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Assessing soil moisture variability
in a vineyard via frequency
domain electromagnetic
induction data
Lorenzo De Carlo*, Antonietta Celeste Turturro
and Maria Clementina Caputo

Water Research Institute, National Research Council, Bari, Italy
INTRODUCTION: In agriculture, accurate hydrological information is crucial to

infer water requirements for hydrological modeling, as well as for appropriate

water management.

METHODS: To achieve this purpose, geophysical frequency domain

electromagnetic induction (FDEM) measurements are increasingly used for

integration with traditional point-scale measurements to provide effective soil

moisture estimations over large areas. The conversion of electromagnetic

properties to soil moisture requires specific tools that must take into account

the spatial variability of the two measurements and the data and model

uncertainties. In a vineyard of about 4.5 ha located in Southern Italy, we tested

an innovative assessment approach that uses a freeware code licensed from

USGS, MoisturEC, to integrate electromagnetic data, collected with a CMD Mini-

Explorer electromagnetic sensor, and point-scale soil moisture data.

RESULTS: About 30,000 data measurements of apparent electrical conductivity

(sa) allowed us to build a 3D inverted electromagnetic model obtained via an

inversion process. Soil properties at different depths were inferred from the FDEM

model and confirmed through the ground truth sampling.

DISCUSSION: The data analysis tool allowed a more accurate estimation of the

moisture distribution of the investigated area by combining the accuracy of the

point-scale soil moisture measurements and the spatial coverage of

the electrical conductivity (EC) data. The results confirmed the capability of the

electromagnetic data to accurately map the moisture content of agricultural

soils and, at the same time, the need to employ integrated analysis tools

able to update such quantitative estimations in order to optimize soil and

water management.
KEYWORDS

soil moisture, Electromagnetic induction technique, apparent electrical conductivity,
Inversion modeling, data-analysis tool
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1 Introduction

Over the last few decades, the high demand for water for

agriculture and potable use has required an improvement in

water management efficiency. Groundwater extraction through

pumping is essential to provide irrigation water for crop growth

but, in water-scarce coastal areas, its overexploitation increases the

pressure on water resources. In fact, saltwater intrusion has negative

consequences in terms of groundwater quality degradation and soil

salinization, by reducing the freshwater available to coastal

communities. On the other hand, the decreased water supply due

to reduced rainfall and climate change effects caused by global

warming are expected to have substantial impacts on global water

resources in the next decades.

For all these reasons, accurate soil moisture information is

essential to infer water requirements for hydrological modeling,

as well as for appropriate water management. Detailed predictive

models rely on accurate measurements that can be spatially

distributed and updated over time. The point-scale sensors

typically used for these purposes, such as Time Domain

Reflectometry (TDR), Time Domain Transmissometry (TDT),

and capacitive sensors, provide accurate but sparse information

about soil properties, being unable to capture the soil

heterogeneities due to their own point-source nature. On the

other hand, It is unrealistic to install a large number of such

sensors, both on the surface and at different depths, to capture

the spatial distribution of the soil properties. In the last decade

geophysical measurements have been increasingly used for spatio-

temporal monitoring because they do not alter the soil properties,

being non-invasive or minimally invasive. In addition, geophysical

methods allow the collection of data over broad areas at different

depths and in a relatively short time by providing high spatial

coverage of the investigated soil with a resolution comparable with

that obtained from sensors, in some cases. Finally, repeated time-

lapse measurements allow data to be updated over time in order to

capture changes in soil moisture that are otherwise undetectable

with traditional devices. Among several geophysical methods,

frequency domain electromagnetic induction (FDEM or EMI) is a

promising tool for providing an accurate estimate of soil

hydrological properties because of the high sensitivity of the

electrical conductivity, i.e., the output geophysical parameter, to

soil moisture and salinity. In fact, the main contribution to electrical

conductivity is provided by the electrical conduction that occurs in

soil by fluid conduction—i.e., electrolytic conduction by ionic

transfer in pore water. Other factors that affect the electrical

conductivity of the soil include porosity, soil texture, and soil

temperature (1). Compared to sensors, coring, and other

geophysical methods, FDEM data can provide essential subsurface

information over large areas in conductive environments because

they are on-the-go field measurements. An extensive literature

refers to the use of FDEM measurements for mapping geological,

hydrogeological, and environmental features. Weymer et al. (2)

