AUTHOR=Ramírez Paulina B. , Machado Stephen , Singh Surendra , Plunkett Rachael , Calderón Francisco J. TITLE=Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems JOURNAL=Frontiers in Soil Science VOLUME=3 YEAR=2023 URL=https://www.frontiersin.org/journals/soil-science/articles/10.3389/fsoil.2023.1233886 DOI=10.3389/fsoil.2023.1233886 ISSN=2673-8619 ABSTRACT=

Soil organic carbon (SOC) is considered a significant contributor to soil water retention. However, generalizations about the role of SOC in available water-holding capacity (AWHC) may have inaccurately portrayed this relationship. We aim to reexamine the relationship between SOC and water retention using the National Cooperative Soil Survey (NCSS) Database. We focus on regional soil groups within the Pacific Northwest wheat production region, including Haploxerolls, Argixerolls, Haplocambids, and Durixerolls. We evaluated 77 sites based on SOC, total nitrogen (TN), pH, texture, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and AWHC. Our findings indicate that texture and BD were the most significant contributors to AWHC variation, while SOC played a secondary role in explaining this variation. Mid-infrared (MIR) spectroscopy coupled with a random forest (RF) algorithm was used to evaluate the importance of spectral bands in determining changes in FC and PWP. This analysis identified mineral bands related to inner-surface hydroxyl groups in kaolinite (3700 cm −1) and Si-O-Si overtones (1870 cm −1) as the most important spectral contributors to PWP. The water retention at FC was associated with organic absorbances relevant to soil aggregation, such as polysaccharide C–O (~1035 cm −1), while mineral bands were relatively less influential. This study highlights the need to reexamine the impact of SOC as well as the interaction between soil texture and compaction on soil water retention to elucidate the underlying mechanisms responsible for AWHC, thus providing insight into future drought adaptation strategies.