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Introduction: Promoting sustainable crop production is enhanced by an

effective method to assess soil health. However, soil health assessment is

challenging due to multiple interactions among dynamic soil properties (i.e.,

soil health indicators) across management practices and agroecological regions.

We tested several currently popular soil health assessment methods for cropping

systems in Tennessee in the southeastern US and found that these methods

failed to differentiate Tennessee soil health under long-term conservation and

conventional management.

Materials and methods: This study developed a Tennessee weighted soil health

index (WSHI) by: 1) selecting a set of management-sensitive soil health indicators,

2) assigning meaningful weights to indicators, and 3) normalizing the scores

based on regionally relevant undisturbed natural reference sites. The tested

cropping systems treatments were moldboard plow (MP) in continuous soybean

(SS), no tillage (NT) in SS, NT with wheat cover (NTW) in SS, no cover and chisel

plow (NCCT) in continuous cotton (CC), no cover and no tillage (NCNT) in CC,

and hairy vetch cover and no tillage (VCNT) in CC. In addition, two woodlots and

one grassland sites in the vicinity of the cropping systems were selected to

represent undisturbed natural systems.

Results and discussion: Out of 22 indicators that proved to be management-

sensitive, six were selected as a minimum dataset (MDS). These were particulate

organic matter C (POM-C), soil respiration from 4-day incubation (4d CO2), small

macroaggregate (0.250-2mm)-associated C (SMA-C), surface hardness (PR15),

microbial biomass N (MBN), and bulk density (BD). Measured values of the MDS

indicators were transformed into unitless normalized scores (based on the

regional range of the indicator), and finally integrated into WSHI scores using a

weighted-addition approach. Additionally, the soil health gap (SHG) between the

soil health of the regional reference system and different cropping systems was

calculated. Results revealed that WSHI strongly differentiated soil health between

long-term conservation and conventional managements practices. The WSHI

scores for southeastern cropland soils varied as follows: VCNT = NTW > NT >

NCNT ≥ NCCT ≥ MP. The SHGs under MP, NCCT, NCNT, NT, NTW, and VCNT
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were 85.5, 79.9, 68, 45.1, 25.2, and 24.3, respectively, relative to the average

WSHI of three undisturbed systems. Results showed that the WSHI approach is

effective in moremeaningful regional assessment of soil health and SHG can be a

potential metric for comparing soil health across agroecological regions.
KEYWORDS

weighted soil health index, soil health gap, soil health indicators, comprehensive
assessment of soil health, cover crops, continuous cotton, corn-soybean
Introduction

Healthy soils perform an array of ecosystem services and are

resilient to natural and anthropogenic disturbances (1–3). Therefore,

improving soil health is key for ensuring agricultural sustainability (4,

5). Adoption of conservation agricultural management practices (e.g.,

reduced or no tillage, cover crops, crop rotations, etc.) have been shown

to improve soil functions such as nutrient cycling, soil aggregation, and

overall soil health as compared to conventional practices (e.g., intensive

tillage, monoculture, etc.) (6–10). However, the extent of soil health

improvement or degradation in response to management depends on

the agroecological region with its specific climatic and edaphic

characteristics (1, 11). This region-specificity can have more impact

on soil health than differences in agricultural management practices.

Therefore, despite the pivotal role of healthy soils in building

sustainable production systems, a standardized universal method of

soil health measurement remains challenging and is currently under

active debate (12–17).

Several soil health assessment approaches currently exist,

including the general soil management assessment framework

(SMAF) (18), and the more specific Haney soil health test (HSHT)