reviewed applications of the EMI technique for mapping barrier
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island framework geology, emphasizing the benefits for identifying

buried geological structures and supporting conventional geological

methods. Paepen et al. (3) provided a high-resolution 3D image of

the saltwater and freshwater distribution in a coastal aquifer

through a combination of EMI and electrical resistivity

tomography (ERT) measurements. McLachlan et al. (4)

highlighted the potential of EMI methods to characterize the

hydrogeological structures of a riparian wetland in combination

with electrical resistivity tomography (ERT) data. Deidda et al. (5)

demonstrated the capability of the EMI tool to characterize

anthropic facilities, such as capped landfills, in order to protect

and/or remediate the main environmental compartments involved,

such as water, soil, and subsoil. Two different approaches

concerning FDEM data processing are currently used. Several

case studies report the use of the apparent electrical conductivity,

ECa or sa, as a proxy parameter for visualizing soil spatial

variability, which, in turn, is converted to chemical and/or

hydrological properties (6–27). Although widely used for a rapid

visualization of the soil electrical properties, ECa values reflect

different but overlapping soil volumes. ECa is a depth-weighted

parameter and gives limited information about the variation of the

conductivity with depth. In fact, ECa does not provide a rigorous

correlation between the soil conductivity structure and measured

responses, being affected by several factors such as coil distance and

orientation, sensitivity, and data error. In the last few years, a

numerical procedure based on inversion of the electromagnetic data

has been refined. This approach provides a rigorous soil

electromagnetic modeling (28–44) by improving the resolution of

subsurface features and the assessment of the soil properties.

Nevertheless, the smoothness-constrained regularization term

(45) included during the iterative process for solving the

nonlinearity of the inversion problem introduces some degrees of

uncertainty in the resulting model, suggesting that these data should

be treated as “soft” or even qualitative information (46). Beyond

that, translating the geophysical outputs into hydrological ones is

not a trivial issue. The well-established petrophysical relationships

(47–49) or site-specific calibration functions commonly used in

agrigeophysics are typically calibrated on small soil samples, leading

to potential artifacts or unrealistic estimations when upscaled to

ground-based measurements. According to these premises, the

purpose of the present work is to provide a contribution to the

scientific community for improving the quantitative integration of

invasive and non-invasive soil measurements. In the proposed case

study, an innovative and integrated assessment approach based on a

freeware data-analysis tool licensed from USGS, MoisturEC, was

tested on an experimental vineyard. Soil moisture data and electrical

conductivity estimations inferred from the inversion of ECa

measurements were used as input for the code with the aim of 1)

providing accurate soil moisture estimations in a vineyard, 2)

reducing the gap in terms of spatial variability between the dense

geophysical data and sparse soil moisture measurements, and 3)

incorporating the aforementioned data and model uncertainty in

the hydrological estimation.
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2 Material and methods

2.1 Study area

The experimental field is a vineyard that laps the Natural

Reserve of Torre Guaceto, Apulia Region, Southern Italy (737212

E – 4508502 N WGS UTM84, altitude 10 m asl). The vineyard,

located less than 1 km from the coastline, belongs to the Greco

Farm, covering 4.5 hectares (Figure 1). The soil is a Colluvic Regosol

consisting of silt and silty loam with an average depth of 50 cm.

