertical distribution of electrical conductivity

(24). In this study, the computation of all models, including initial

models and final theoretical responses, is based upon 20 layers, each

with a thickness of 0.1 m.
FIGURE 1

Conceptual diagram for the relationship between acquired EMI data (ECa) and the inverted theoretical response (ECt). Left: Field acquisition using an
instrument with 3 coil separations. Black dots indicate the measurement location of the instrument at the surface, colored circles indicate induced
current with approximate depth of investigation and resolution for each coil separation. Dashed colors indicate sections of induced secondary
magnetic field lines, which are detected at each Rx. Right: Model of electrical conductivity of subsurface divided into layers with each color
representing an ECt value.
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EM4Soil V4.4 (44), a software package for 1D, Q2D and Q3D

inversions, is used to invert EMI data using a nonlinear,

smoothness-constrained inversion algorithm (S1) and Occam

regularization (45). The full solution (FS) of the Maxwell

Equations is used to calculate the model response to compare

with the ECa. The dampening factor is l = 0.01 which allows for

sharp changes in the vertical distribution of ECt.
2.3 Self-organizing maps clustering

The grouping together of statistically similar multi-dimensional

data vectors is often referred to as clustering or classification (46). A

data vector is considered as all data located at a single spatial

coordinate (47, 48). This study makes use of an unsupervised

machine learning classification technique known as Self-

Organizing Maps (SOM) (49). Unsupervised classification differs

from supervised classification in that there is no requirement for a

priori knowledge. Data vectors are grouped based on similarity,

which is assumed here to be due to the similar subsurface properties

being sensed.

SOM is a centroid based clustering technique, similar to K-

Means (50), where each data vector is assigned to a single numerical

cluster. K-Means employs a metric consisting of the minimum

distance (in the data space) between a data vector and a cluster

center to assign each data vector to a numerical cluster. SOM takes

advantage of modern neural network machine learning (51) to
Frontiers in Soil Science 04
assess the similarity of data vectors. This cluster center, with similar

dimensions to the input data vectors, is representative of all the data

assigned to a particular cluster.

The data vectors input to the cluster method are the measured

ECa, resulting in a data vector per measurement location,

containing as many layers as coil separations (e.g., 6). The aim of

clustering EMI data in this study is to firstly divide the study sites

into different spatial zones, each of which can be represented by a

single EMI data vector, the cluster center. These cluster centers can

then act as input to 1D inversion in EM4Soil, producing cluster

specific initial model, which can be used as input to a Q3D inversion

(Figure 2). Clustering was performed in MATLAB v2023a.

A challenge in any cluster analysis is determining the

appropriate number of clusters that can be used to represent a

dataset (52, 53). This study uses the Multi-Cluster Average Standard

Deviation (MCASD) stability metric which has successfully been

applied to airborne geophysical data (48), and ground EMI data

(29) similar to this study. This metric assumes that an appropriate

number of clusters for a dataset is any at which the cluster center

values do not vary significantly when the clustering algorithm is run

multiple times. In this study MCASD analysis was tested with a

maximum of 12 clusters, with 100 attempts per cluster, to calculate

MCASD stability metrics, which are illustrated in Figure 3. The

number of clusters and attempts were chosen based on achieving

MCASD stability statistics.

Upon completion of MCASD analysis, the highest number of

clusters with a low MCASD metric is selected, as this represents the
FIGURE 2

Workflow diagram of methodology applied in this study showing additional steps to achieve data derived initial models for use in inversion.
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maximum resolution of the spatial variability that can be obtained

through clustering (48).
2.4 Sites

2.4.1 Selhausen, Germany
This site is located near Selhausen, Germany, in the Rur

Catchment, ~ 40 km west of Cologne (50°51′56″N 6°27′03″E).
The site is part of an agricultural area in which different crops are

grown in rotation. These are winter wheat, barley, and sugar beet,

with occasional growing of potato, maize, oilseed rape and oats

(Figure 4A). The dominant soil groups in the area are cambisols,

luvisols, planosols and stagnosols (54). The climatic conditions

include mean annual precipitation of 715 mm and annual

temperature of 10.2°C. Soil temperature is measured near the

investigated site.
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Two instruments were used to acquire EMI data, a CMD Mini-