(19, 20), comprehensive assessment of soil health (CASH) (21–23),

Saskatchewan assessment of soil health (SASH) (24), and Alabama

soil health index (ASHI) (25). Although these methods were

developed to target specific agroecological regions (i.e., HSHT for

Texas, CASH for New York, and ASHI for Alabama), their uses in

other regions have been reported in recent years. Most of those

studies revealed that the region-specificity of these tests limits the

applicability across regions due to differences in major soil types,

cropping systems, and climatic factors. For example, CASH showed

no soil health response to long-term management when applied to

the hot-humid southeastern US (14, 16, 26, 27), and HSHT showed

the same results in humid-temperate (Canada) and hot-humid

(southeastern US) regions (14, 28–31). Recent research also

revealed lack of sensitivity of HSHT, CASH, and ASHI to

differentiate soil health in response to long-term conservation

management from conventional management in Tennessee

cropping systems (27, 31). Therefore, this study aimed to develop

an improved soil health index framework specific for Tennessee

croplands to discern differences in soil health under different soil

management, especially differentiating between tillage-based and

conservation systems.
02
A weighted approach for developing soil health index is

considered promising in explaining relationships among soil

functions, soil properties (soil health indicators), and soil health

scores, as the weight assigned to a soil health indicator is based on

the measured variability and relative importance of that particular

indicator within a suite of indicators (32–34). This process involves

the following steps: (a) selection and measurement of potential soil

health indicators, (b) determination of a minimum dataset (MDS)

using multivariate statistical methods such as principal component

analysis (PCA), (c) scoring of indicators using scoring functions

calibrated to the measured regional range of soil health indicators,

(d) assignment of a weight to each indicator with a variance-based

method, and (e) integration of indicators into a soil health score by

a weighted-addition method (18, 35, 36).

Because of the reported region-specificity in soil health response

to management, a set of reference or benchmark values to set upper

and lower boundaries for regional soil health is helpful to evaluate

whether management practices indeed changed soil health. An

undisturbed or uncultivated native soil in the vicinity of the

croplands can be considered as a reference for the upper bound of

soil health (12, 37, 38). Similarly, a very disturbed or highly managed

site can be considered as the lower bound of soil health in the region.

This way of calibrating scoring functions for soil health assessment

has been suggested by several past studies (15, 18, 38). This approach

of determining soil health scores is particularly relevant for the

southeast US region, including Tennessee, to avoid the over- or

under-estimation of soil health seen in using available methods such

as HSHT, CASH, and ASHI. For example, soil organic carbon (SOC)

content in southeast US soils is generally lower than the soils in the

Midwest and Northeast regions (39, 40). This means that the SOC

scoring functions in CASH-developed using soils predominantly

from the Northeast region-can underestimate the potential of

conservation management in building SOC in the cropland soils of

Tennessee. Similarly, use of scoring functions developed

predominantly from relatively degraded soils-as in the case of the

ASHI test-can overestimate the soil health of degraded soils in

Tennessee. Both over- and under-estimation of soil health

scenarios were evident when we applied CASH and ASHI for

croplands of Tennessee (27). We found that all long-term

conventional and conservation management treatments showed

low to medium soil health based on CASH and medium to high

soil health based on ASHI. Therefore, a realistic soil health
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assessment of specific cropping systems and agroecological regions

requires a method that takes into account region-specific upper and

lower bounds of soil health (41). This study aimed to develop a

weighted soil health index framework for row cropping systems of

Tennessee using regionally relevant upper and lower bounds of soil

health and a regionally-sensitive set of soil health indicators. We

hypothesized that our weighted soil health index will be able to

discern the soil health of Tennessee cropping systems in response to

management differences.
Materials and methods

Study sites description and treatments

Soil samples for this study were collected from two ongoing

long-term agricultural field experiments [continuous soybean

(Glycine max L.), SS and continuous cotton (Gossypium hirsutum

L.), CC] and three undisturbed sites (two woodlots and one

grassland) located in west Tennessee on silt loam soils. The

region experiences a 30-year mean annual temperature of 15.6 °C

and a mean annual rainfall of 1375 mm. Detailed description of the

treatments and management of SS and CC studies can be found in

Table 1 of Singh et al. (31), and a brief summary is included below.

Three undisturbed and uncultivated sites - (i) Jackson woodlot

(JW), Milan woodlot (MW), and Milan grassland (MG) - were

selected within the region to represent relatively “natural

undisturbed” soil conditions. These sites did not receive any

external inputs for past several decades and have no known

history of agricultural activities. These undisturbed natural sites

were considered as benchmark or reference sites to represent the

upper bound of regional soil health as described in (12, 38).
Continuous soybean study