During the growth season, the vineyard is irrigated with

groundwater extracted from the nearby pumping wells.
2.2 Field data collection

In March 2023 the vineyard was investigated by collecting

FDEM measurements along 16 transects located, as shown in

Figure 2, using a CMD Mini-Explorer probe (GF Instruments) in

both a vertical coplanar position (VCP) and a horizontal coplanar

position (HCP). The geophysical campaign was planned before the

start of the growth season in order to avoid interference (irrigation

stage, root growth) that could affect the collected data. The CMD

Mini-Explorer probe is a cylindrical tube 1.3 m long, with a 30-kHz

transmitter coil and three receiver coils for measuring ECa with 0.32

m, 0.71 m, and 1.18 m offsets, respectively. The effective penetration

depths correspond to 0.25 m, 0.5 m, and 0.9 m in the VCP and 0.5

m, 1 m, and 1.7 m in the HCP coil configuration, respectively,

according to (50). Overall, a total of about 30,000 ECa

measurements, resulting from the combination of the three

depths and two coil configurations, covered the entire

experimental area in less than three hours. The measurements

were collected by hand, keeping the device as close as possible to

the ground, almost trailing it on the ground, in order to minimize

the air layer below the sensor. Before the start of the data collection,
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the sensor was warmed up for about 15 minutes. The data were

collected in a continuous measurement mode by setting a 1 s

measurement period. A global positioning system (GPS),

incorporated in the device, provides accurate positions of the

measurement points. In order to minimize potential noise

sources, the data were collected in the middle of the rows, as far

away as possible from metallic wires that support the vineyard. No

significant changes in temperature were recorded during the data

acquisition period.
2.3 EMI data inversion

The ECa data were processed with EM4SOIL code (EMTOMO)

to obtain an accurate distribution of the true electrical conductivity,

s. The code uses a nonlinear smoothness-constrained inversion

algorithm described in (51, 52) for producing quasi-3D

conductivity imaging. A forward modeling subroutine based on

the cumulative function (53, 54) is used for solving the EM fields

and calculating the theoretical Eca responses at the nodes of a

tridimensional mesh of hexahedral blocks distributed according to

the locations of the measurement points. The nonlinearity between

the model response (log of the apparent electrical conductivity, sa)
and the model parameters (log of the conductivity of the hexahedral

blocks) is solved through the minimization of the objective function

defined in Equation 1.

Q = jj  Wd   (d d − Jd p)jj2+   l  jjC   (p − p0   )jj2  (1)

Where Wd is a diagonal matrix, consisting of the reciprocal of

data error standard deviations, dp is the vector containing the

corrections to the model parameters, and po is an a priori defined

model. The expression dd is the vector of the differences between the

logarithms of the model responses and the measured data, and J is
the derivative matrix (Jacobian) containing the derivatives of the

model responses with respect to the model parameters. The
FIGURE 1

Location of the study area including the boundaries of the Natural Reserve of Torre Guaceto (dotted orange line and light green filling) and the
experimental plot (red filling). The map coordinates are in WGS84/UTM33N (EPSG:32633).
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parameter l (also called the damping factor) is a Lagrange

multiplier and is used to control the balance between the data fit

and the smoothness difference of the model from the a priorimodel.

The elements of the matrix C are coefficients of the roughness value

of each parameter (block conductivity), defined in terms of the

neighbors (upper, north, south, east, west, and lower blocks).

The earth model used in the inversion process consists of a set

of 1D models distributed according to the locations of the

measurement points with the thickness of the layers kept

constant. An S2 inversion algorithms (55) was applied because it

constrains the variation of the parameters around a reference model

during inversion by producing smooth models.

Prior to the data inversion, a pre-processing data analysis

consisting of a spatial resampling of the six datasets, i.e. the

combination of the three depths and two coil configurations, was

performed in order to ensure the same number of equally spaced

measurement points. This allowed us to set up one single data set

containing a series of 5,796 measurement points. Then, the dataset

was filtered out by removing some bad data points, typically

negative values due to noise or weak induction. A starting

homogeneous subsurface was chosen with s=10 mS m-1. A

Cumulative Function (CF) model (53) and a full solution (FS)

model (56) were used to carry out forward modelling, and a

damping factor of l = 0.07 was chosen as the optimal set of

inversion parameters.
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2.4 Soil moisture

Twenty-four soil samples (P1- P24) were collected at a depth of

0.10 m from the ground level in order to determine the field

volumetric soil moisture (VSM) and bulk density and to provide

the ground truth for the geophysical signal. The choice of sampling

location and depth (red points in Figure 3) was planned according

to the EC zoning obtained from the EMI findings.