Explorer (39) and a prototype CMD Mini Explorer Special edition

(Figure 4B). The instruments were towed on GPS equipped plastic

sleds in tandem behind a quad bike, with ~ 4 m distance between

the first sled and the quad bike and ~ 2 m between the sleds. An

average speed of 5 – 7 km/h was maintained, with an inline spatial

sampling frequency of 5 Hz, giving an inline spacing of ~ 0.5 m, and

a crossline distance of ~ 2 – 2.5 m (Figure 4C). The ECa maps

acquired over this site were used by Brogi et al. (22) to subdivide it

into soil classes using semi-automatic supervised learning. These

classified maps have subsequently been used to inform

agroecosystem modelling of crop yield (55). In the study

presented, only the data from the CMD Mini-Explorer Special

edition was used, as the instrument and measurement configuration

are very similar to that used on the second site in Ireland. This

instrument has 6 receiver coils with separations of 0.35, 0.50, 0.71,

0.97, 1.35, 1.8 m.
A

B

FIGURE 3

Conceptualization of MCASD. For each datapoint the Euclidean distance in the dataspace between the data vector and the cluster center is
calculated and stored for each clustering attempt. After all attempts, a standard deviation (SD) of the distances is calculated. This SD is then averaged
for all data points giving the MCASD metric. A SD is calculated to supplement the MCASD metric in the form of a range (error) of this stability across
all data vectors. (A) Synthetically generated 2D data showing results after Attempt 1 of a 3-cluster solution. Data vectors are colored based on cluster
assignment. Black arrows indicate the Euclidean distance. (B) A visualization of data organization when calculating MCASD metrics. Each row of the
table represents a data vector, and each column represents an attempt.
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Field 22 (F22) was selected to demonstrate the proposed

methodology. This field is part of a local geomorphological

feature named Upper Terrace with loess soils of various thickness

found above highly compacted sand and gravel that results in the

spatial patterns in ECa (22). Data from F22 were acquired on 24th

August 2016. Additionally, 5 ground sample locations (Figure 4;

Table 1) were collected in February 2017, the locations of which

were guided by the results of semi-automatic classification of the

ECa data. After data processing 27,445 EMI measurement locations

were gridded to a 1 x 1 m regular grid (Figure 4D). All six EMI coil

measurements were processed (Section 2.1) and used for clustering

and inversion.

2.4.2 Co. Tipperary, Ireland
This site is a field from a dairy farm (Figure 5A) in Co.

Tipperary, Ireland (50°51′56″N 6°27′03″E) growing grass for

grazing cattle and fodder. The farm is part of the Heavy Soil

Program operated by the Irish Agricultural and Food Agency

(56). The main soil groups are typical surface water gley, typical

ground water gley, typical luvisol, brown earth and humic surface

water gley (57). There is a mean annual precipitation of 980 mm

(58). A soil temperature measurement was provided at 10 cm depth

from an on-site weather station.

A single instrument, a CMDMini-Explorer 6L (39), was used to

acquire EMI data. This was towed on a GPS equipped wooden sled

behind a quad bike, at ~ 2 m distance (Figure 5B). An average speed

of 5 – 7 km/h was maintained, with an inline spatial sampling
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frequency of 10 Hz, giving an inline separation of ~ 0.2 m and a

crossline distance of ~ 1.5 - 2 m (Figure 5C). This instrument has 6

receiver coils with separations of 0.2, 0.33, 0.5, 0.72, 1.03, 1.5 m.

For this study a single paddock, P7, was selected to demonstrate

the proposed methodology. It is 1.31 ha in area, has typical surface

water gley soil (59) and there is one location where quantitative

measurements of some soil physical properties were collected in

October 2015 (Table 2). This field was selected as it demonstrates

intra-field variation in EMI measurements where ground data

are sparse.