This study began in 1979 at the University of Tennessee’s West

Tennessee Research and Education Center (WTREC) in Jackson, TN

(35°37’ N, 88°50’W; elevation 125 m). The soil at the site is classified

as a well-drained Lexington series (fine-silty, mixed, thermic, Ultic

Hapludalfs) on a 0 to 2 percent slope. Each experimental unit was 18

m x 6 m and contained eight rows of soybeans. This study includes

six treatments with four replications in a completely randomized

design. The treatments are: (i) moldboard plowing to 25-cm depth

followed by disking and harrowing (MP); (ii) chisel plowing to 20-cm

depth followed by harrowing (CP); (iii) disc plowing to 10-cm depth

followed by harrowing (DP); (iv) no tillage (NT); (v) NT with a

winter wheat (Triticum aestivum L.) cover crop (NTW); and (vi)

NT with wheat-soybean double cropping (NTWD). In the tilled

treatments (MP, CP, and DP), tillage and harrowing operations

were generally performed in late May before soybean planting.

In the NTW system, wheat was planted as a cover crop after

harvesting soybean in October-November, and the cover crop

was chemically terminated using 0.71 kg ha-1 paraquat (1-methyl-

4-(1-methylpyridin-1-ium-4-yl) pyridin-1-ium) two to three weeks

prior to planting soybean in April-May. From this long-term study,
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we considered only MP, NT, and NTW treatments. The MP

treatment represents the most intensive agricultural management,

thus considered to set the lower bound of regional soil health. The

plots were maintained following the standard fertilizer

recommendations of the University of Tennessee. All plots were

treated with 3.36 kg ha-1 alachlor (2-Chloro-N-(2,6-diethylphenyl)-

N-(methoxymethyl)acetamide) and 0.42 kg ha-1 metribuzin (4-

Amino-6-tert-butyl-3-methylsulfanyl-1,2,4-triazin-5-one) for pre-

emergence weed suppression and 0.13 kg ha-1 clethodim (2-[1-

[[(E)-3-chloroprop-2-enoxy] amino] propylidene]-5-(2-

ethylsulfanylpropyl) cyclohexane-1,3-dione) for post-emergence

weed control.
Continuous cotton study

This study began in 1981 at the same location as the SS study

but under continuous cotton production. The size of each

experimental unit was 12 m x 8 m with eight rows of cotton. The

experimental design was Randomized Complete Block Design

(RCBD) with split-split plot treatment arrangement and four

replications. The main plot treatment was four levels of N rates:

0 kg ha-1 (0N), 34 kg ha-1 (34N), 67 kg ha-1 (67N), and 101 kg ha-1

(101N). The sub-plots were four cover crop treatments: winter

wheat (W), hairy vetch (Vicia villosa Roth.) (HV), crimson clover

(Trifolium incarnatum L.), and no cover crop (NCC). The sub-sub

plots were two levels of tillage: chisel tillage (CT) and no tillage

(NT). A sub-set of treatments were selected for the present study

including: (i) no cover crop with chisel tillage (NCCT), (ii) no cover

crop with no tillage (NCNT), and (iii) hairy vetch cover crop with

no tillage (VCNT). Chisel tillage was done twice to 10-cm depth

followed by roller harrow leveling to smooth the surface before

planting cotton in May. The cover crops were chemically

terminated in late April to early May of each year using 3.51 L

ha−1 of Gramoxone® SL. According to the University of Tennessee

recommendation, P fertilizer (triple superphosphate) was applied at

101 kg P2O5 ha
−1, and K fertilizer (muriate of potash) was applied at

134 kg K2O ha−1.
Soil sampling

In January 2020, replicated (n=4) soil samples were collected from

all treatments. Approximately, 10-15 random cores were collected from

each replicated treatment (plot) at a depth of 0-15 cm using a sampling

probe of 2.5-cm diameter. These cores were combined and

homogenized to make a composite soil sample. Additionally, four

cores of a 5-cm diameter and 15-cm length were collected from each

treatment for bulk density (BD) measurements.
Quantification of soil health indicators

Soil analysis
Soil samples were processed and analyzed for several physical,

chemical, and biological indicators. These indicators were selected
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based on several available soil health assessment methods (e.g.,