The samples were collected directly on site using the Eijkelkamp

Sample Ring Kit with an open ring holder which, assembled with

each ring, is inserted at a specific depth into the ground by simply

turning a handle. The stainless steel rings of known volume were

entirely filled with soil. Each ring with soil was weighed using a field

scale and the difference between it and the dry weight, obtained in

the laboratory by oven drying, allowed us to obtain the volumetric

soil moisture for each soil sample collected.

In addition, three soil samples, S1, S2, and S3 in Figure 3,

representative of three different EC zones, were collected to

determine the grain-size distribution (GSD) in order to associate

the EC signal with the soil texture. The GSD was carried out

according to the Italian national legislation (57), which requires

the use of sieves for analysis of a fraction greater than 2 mm and of a

hydrometer for a fraction less than 2 mm.

During the soil sampling, additional point-scale FDEM

measurements were collected by setting an RMS error less than
FIGURE 2

Location of FDEM measurements along n.16 transects. The map coordinates are in WGS84/UTM33N (EPSG:32633).
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1% in order to define an in-situ empirical calibration function so as

to convert the EC data to moisture content. Although ECa does not

represent the true soil electrical conductivity, it is reasonable to

assume this parameter as representative of the electrical

conductivity of the upper soil layer (0−25 cm) comparable with

the sampling depth, which is about 10 cm from the ground surface.
2.5 The MoisturEC code

MoisturEC code (58) was used for converting the inverted

electrical conductivity (EC) data to soil moisture by capitalizing

on the accuracy of the point-scale analysis performed on the soil

samples and the huge volume of EC data derived from the

FDEM measurements.

The code makes use of the electrical conductivity data and the

moisture content values as input, as well as a petrophysical

relationship (typically Archie’s law or site specific correlation

function) for converting the electrical conductivity data to

moisture. The data are weighted based on user inputs and a

resolution matrix. In fact, when a measurand, y, is calculated

from other measurements through a functional relationship,

uncertainties in the input variables will propagate through the

calculation to an uncertainty in the output y. MoisturEC code can

include all kind of individual error sources as input for the final
Frontiers in Soil Science 05
volumetric soil moisture estimation. Errors can arise from the

measurements of volumetric soil moisture on core samples,

FDEM original data collected in field, and FDEM data inversion

procedure and errors from the petrophysical relationship that

relates q to s. These errors are carried through the estimation by

the standard rules of error propagation, mentioned in (59).

On the other hand, the resolution matrix of the inverse problem

defines a linear relationship in which each solution parameter is

derived from the weighted averages of nearby true-model

parameters, and the resolution matrix elements are the weights.

Therefore, the final moisture estimate is obtained by considering all

the data and errors to estimate an optimal compromise between

data fit and smoothing.

As output, the program yields 2D and 3D images of EC-derived

moisture contents obtained by applying an interpolation based on

Tikhonov regularization.

Specifically, the moisture contentsm at grid nodes are estimated

through a linear solution of Equation 2:

½JTC   −1
D J +  a  DTD�m = JTC   −1

D d (2)

where d are the data (volumetric soil moisture from samples

and moisture content derived from EC), J is the Jacobian matrix, CD

is the diagonal covariance matrix which consists of the data error

variances e, (and CD
-1 are the data weights), D is the regularization

matrix consisting of a first derivative finite-difference filter between
FIGURE 3

Location of sampling points for determining volumetric soil moisture (red circles from P1 to P24) and GSD analysis (yellow circles from S1 to S3). The
map coordinates are in WGS84/UTM33N (EPSG:32633).
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adjacent model elements, and a is the tradeoff term that controls the

balance between the regularization criteria and data misfit.

In order to decrease the error, the program performs an

optimization of the parameter a. An initial estimate of a =1 is

used, which indicates an equal weight between smoothing and data

misfit. The tradeoff value a is then repeatedly perturbed to find an

optimum value for a to compute the final set of model parameters,

m. The value of a is achieved through a parabolic interpolation that

minimizes an objective function, f Equation 3

f = (c2 − 1)2 (3)

which is informed by a chi-squared statistic, c2. The c2 includes
the propagated errors for each EC derived and moisture

measurement. Thus, the solution is achieved when the data misfit

values are of the same order as the data errors.