P7 was acquired on 30th August 2021. After data processing

5,625 EMI measurement locations (Figure 5C) were gridded to a 1 x

1 m regular grid. The EMI data selected with 0.2 m coil separation

were discarded due to noise in these data from the presence of the

sled. The data from the remaining separations were processed and

gridded (Figure 5D) and used for clustering and inversion.
2.5 Linear regression between ECt and
soil properties

To relate outputs from inversions to measured soil properties,

this study uses linear regression (60) which is performed between

inverted ECt and soil textural properties. ECt values are extracted

from each Q3D inverted result at the closest (< 1 m) geographical

EMI point and at the same sample depths as the soil textural

properties measured in each site (Tables 1, 2). Therefore, there are
A

C D

B

FIGURE 4

Site description - Germany. (A) Outline of site and study field, (B) EMI set up, (C) EMI measurement locations in Field 22 with soil sample locations,
(D) Processed electrical conductivity data (0.5 m coil separation), gridded to 1 m x 1 m with soil sample locations.
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as many analysis points as there are measured soil properties at all

depths. This is used to indicate the relationship between a soil

property and ECt values.

The metrics to show this relationship are coefficient of

determination (R2) and root mean squared error (RMSE). A high

R2 value (~ 1) indicates that variance in ECt can explain variance in

the soil property of interest and a low RMSE value (~ 0%) indicates

good predictability. This analysis is performed at each sample

location (Germany, Samples 5, 12, 13, 22 & 27; Ireland, Trial

Pit) individually.
3 Results

3.1 Clustering results

AnMCASD analysis of the EMI ECa data from the German site

resulted in a maximum of 6 clusters to be appropriate (Figure 6A)

with the option of 3, 4 or 6 clusters being appropriate for the Irish

site Figure 6D). To provide the best compromise between MCASD

stability metrics and initial model spatial resolution, the six-cluster

solution is used in this study for both sites (more detail provided in

Supplementary Figures 1, 2). For the German and Irish sites, the
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graphed MCASD metrics (Figures 6A, D) show that the 7-cluster

and 5-cluster solutions, respectively are not stable over multiple

clustering runs.

The spatial distribution of the 6-cluster solution for both

Germany and Ireland (Figures 6B, E) is colored to match the

corresponding cluster center (Figures 6C, D) and indicate areas of

similar electrical conductivity. The German site shows a general

decreasing ECa with increasing cluster number. The Irish site shows

a greater change in ECa between cluster centers, with a relatively

high electrical conductivity in the 0.33 and 0.5 m coil separation

data layers in cluster 1, relating to the shallowest depths

of investigation.

Soil sample locations on the German site are sometimes located

geographically close to cluster center boundaries. Sample 5 is in a

1 m x 1m grid point assigned to cluster 3, but also < 1 m from a

cluster 4 grid point. Sample 12 is in cluster 5 and ~ 4 m from any

other clusters. Sample 13 is ~ 20 cm from a cluster boundary

between cluster 4 and 5 and ~ 2 m from a cluster 3 grid point.

Sample 22 is in cluster 5, and ~1.5 m from cluster 6. Sample 27 is in

cluster 6. The single soil sample location on the Irish site is in cluster

4, and ~ 2.5 m from cluster 5.
3.2 Inversion results

3.2.1 Cluster center inversions
Cluster center data (Figures 6C, F) were input to EM4Soil 1D

inversion algorithm with inversion parameters in section 2.2. The

resulting 1D ECt profiles for the German site (Figure 7A) show

electrical conductivity differences between the profiles at depths of ~

0.5 m and between 1.5 m and 2.0 m. The Irish site (Figure 7B)

differences are present to ~ 0.5 m depth. The cluster center colors

match the spatial distribution of clusters (Figures 6B, E).

The average RMSE between the cluster center (analogous to

measured) ECa and the ECa obtained by forward modelling from

the 1D ECt profiles is 0.23 mS/m for the German cluster center and

0.24 mS/m for the Irish cluster centers. This indicates a successful

inversion was achieved.

3.2.2 Q3D inversions and comparison with
physical property

Processed and gridded EMI data from both sites were input to

EM4Soil Q3D inversion algorithm with all inversions performed

using the parameters in section 2.2. For each site, an inversion was

performed using a constant conductivity (10 mS/m) vs depth initial

model. Subsequent inversions were then performed using ECt

values of each of the cluster center models (Figure 7) as the initial

model beneath each measurement location.