CASH, HSHT, ASHI, etc.) and previous studies conducted in the

region. The soil physical indicators were surface and subsurface

hardness (PR15 and PR45, respectively) measured using a

penetrometer (Soil compaction tester penetrometer, Dickey-john

corporation, Illinois, USA) (42), wet aggregate stability (WAS)

measured using a wet sieving apparatus (Eijkelkamp Agrisearch

Equipment, Giesbeek, Netherlands) (43), soil texture measured

using the hydrometer method (44), gravimetric soil moisture

determined on oven-dry basis (45), and BD measured using the

core method (46). Soil biological indicators were the soil protein

index (SPI) (47, 48), soil respiration from 4-day incubation (4d

CO2) using potassium hydroxide (KOH) trap method (49),

permanganate oxidizable C (POXC) (50), soil respiration

measured by Solvita® gel method (1d CO2-C) (51), Solvita
® labile

amino N (SLAN) (Brinton (52), soil organic C (SOC) measured by

dry combustion at 950 °C using a CN analyzer (Elementar vario

TOC cube in solid mode, Hanau, Germany), water extractable C

(WEC) and N (WEN) (53), potential mineralizable N (PMN) based

on 7-day anaerobic incubation (54), microbial biomass C (MBC)

and N (MBN) using chloroform fumigation method (55, 56),

activities of four C-acquiring extracellular enzymes (a-glucosidase
(AG), b-glucosidase (BG), cellobiohydrolase (CBH), and b-
xylosidase (XYL)), one P-acquiring enzyme (phosphatase; PHOS),

and one N-acquiring enzyme (N-acetyl glucosamine; NAG) (57),

and density fractionation of soil to separate particulate organic

matter C (POM-C) and mineral-associated organic C (MAOC)

using sodium polytungstate solution at a density of 1.6 Mgm−3 (58).

The soil chemical indicators were soil pH measured on a 1:1 soil:

water (v/v) suspension, Mehlich-1 extractable macro- and micro-

nutrients (P, K, Mg, Fe, Mn, and Zn) analyzed by Inductively

Coupled Plasma-Optical Emission Spectrometer (ICP-OES) (59),

and ammonium N (NH4-N) and nitrate N (NO3-N) using 2-M

potassium chloride (KCl) extraction followed by measurement on a

Skalar Continuous Flow Analyzer (60).

Aggregate analysis
Aggregate size distribution was determined using dry sieving

method by placing 100 g of air-dried and 8-mm sieved soil sample

on top of a stack of sieves of sizes 2, 0.25 and 0.053 mm, and shaken

using a vertical sieve shaker apparatus (CSC sieve shaker, Fairfax,

VA) for 5 min at an amplitude of 0.1 mm. Aggregates were

f rac t ionated into four s i ze c la sses : > 2 mm (large

macroaggregates, LMA), 0.25-2 mm (small macroaggregates,

SMA), 0.053-0.25 mm (microaggregates, MiA), and < 0.053 mm

(clay- and silt-size particles, CSP). Aggregate size distribution was

calculated by weighing aggregates retained on top of each sieve and

expressing as a fraction of the initial amount of sample used. The

mean weight diameter (MWD) was calculated using equation (1)

(61):

MWD =on
i=1xi  wi (1)

where xi is the mean diameter of aggregates size fraction on each

sieve (mm), wi is the mass of aggregates retained on each sieve, and

n is the number of aggregate size fractions. After aggregate size
Frontiers in Soil Science 04
separation, aggregate-associated SOC concentration (g kg−1

aggregates) in each aggregate size class was determined by dry

combustion using a CN analyzer (Elementar vario TOC cube in

solid mode, Hanau, Germany). Aggregate-associated C fractions

were classified into four categories: large macroaggregate-associated

C (LMA-C), small macroaggregate-associated C (SMA-C),

microaggregate-associated C (MiA-C), and clay- and silt-size

particles-associated C (CSP-C) (62).
Statistical analysis

Analysis of variance (ANOVA) was conducted using the PROC

GLIMMIX procedure in SAS v9.4 statistical package (63) for

individual soil health indicators based on a completely

randomized design. Treatments were considered as fixed effects

and replicates were considered as random effects in the model. Least

square means were separated using the Least Significant Difference

(LSD) at p < 0.05 to determine treatment response to each indicator.