In the specific case study, EC data extracted from the quasi-3D

model, point scale moisture data derived from the lab analysis,

and the calibration data ECa-q were uploaded as required from

the code. Particular attention was devoted to the geophysical and

hydrological data error estimation. In the inverted EC data file, an

error of 10% was set in order to take into account the model error

introduced through inversion, considering that the CMD Mini-

Explorer sensor does not provide an estimation of the data error

when the continuous acquisition mode is set. On the other hand, an

error estimation on the moisture data was set to 1%, by applying

Equation 4, i.e., the formula for uncertainty in a function of several

variables (60).
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sqv =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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� �2
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W2
d
sWd

� �2
r

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
W2

d
s2
Wd

+ W2
n

Wd4
sW2

d

q

=
sWd
Wd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + W2

n
W2

d

q (4)

where sqv is the measurement error of the volumetric soil

moisture of cores, Wd is the dry weight of the core, Wn is the

natural weight of the core, and sWd is the error measurements of

the Wd and Wn, assumed to be coincident with the repeatability of

the balance. In the formula, the value of the volume is assumed with

no error.
3 Results

3.1 Soil electromagnetic model

Raw data were preliminarily analyzed for detecting outliers and

electromagnetic noise, which usually adversely affect the quality of

the inversions. Figure 4 shows the ECa maps for both VCP (4a-c)

and HCP (4d-f) coil configurations, respectively. The distribution of

ECa highlights some peculiarities about the soil properties: 1) the

main variations are located in the upper soil layer (Figure 4A,

corresponding to a depth range 0-0.25 m); 2) a significant change in

ECa is detected in the depth range of 0.25−0.50 m, although it is not

possible to accurately recognize such depth; and 3) differences in the

ECa distribution between the VCP and HCP maps are recognized,

attributed to the different sensitivity with depth of the two coil
B C

D E F

A

FIGURE 4

Apparent electrical conductivity (ECa) maps collected with different inter-coil distances and configurations: (A) 0.32 m – vertical coplanar position
(VCP); (B) 0.71 m - vertical coplanar position (VCP); (C) 1.18 m - vertical coplanar position (VCP); (D) 0.32 m - horizontal coplanar position (HCP);
(E) 0.71 m - horizontal coplanar position (HCP); and (F) 1.18 m - horizontal coplanar position (HCP).
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configurations. For all these reasons, an inversion process, which

takes into account different multi-configuration measurements,

sensitivity, and resolution, is needed to include such uncertainties.

The FDEM model derived from the inversion process is shown in

Figures 5, 6. The EC values range from 5 to 25 mS m-1, revealing a

conductive signal of the investigated soil. The two different

visualization modes highlight the main features of the soil

properties. Particularly, the 2D cross-sections imaging (Figure 5)

detects a sharp soil discontinuity surface which emphasizes a two-

layer model: 1) an upper layer that consists of silt and silty loam, as

confirmed by GSD analysis and 2) a bottom clayey layer. On the

other hand, the 3D perspective visualized in Figure 6 reveals a clear

soil heterogeneity in the upper surficial layer. On the base of the

geophysical findings, homogeneous EC areas were distinguished

(Figure 7) by defining some EC thresholds. Three main zones were

identified: 1) a low conductive zone, with values lower than 8 mS

m-1 mainly concentrated in the north-central part and locally in the

eastern part of the plot; 2) an intermediate conductive zone, having

values between 8 and 16 mS m-1; and 3) a high conductive zone with

values higher than 16 mS m-1.
3.2 Soil moisture analysis

Table 1 shows the measurements of the bulk density, rb (g cm-3),

and volumetric soil moisture, q (m3 m-3) of the collected soil samples.

The soil moisture distribution ranges from 0.21 to 0.37, reflecting the

soil heterogeneity shown in the FDEM maps.