A linear regression between ECt values and soil texture at the

same depths at each sample location is used to assess the accuracy of

the model predictions (Table 3). In general, the use of a cluster

center based initial model improves R2 and RMSE. Samples 13 and

22 from the German site have only 3 measurements of soil

properties and sample 13 has a decreased performance in R2 and

RMSE when using any cluster center initial model. The Irish site

shows a significant improvement in both metrics when inversion is
TABLE 1 Soil physical properties for Field 22.

Sample
Number

Horizon Depth to
horizon
center
(cm)

Clay
(%)

Silt
(%)

Sand
(%)

5

Ap 15 14.1 69.2 16.7

Ah 40 15.2 69.5 15.2

Bv1 58 17.3 66.4 16.3

Bv2 75 20.9 58.3 20.8

BC 93 24.1 43.2 32.7

12

Ap 15 13.8 66.4 19.8

Ah 36 14.5 69.6 15.9

Bv1 49 13.8 67.9 18.2

Bv2 66 15.6 66.2 18.3

BC 85 19.2 13.3 67.5

13

Ap 11 12.2 72.7 15.2

Ah 31 12.5 67.2 20.3

BC 49 20.2 28.8 51.0

22

Ap 15 12.5 71.8 15.8

Ah 36 12.7 71.5 15.8

Bv 60 17.4 68.7 13.9

27

Ap 15 19.9 71.0 16.8

Ah 37 16.6 71.2 15.8

Bv 57 14.4 69.7 13.0

BC 79 12.1 47.4 36.4
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performed using a cluster center based initial model, but the dataset

is very small.
4 Discussion

4.1 Data processing

The use of EMI data for soil mapping is becoming more popular

(19). This study performed a standardized processing flow to all

data with no user input. Histogram (33) and Principal Component

Analysis (40) filters provided much of the noise reduction. Both

filters are data driven, and so adapt to the noise in the data. PCA

requires a subjective choice of which components to retain in the

filter and this study used the first two components which
Frontiers in Soil Science 08
represented ~ 95% of the variability in the data. A standardized

processing flow was applied as EMI instrument and acquisition

parameters were very similar. While generally robust, this flow may

not be appropriate for all EMI datasets due to different noise

contributions for different surveys, which may require specific

noise reduction strategies. PCA may only be applied to multi-

coil/frequency instruments and so would not be appropriate for a

single coil acquisition.
4.2 Self-organizing maps

EMI surveys are often used to “connect the dots” of traditional

soil sampling campaigns. However, extensive soil sampling may not

be practical at field scale. A key recommendation from this study is

that EMI data should be used prior to traditional soil sampling to

guide the locations of sampling, so reducing overall cost and

maximizing understanding of soil property distribution across a

site. This study demonstrates that clustering identifies areas where

apparent conductivity data, and therefore soil property data, are

likely to be similar. This would then allow for a cost-effective soil

sampling campaign, where at least one sample per cluster could be

taken after a cluster analysis of EMI survey data

One issue with clustering, regardless of the technique, is the

choice of the number of clusters to represent a dataset. In this study,

the MCASD stability metric (48) was used to determine an

appropriate number of clusters for each dataset. The choice in
A B

C D

FIGURE 5

Site description - Ireland. (A) Outline of farm and study field and Trial Pit locations, (B) EMI set up, (C) EMI measurement locations in Paddock 7 with
Trial pit location, (D) Measured electrical conductivity (0.5 m coil separation), processed, and gridded to 1 x 1 m with Trial pit location.
TABLE 2 Soil physical properties for Paddock 7.

Sample
Name

Horizon Depth to
Horizon
center
(cm)

Clay
(%)

Silt
(%)

Sand
(%)

Trial Pit

Apg 14 15.0 16.0 69.0

Eg 39 4.0 8.0 88.0

C 70 14.0 27.0 59.0

Cr 115 14.0 17.0 69.0
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this study to use the highest appropriate cluster number

(coincidently six for both German and Irish sites), where the

MCASD metric and range remain small, was to achieve the

greatest spatial resolution in initial model variation across each

site. MCASD also successful identified that the use of a 5-cluster

solution, on the German data, was not appropriate (Supplementary

Figure 2). It is also noted that using a lower cluster number did not

significantly change the eventual link to soil properties

(Supplementary Table 1), further justifying the use of the highest

number of clusters as determined by MCASD analysis.