To identify a minimum data set (MDS) of indicators, only those

indicators that responded statistically (p < 0.05) to at least one of the

treatments were selected for PCA (34), which resulted in 22

indicators. These 22 indicators were subjected to PCA using

OriginPro® software to calculate the individual indicator weight

and relationship among indicators. Based on the PCA scree plot

(point of inflection), four principal components (PC) were selected.

Within each PC, the indicator with the highest eigenvector value

was selected for the MDS. Also, if there were other indicators in

each PC with eigenvector values within ±10% of the highest

eigenvector values, those were also included in the MDS (34, 64).

After this step, in case there was more than one indicator retained

within a PC, correlation analysis was conducted using PROC CORR

procedure in SAS (r > 0.75, p < 0.05) to eliminate redundant

variables showing stronger autocorrelations and lower eigenvector

values (64–67). Finally, the MDS was comprised of six indicators

(POM-C, 4d CO2, SMA-C, PR15, MBN, and BD).

The next step was to transform the six measured indicator values

to indexed indicator scores on a scale of 0 to 100 using cumulative

normal distribution functions (18, 48, 64). The POM-C, 4d CO2,

SMA-C, and MBN were scored using “more is better” approach, and

PR15 and BD were scored using “less is better” approach (18, 66). In

these scoring functions, for an individual indicator, the lower and

upper limits of the curve were based on the regionally-derived lower

and upper limits of that particular indicator. Thus, these scoring

functions represent the region-specific ranges of soil health indicators

(64, 67). For example, POM-C cumulative normal distribution curve

(range 0-100) was created using standard deviation, mean, and range

of POM-C measured values (0.518-3.32 mg kg-1). Equation derived

from the cumulative normal distribution curve was used as a scoring

function to convert measured values to unitless scores. After

transforming the selected indicators into unitless indexed scores,

the variance-based weighting factors generated from PCA were

assigned to each indicator. The weighting factor was calculated as a

fraction of the proportion of variance accounted for by each PC and

the total cumulative variance of all the selected PCs (29, 68). In each
frontiersin.org
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PC, all selected indicators were assigned the same weight, determined

by dividing the weighting factor of that PC by the total number of

indicators selected in that PC (34). A weighted score of individual

indicators was determined as the product of the indexed indicator

score (0-100) and the assigned weight. Finally, a weighted soil health

index (WSHI) score was calculated by adding weighted scores of all

selected indicators based on equation 2 (29, 67, 69).

WSHI =  on
i=1(Wi �Qi) (2)

Where, n = number of indicators in MDS, Wi = assigned weight of

individual indicators, and Qi = indexed score of individual indicators.
Results and discussion

Minimum dataset for soil health
assessment

From the PCA with a total of 22 indicators (15 indicators derived

from soil and 7 indicators derived from aggregates), four PCs were

selected that accounted for 82.5% of the cumulative variance in the

dataset, with the first two PCs (PC1 and PC2) accounting for 73% of

the variance (Table 1). After conducting the indicator selection steps

within each PC, the following indicators were retained: POM-C and 4d

CO2 in PC1, SMA-C in PC2, PR15 in PC3, and BD and MBN in PC4

(Table 1). So, the final MDS included POM-C, 4d CO2, SMA-C, PR15,

MBN, and BD indicators.

The POM-C, reservoir of labile C pool and primary energy source

for microorganisms, mainly consists of partially decomposed plant

materials. This functional C pool is widely recognized as more

responsive to management than is total SOC (70–74). Soil

respiration, measured based on 4-day incubation of rewetted dry soil

and capturing CO2 in KOH solution (4d CO2), has also been used as a

very sensitive indicator of soil health differences among management

practices (48, 75–77). Since agricultural management practices affect

soil aggregation and C protection in aggregates (78–80), aggregate-

associated C fractions can serve as an early indicator for SOC changes

in bulk soil. In this study, C protected in small macroaggregates (SMA)

was found to be more sensitive than C protected in other aggregate-

sizes (67). Soil physical properties such as bulk density (BD) and

penetration resistance (PR) have also been emphasized as indicators for

soil health assessment because of their role in deciding soil physical

conditions for supporting plants (18). Consistent with our finding,

many other studies in the southeastern US region have also reported

management-sensitivity of indicators such as POM-C (81), 4d CO2 (14,

17), SMA-C (62), PR15 (82, 83), BD (82–84), and MBN (84).
Response of indicators, indicator scores,
and soil health scores to management
practices