The empirical calibration functions used to convert EC data to

moisture content are shown in Figure 8. In particular, the VSMECa

has been compared with the VSMEC in order to evaluate the best

correlation to be used for conversion. A general trend was observed,

by confirming the strict correlation between the two parameters
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(Pearson’s correlation r=0.89 in case of using ECa data and r=0.87

when inverted EC was correlated with VSM). A few pairs of points

were removed from both the graphs because they were out of the

general trend, probably due to the slightly different volumes of

interest of the two kinds of measurements or to the geophysical data

noise. In order to evaluate how ECa or inverted EC affect the VSM

estimation, the maps obtained with both correlation functions have

been produced and compared each other (Figure 9). The maps

highlight common patterns but a different VSM range, showing an

underestimation of VSM when ECa is used. In accordance with this

hypothesis, the comparison between the predicted VSMECa

(obtained from ECa) and the VSMEC (obtained from inverted

EC) against the measured VSM is visualized in Table 2. The

VSMEC is closer to the measured VSM than the VSMECa, above

all in correspondence with the high values of measured VSM. This

evidence led us to use the inverted data and the calibration function

EC vs VSM as input for the MoisturEC code.

According to the United States Department of Agriculture

(USDA) classification (Table 3), S1, S2, and S3 soils were

classified as silty loam, silt, and silty loam, respectively, given

their percentage of coarse sand (10%, 3%, and 6%), fine sand

(12%, 11%, and 14%), coarse silt (62%, 72%, and 66%), fine silt

(13%, 12%, and 12%), and clay (3%, 2%, and 2%).
3.3 Integration between FDEM and soil
moisture data

Figures 10, 11 show the soil moisture output from the

MoisturEC code in terms of soil moisture estimations and soil

moisture error estimation, respectively. The regularization criterion

used for calculating the soil moisture provides a smoothness trend

in the map. Low values are observed in the central part of the plot,
FIGURE 5

2D cross section extracted from the quasi-3D modeling.
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surrounded by areas with higher moisture contents. The map agrees

well with the geophysical findings (Figures 4A, 6), as well as with the

visual evidence shown in the Google Earth imagery (Figure 3), by

confirming a common trend of such observations. The reliability of

this approach is corroborated by the low values of the error

propagation, which has the same units as the moisture content.
4 Discussion

In the last decades, increasing water demand has been posing a

serious problem in terms of water availability. To deal with this

issue, multi-scale sensors and integrated data analysis tools are

needed to produce accurate real-time soil moisture mapping which,

in turn, is crucial to assess water availability over time.

We presented a multidisciplinary approach for obtaining soil

moisture maps in a vineyard, by combining noninvasive and

indirect electromagnetic measurements with traditional soil

moisture estimations through soil samples analysis. The

integration between such different data types was performed

through a data analysis tool, MoisturEC, licensed from USGS,

specifically for this purpose. In the scientific landscape, the use of

electromagnetic techniques for agricultural purposes has become

widespread in the last decades because of the correlation between

electrical conductivity and the main soil properties, typically

moisture content and salinity. From a geophysical point of view,

straightforward approaches based on visualization of the apparent

electrical conductivity, ECa, have proved to often be inaccurate in

defining a rigorous electromagnetic soil modeling, it being a depth-

weighted parameter that gives limited information about the

variation of the conductivity with depth. Moreover, the

petrophysical correlation functions that are typically used for

converting ECa to soil properties are calibrated under very
Frontiers in Soil Science 08
different experimental conditions in terms of spatial scale. In

addition, the gap in terms of spatial variability among the dense

geophysical data, sparse soil moisture measurements and the

intrinsic data, and model uncertainty in the hydrological

estimation is a crucial factor that has not been investigated so far.