The combined use of unsupervised clustering (SOM) andMCASD

allows for the objective grouping of EMI ECa data from both German

and Irish sites (Figure 6), in contrast to the supervised classification

used in Brogi et al. (22), which required additional local knowledge of

expected soil types. Heil and Schmidhalter (28) conclude that

interpretation of ECa measurements are highly location and soil
Frontiers in Soil Science 09
specific and so the resulting spatial distributions from this SOM

analysis could be used to guide a field sampling campaign, with

minimal user input and background knowledge of expected soil

property variation, aiding any conclusions drawn from an EMI survey.
4.3 Inversions and initial models

An inversion of EMI data provides a distribution of true

subsurface electrical conductivity which, unlike ECa, can be

related directly to soil physical properties. All inversion

techniques are non-unique, especially in the presence of noise, in

that there are trade-offs between the resolution of the retrieved

model parameters (electrical conductivity distribution) and the fit

between the model response and observed data. For the non-linear

iterative inversion technique used in this study, there are choices
A D

B

C F

E

FIGURE 6

Clustering results for German (left) and Irish (right) sites: (A) MCASD analysis showing appropriate cluster numbers for field F22. (B) Spatial
distribution of clusters in F22 with soil sample locations marked, (C) Cluster center data vectors for F22, D) MCASD analysis for field P7, (E) Spatial
distribution of clusters in P7 with soil sample location marked, (F) Cluster center data vectors for P7, Ireland.
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related to constraining the limits and smoothness of the estimated

1D electrical conductivity distribution. These are subjective or can

be linked to a priori soil physical properties which may, for

example, demonstrate soil layering (32).
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This study demonstrates how to remove some of the subjectivity

related to non-linear iterative inversion of EMI data using cluster

centers to help in the choice of the initial model which starts the

inversion. The results (Table 3) confirm that the initial model is
A B

FIGURE 7

(A) Inverted cluster center profiles for Germany Field 22, (B) Inverted cluster center profiles for Ireland, Paddock 7.
TABLE 3 Linear regression between ECt and soil texture data.

Site: Initial Model Clay % Silt % Sand %

Germany (6 cluster solution) R2 RMSE R2 RMSE R2 RMSE

Sampling location 5

Constant 0.40 2.3% 0.61 4.8% 0.70 2.7%

Cluster 3 0.39 2.2% 0.56 4.8% 0.63 3.2%

Cluster 4* 0.48 2.1% 0.62 4.9% 0.66 3.2%

Sampling location 12
Constant 0.28 1.3% 0.42 12.5% 0.43 11.5%

Cluster 5 0.41 1.2% 0.50 13.1% 0.51 12.1%

Sampling location 13

Constant 0.25 2.7% 0.32 12.5% 0.33 10.8%

Cluster 4 0.21 2.8% 0.27 14.2% 0.29 11.4%

Cluster 3* 0.23 2.7% 0.30 13.8% 0.32 11.0%

Cluster 5* 0.14 3.1% 0.19 15.6% 0.21 12.5%

Sampling location 22

Constant 0.08 2.2% 0.11 1.2% 0.05 0.8%

Cluster 5 0.21 3.3% 0.17 1.0% 0.26 0.6%

Cluster 6* 0.76 3.6% 0.72 0.7% 0.81 0.4%

Sampling location 27
Constant 0.07 2.0% 0.11 7.7% 0.18 6.8%

Cluster 6 0.25 1.5% 0.96 1.9% 0.90 2.4%

Site: Initial Model Clay % Silt % Sand %

Ireland (6 cluster solution) R2 RMSE R2 RMSE R2 RMSE

Trial Pit
Constant 0.60 2.6% 0.03 5.3% 0.20 7.7%

Cluster 4 0.97 0.6% 0.62 3.2% 0.86 2.9%
* indicates a cluster close to, but not containing the physical property sample location (section 3.1). Important results are highlighted in bold.
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important when inverting ECa data and indicate applying the

cluster center initial model for each measurement within the

cluster can improve the correlations between electrical

conductivity and soil texture. The approach provides a practical

solution to potentially computationally time-consuming searches

(e.g., Koganti et al. (60)) around the parameters of the inverted

model to maximize these correlations.