Measured values of all the indicators in the MDS varied

significantly among treatments. Undisturbed natural systems

(Jackson Woodlot, JW; Milan Grassland, MG; Milan Woodlot MW)

showed consistently better soil health indicator values than the
Frontiers in Soil Science 05
cropping systems (Table 2). A better response among cropping

system treatments was observed when undisturbed natural systems

were excluded from the model. This is attributed to the greater

magnitude of weighted scores under undisturbed natural systems

and associated standard deviation of means, as reported by Williams

et al. (85). Among cropping system treatments, the POM-C results

showed MP < NCCT < NCNT = NT < NTW = VCNT. Undisturbed

natural systems showed higher 4d CO2 than the cropping systems.

Among the cropping systems, 4d CO2 was higher under NT, NTW,

and VCNT compared to MP, NCCT, and NCNT treatments.

Similar to POM-C and 4d CO2, SMA-C was also higher in

undisturbed natural systems than in cropping systems. However,

when undisturbed natural systems were excluded, NTW and VCNT

showed higher SMA-C than MP and NCNT. Statistically, however,

SMA-C was the lowest for both MP and NCNT treatments, and

MBN was the lowest for both MP and NCCT. Undisturbed natural

systems showed lower surface penetration resistance (PR15) and

BD than cropping systems. Among the cropping systems, higher

PR15 and BD were observed under no-tilled treatments (VCNT,

NTW, NT, and NCNT) than tilled treatments (MP and NCCT).

The MBN values were greater and nearly similar for undisturbed

and NT sites as compared to tilled sites. Among cropping systems,

almost all indicators showed numerically the lowest measured

values under MP treatment.

Higher levels of POM-C, 4d CO2, SMA-C, and MBN under

undisturbed natural systems compared to cropping systems-and

under long-term no-tilled systems compared to tilled systems-can

be attributed to less soil disturbance in undisturbed natural and no-

tilled systems compared to tilled systems, and high organic matter

inputs in undisturbed natural systems and cover cropped cropping

systems. In cropping systems, cover crops (e.g., hairy vetch and

wheat) add more above-and below-ground biomass to soil (86–88),

increasing C accumulation and stimulating microbial growth and

activity. Several recent studies conducted on Tennessee croplands

reported the response of one or more indicators included in our

MDS to management practices. For example, Mbuthia et al. (84)

reported enhanced MBN under hairy vetch cover crop treatment

and BD as an overall key soil health indicator in continuous cotton

(CC) system. Also, BD under CC and PR15 under continuous

soybean (SS) systems showed similar differences among treatments

in Nouri et al. (83) and Nouri et al. (82). In addition, an increase in

SMA-C under NTW and NT as compared to MP treatment in the

SS system was reported by Singh et al. (62). Similar soil properties

also showed improved responses in no-tilled and cover cropped

systems compared to tilled and fallow systems in other

agroecological regions (89–93).

The measured values of MDS indicators were transformed into

unitless scores (indexed scores) using “more is better” or “less is

better” scoring functions. Out of all the indicators in the MDS, the

highest weighting factor (0.36) was assigned to indicators in PC1

(POM-C and 4d CO2), as PC1 accounted for the greatest proportion

of variance among selected PCs (Table 1). Weighting factors of

0.165, 0.063, and 0.054 were assigned to indicators in PC2 (SMA-

C), PC3 (PR15), and PC4 (BD and MBN), respectively. Thus, the

relative contribution of individual indicators in overall weighted soil

health index (WSHI) were 36, 36, 16.5, 6.3, 2.6, and 2.6 for POM-C,
frontiersin.org

https://doi.org/10.3389/fsoil.2023.1118526
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Singh et al. 10.3389/fsoil.2023.1118526
4d CO2, SMA-C, PR15, BD, and MBN, respectively. Weighted

scores for individual indicators (product of indexed scores and

weight) varied among management practices when comparisons

were made with and without undisturbed natural systems (Table 3).