The presented study aimed to provide a contribution on the use

of electromagnetic measurements for estimating reliable volumetric

soil moisture, by addressing the aforementioned limitations and

shortcomings. The key findings of this study show the capability of

the electromagnetic tool to map soil heterogeneities on a large

spatial scale. Compared with the raw ECa data, the inversion

processing significantly improves the resolution of the soil model

by detecting the soil thickness above the bedrock, which cannot be

accurately defined with the solely qualitative ECa maps. Figures 4A,

5, 6 clearly highlight the soil heterogeneities concentrated in the

upper soil layer. This is reasonable considering the shallow depth of

the grape roots zone (thickness about 40-50 cm) and hence the low

depth of the soil−water−plant interaction. The soil zoning derived

from the geophysical findings (Figure 7) helped in optimizing the

soil sampling. Compared to a random sampling scheme, this

approach may be essential for ensuring the representativeness of

the soil samples. The reliability of the EC zoning is supported by the

Google Earth imagery observation (see Figure 2), where the light

gray tones correspond to the low conductive zone (blue in the EC

zoning). Conversely, the dark gray tones correspond to the green

and red areas, which represent the intermediate and the high

conductive zones, respectively. The conversion of the ECa and

inverted EC data into VSM and their comparison with the

measured VSM support the hypothesis that the inverted data are

more consistent than raw ECa data, strengthening the importance

of the inversion process, in addition to the aforementioned

considerations. This is clearly visualized in Table 2, where the

comparison between the predicted VSMECa and VSMEC against
FIGURE 6

Quasi-3D model obtained from EM4SOIL code.
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FIGURE 7

EC zoning extracted from the geophysical model at 0.1 m from ground surface. Blue zone corresponds to low conductive area (EC<8 mS m-1),
green zone to intermediate conductive area (8<EC<16 mS m-1), and red zone to high conductive area (EC>16 mS m-1).
TABLE 1 Geographical coordinates of sampling points, bulk density, rb (g cm-3) and volumetric soil moisture, and q (m3 m-3) of collected soil samples
from a vineyard in the Carovigno countryside.

soil Easting Northing rb q soil Easting Northing rb q

P1 737322.7 4508609.4 1.63 0.23 P13 737229.0 4508560.9 1.42 0.21

P2 737306.3 4508552.4 1.46 0.22 P14 737243.7 4508619.2 1.30 0.25

P3 737284.6 4508455.7 1.37 0.37 P15 737217.2 4508636.7 1.36 0.28

P4 737268.2 4508387.2 1.19 0.35 P16 737211.2 4508612.2 1.28 0.26

P5 737255.6 4508420.1 1.25 0.27 P17 737198.7 4508564.0 1.37 0.23

P6 737257.1 4508469.0 1.13 0.24 P18 737174.5 4508466.5 1.16 0.32

P7 737281.8 4508527.3 1.24 0.29 P19 737165.5 4508427.8 1.12 0.28

P8 737275.5 4508622.4 1.42 0.33 P20 737144.5 4508469.7 1.25 0.29

(Continued)
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TABLE 1 Continued

soil Easting Northing rb q soil Easting Northing rb q

P9 737251.1 4508525.6 1.30 0.22 P21 737153.9 4508508.5 1.29 0.29

P10 737231.8 4508448.4 1.25 0.26 P22 737166.9 4508557.4 1.31 0.28

P11 737197.6 4508434.4 1.25 0.29 P23 737178.4 4508605.3 1.28 0.29

P12 737214.7 4508502.9 1.33 0.24 P24 737187.5 4508640.9 1.31 0.29
F
rontiers in Soi
l Science
 10
 frontiers
The geographic coordinates are in WGS84/UTM33N (EPSG:32633).
FIGURE 8

Regression line between ECa and inverted EC vs VSM. ECa data were collected with configuration coil 0.32 m - VCP.
FIGURE 9

Comparison between volumetric soil moisture predicted from ECa data (left) and inverted EC (right).
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measured VSM is observed. Since the direct use of site-specific

calibration functions can lead to potential artifacts or unrealistic

estimations, a quantitative integration of invasive and non-invasive

soil information has been performed using a straightforward

software tool, MoistureEC code, which considers the error

distribution of both datasets in the VSM estimation. Table 2 also

includes the predictions of VSM from MoisturEC inferred from the

2D map (Figure 10). In general, the output of the code reflects the

soil heterogeneities in terms of soil texture: lower values correspond

to the areas with a higher percentage of sand and higher values are

recorded in the silty soil. This assumption is confirmed by the GSD

analysis and the moisture estimation of the soil samples. In fact, the

textural soil properties affect the geophysical and the hydrological

response, as expected. The higher percentage of sand found in the

S1 sample is consistent with the lower moisture content measured

near the soil sample P13. Conversely, the silty fraction in the S2 and

S3 samples, which retains more water than sand, provides higher

moisture content near the soil samples P18 and P16.