In a similar method, reference point lateral constraint (61), the

results of the inversion of a single data point are passed to the next

data point as the initial model along a flight line in airborne EMI

data. A current limitation of the method is that there is no software

for the integration of a spatially variable initial model for

Q3D inversions.
4.4 Implications for soil
property monitoring

A requirement of advanced pedophysical (35) and agroecosystem

models (31) is a knowledge of ECt distributions across a site. The

methods presented produce such ECt distributions but their accuracy

for predicting soil texture is unknown until soil samples are acquired.

The choice of soil sample locations may improve the correlation

between ECt and sub-surface static property variations using the

clustering techniques presented in this paper. The results, (Table 3),

particularly the German site which has strong heterogeneity (22),

provide a prima facie demonstration of the efficacy of the technique.

They also show that soil samples located close to cluster boundaries

are less suitable for soil property prediction from ECt, likely due to

clustering identifying areas of transition between soil physical

properties. This implies that an EMI survey and clustering

should be conducted prior to a soil sampling campaign to

maximize efficiency.

ECt has a time-varying component as a consequence of the

dynamic properties of the soil such as (a) saturation, which changes

due to dynamic hydro-meteorological conditions, (b) electrical

conductivity of the fluid with changing salinity and temperature

in the interconnected pore space (62) and (c) changes in pore

structure dynamics (i.e., bulk density, pore size distribution and

connectivity) in agricultural regions (20, 63) due to tillage,

compaction from animal/vehicle traffic and periods of bare soil

(64). ECt also has a longer-term time-invariant component of the

microgeometry of the pore space distribution (34, 65) associated

with static soil properties, such as soil texture, the particle-size

distribution (sand, silt, clay etc.), particle shape and orientation, and

the type of clay minerals with their specific electrical properties

which influence, e.g., cation exchange capacity. Disentangling the

effect of each of these properties on ECt is difficult and often

requires the use of physical property samples (21) or soil electrical

conductivity models (65).

A separation of the relatively stable properties of texture from

the dynamic state variables may be attempted by repeated EMI

surveys over a wide range of hydro-meteorological and agricultural

conditions. Multiple ECa datasets acquired at different times can be

incorporated into the MCASD method, resulting in a single
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optimum number of stable clusters which should allow a

comparison of ECt distributions temporally. Such analysis was

demonstrated on optical satellite data (48). If additional ancillary

data sets, such as volumetric soil moisture from time-domain

reflectometry and fluid conductivity from conductivity-

temperature-density sensors, are available, then a separation of

the stable properties from dynamic state variables may be

attempted also (66, 67).

In the context of additional multiple EMI and ancillary datasets,

three open research questions are:
(a) whether the cluster centers of the ECa clusters provide ECt

distributions at each acquisition time which are better

correlated with the stable state variables of texture and

clay-type at sample locations.

(b) whether the clustering-inversion approach can identify

areas where ECt changes most rapidly with time.

(c) whether the temporal stability approach, applied to a single

coil/frequency EMI instrument (66), can be improved by

applying it to ECt derived from EMI instruments with

multiple coil spacings using the clustering-inversion

approach presented here.
5 Conclusions

This paper emphasizes the role of electromagnetic induction

data for soil mapping. It focuses on its significance for developing a

soil sampling strategy prior to soil sampling and its ability to link

electrical conductivity to soil texture. A Self-Organizing Map

(SOM), which is a neural network clustering technique, is used to

classify electrical conductivity variations into distinct zones in two

field sites. Clustering could help to ensure that subsequent soil

sample data helps to calibrate succinctly the spatial variations of

electrical conductivity in each field, so enhancing the precision of

soil property prediction.

The clustering guides inversions of the EMI data by providing a

practical solution to the choice of an initial model to start a 1D non-

linear iterative inversion beneath each measurement in the context

of a quasi-3D inversion of many data points at a site. The

combination of EMI technology and progress in data processing

and analytics promises to increase the capabilities of soil property

characterization for more sustainable and environmentally

responsible soil management strategies.

The methods can be applied to any EMI instrument, including

those on large scale airborne surveys. Therefore, future work

includes developing a software solution to incorporate a spatially

varying initial model into Q3D inversions.
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