Overall, weighted scores of MDS indicators followed a nearly

identical trend to measured indicator values (Table 2) under

different managements. Among all treatments, undisturbed

natural systems generally showed higher weighted scores for most
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indicators than cropping system treatments. Among cropping

system treatments, weighted scores of POM-C, 4d CO2, SMA-C,

and MBN were greater under no-tilled treatments (i.e., NTW and

VCNT) than under tilled treatments (i.e., MP and NCCT) (Table 3).

However, weighted scores of PR15 and BD were relatively higher

under tilled treatments despite no statistical difference between the

two tilled treatments. One exception to this was PR15, which was

higher under MP than NCCT. Among SS treatments (MP, NT, and
TABLE 1 Eigenvectors of soil health indicators used in the principal component analysis for developing minimum dataset.

Indicators
Eigenvectors

PC1 PC2 PC3 PC4

Bulk soil analysis

WAS (%) 0.24 -0.04 0.25 -0.11

BD (g cm-3) 0.17 -0.17 -0.07 0.58*

PR15 (MPa) 0.13 -0.30 0.57* 0.16

MWD (mm) 0.22 -0.27 0.20 -0.24

POM-C (mg kg-1 soil) 0.26* -0.06 -0.15 0.02

SOC (mg kg-1 soil) 0.25 0.09 -0.24 -0.03

POXC (mg kg-1 soil) 0.25 0.07 -0.20 -0.07

MBC (mg kg-1 soil) 0.21 0.01 -0.16 -0.24

MBN (mg kg-1 soil) 0.17 -0.05 0.14 0.52

BG (nmol g-1 soil) 0.24 0.00 -0.34 0.07

MAOC (mg kg-1 soil) 0.23 -0.11 -0.07 0.21

4d CO2 (mg g-1 soil) 0.24 0.11 -0.04 0.00

1d CO2 (mg CO2-C kg-1 soil) 0.25 0.14 -0.17 -0.09

SLAN (mg NH3-N kg−1) 0.24 -0.08 -0.01 0.06

Nitrate-N (mg kg-1 soil) 0.19 0.02 -0.19 0.09

Aggregate fraction analysis

LMA-C (mg kg-1) 0.15 0.39 0.16 0.06

SMA-C (mg kg-1) 0.14 0.42* 0.33 -0.02

MiA-C (mg kg-1) 0.21 0.29 0.22 -0.16

CSP-C (mg kg-1) 0.19 0.38 0.15 0.08

LMA (%) 0.22 -0.27 0.07 -0.25

MiA (%) -0.21 0.25 -0.10 0.25

CSP (%) -0.21 0.20 0.00 0.10

PCA outputs

Eigenvalue 13.04 2.98 1.13 0.98

Proportion of variance %) 59.3 13.6 5.15 4.45

Cumulative variance (%) 59.3 72.9 78.0 82.5

Weighting factor 0.719 0.164 0.062 0.054
WAS, wet aggregate stability; BD, bulk density; PR15, surface hardness; MWD, mean weight diameter; POM-C, particulate organic matter C; SOC, soil organic C; POXC, permanganate
oxidizable C; MBC, microbial biomass C; MBN, microbial biomass N; BG, b-glucosidase activity; MAOC, mineral-associate organic matter C; 4d CO2, KOH trap based CO2 from 4-day
incubation; 1d CO2, Solvita based CO2 from 1-day incubation; SLAN, Solvita labile amino N; LMA-C, large macroaggregate-associate C; SMA-C, small macroaggregate-associate C; MiA,
microaggregate-associate C; CSP-C, clay- and silt-sized particle-associated C; LMA, macroaggregate; MiA, microaggregate; CSP, clay- and silt-sized particles. *Bold: indicator with the highest
eigenvector value within each PC.
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NTW), weighted indicator scores for all indicators were lower for

the intensive MP tillage. Among CC treatments (NCCT, NCNT,

and VCNT), weighted scores of all indicators were the lowest

for NCCT.

The relative WSHI scores were calculated by assigning the

maximum WSHI score of 100 to the MW system because MW

had the highest absolute WSHI score of 83 (sum of weighted scores

of indicators in MDS, Table 3). The WSHI scores of MW did not

vary from other undisturbed natural systems (JW, and MG), but

WSHI scores for all undisturbed natural systems were higher than

those of cropping system treatments (Figure 1). The intensively

tilled MP treatment received the lowest WSHI score, but it was not

significantly different from scores of NCCT and NCNT systems

when undisturbed natural systems were included in the model.