In detail, MoisturEC code provided more accurate VSM

estimations than the predictions obtained through the inverted

EC, although some deviations from measured VSM have been

recorded at a few points. In particular, the model underestimates

the high conductivity values, with particular reference to the

portion between P7 and P8, probably due to the lack of soil
Frontiers in Soil Science 11
sampling points in that area. In addition, the difference in the

data error weight between the field scale geophysical data (error

estimation set to 10%) and point soil moisture measurements

(1%) makes these latter data predominant in the final result. This

is a crucial point concerning the use of such geophysical

measurements for providing quantitative estimation of the

investigated soil. In fact, maintaining high quality data is

essential for converting geophysical data to hydrological data.

These findings suggest future research to improve the

geophysical outputs by reducing the model error, which, in

turn, depends on the data error. Collecting electromagnetic

data in a manual mode by setting a low standard deviation

error, which is not possible with the continuous measurement.

mode, allows accurate checking of the measurement error.

Regardless, the low values of error propagation ranging from

0.03 to 0.05 m3 m-3 (Figure 11) corroborate the reliability of such

an integrated approach to moisture estimation. Overall, this

study showed the reliability of the contactless electromagnetic

approach for soil investigation, by confirming the great

potentialities and benefit for agricultural purposes. This

approach can be routinely used in the agricultural field in

order to better understand the spatio-temporal hydrological

dynamics and support the predictive modeling of the spatio-

temporal dynamics of the soil−water−plant system.
TABLE 3 Particle-size distribution of the three soil samples corresponding to the S1, S2, and S3 samples.

soil Easting Northing Sand (%) Silt (%) clay (%) USDA classification

S1 737231.1 4508563.3 22 75 3 silty loam

S2 737178.7 4508466.5 14 84 2 silt

S3 737233.2 4508459.9 20 78 2 silty loam
The geographic coordinates are in WGS84/UTM33N (EPSG:32633).
TABLE 2 Comparison between measured VSM, predicted VSM from ECa, predicted VSM from Inverted EC, and predicted VSM from MoisturEC.

Soil Measured
VSM

VSM
from
ECa

VSM from
Inverted EC

VSM
from

MoisturEC

Soil Measured
VSM

VSM
from
ECa

VSM from
Inverted EC

VSM
from

MoisturEC

P1 0.23 0.21 0.22 0.23 P13 0.21 0.21 0.21 0.23

P2 0.22 0.21 0.21 0.23 P14 0.25 0.23 0.27 0.26

P3 0.37 0.23 0.29 0.27 P15 0.28 0.22 0.26 0.27

P4 0.35 0.27 0.36 0.31 P16 0.26 0.23 0.27 0.26

P5 0.27 0.22 0.26 0.27 P17 0.23 0.21 0.23 0.24

P6 0.24 0.22 0.24 0.26 P18 0.32 0.24 0.31 0.29

P7 0.29 0.23 0.26 0.27 P19 0.28 0.24 0.29 0.28

P8 0.33 0.23 0.26 0.26 P20 0.29 0.23 0.28 0.28

P9 0.22 0.23 0.25 0.27 P21 0.29 0.22 0.25 0.27

P10 0.26 0.23 0.25 0.27 P22 0.28 0.23 0.27 0.27

P11 0.29 0.25 0.32 0.29 P23 0.29 0.23 0.28 0.28

P12 0.24 0.23 0.27 0.26 P24 0.29 0.25 0.33 0.28
VSM measurement unit is m3 m-3.
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FIGURE 10

Map of soil moisture distribution obtained through the MoisturEC code.
FIGURE 11

Map of soil moisture error propagation.
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