When only the cropping systems were compared, VCNT and NTW
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showed greater WSHI scores than other treatments. Overall, WSHI

scores varied as follows: VCNT (70.3) = NTW (69.5) > NT (51) >

NCNT (29.7) ≥ NCCT (18.6) ≥ MP (13.5). The treatment response

of WSHI scores were consistent with the treatment response of

individual indicators (Tables 2, 3).

The multivariate analysis combined with the weighted scoring

approach we used for quantitative soil health evaluation has been

used in many past studies for a wide range of managements (94–

96). Many such studies revealed that the weighted approach could

discern more reasonable interrelationships among indicators and

generate a more sensitive overall soil health index that distinguishes

management differences (33, 34, 95, 97). Although the region-

specific determination of MDS and the consequent indicator

weighting process used in our study is applicable to the cropland

soils in west Tennessee, this framework of generating MDS and
TABLE 3 Response of indexed score values of indicators included in the minimum dataset under different treatments.

Treatments POM-C 4dCO2 SMA-C PR15 BD MBN

JW 26.8ab 29.9a 10.4a 4.29b 2.12b 0.639c

MG 23.8b 30.5a 8.46a 6.1a 2.47ab 2.34a

MW 31.7a 28.5ab 11.7a 6.21a 2.55a 2.02ab

MP 2.02dC 2.73dB 2.19bBC 2.74cA 1.12cA 0.338cB

NCCT 3.46dC 5.13dB 3.3bABC 2.25cdAB 1.07cdAB 0.178cB

NCNT 15.1cB 4.16dB 1.97bC 1.08eD 0.546eC 1.77bA

NT 12.7cB 22.1cA 3.63bAB 1.24eCD 0.706deABC 1.8abA

NTW 25.7abA 24bcA 3.78bA 1.71deBCD 0.628eBC 1.61bA

VCNT 28.2abA 22.2cA 3.96bA 1.78deBC 0.502eC 1.59bA
front
Numbers followed by different lowercase letters within a column are significantly different across all treatments at p < 0.05. Numbers followed by different uppercase letters within a column are
significantly different across only cropping system treatments at p < 0.05. JW, Jackson woodlot; MG, Milan grassland; MW, Milan woodlot; MP, moldboard plow under continuous soybean (SS)
system; NCCT, no cover with chisel plow under continuous cotton (CC) system; NCNT, no cover with no tillage under CC system; NT, no tillage under SS system; NTW, NT with wheat cover
under SS system; VCNT, hairy vetch cover with no tillage under CC system; POM-C, particulate organic matter C; 4d CO2, KOH trap-based CO2 from 4-day incubation; SMA-C, small
macroaggregate-associate C; PR15, surface hardness; BD, bulk density; MBN, microbial biomass N.
TABLE 2 Response of measured values of indicators included in the minimum dataset under different treatments.

Treatments POM-C 4d CO2 SMA-C PR15 BD MBN

g kg-1 soil mg g-1 soil g kg-1 MPa g cm-3 g kg-1 soil

JW 2.4ab 0.60a 16.2a 1.13e 1.27d 22.0bcd

MG 2.1b 0.60a 14.1a 0.302f 1.20e 36.2a

MW 2.8a 0.57ab 17.5a 0.200f 1.15e 33.2ab

MP 0.6dD 0.17dB 7.5bBC 1.61dD 1.42cB 19.0cdB

NCCT 0.9dC 0.23dB 8.8bAB 1.76cdCD 1.43bcB 15.6dB

NCNT 1.6cB 0.21dB 7.0bC 2.18aA 1.51aA 31.1abcA

NT 1.5cB 0.48cA 9.2bAB 2.13abAB 1.48abcAB 31.4abA

NTW 2.2bA 0.50bcA 9.4bA 1.93abcBC 1.50abA 29.8abcA

VCNT 2.4abA 0.47cA 9.6bA 1.91bcBC 1.52aA 29.6abcA
Numbers followed by different lowercase letters within a column are significantly different across all treatments at p < 0.05. Numbers followed by different uppercase letters within a column are
significantly different across only cropping system treatments at p < 0.05. JW, Jackson woodlot; MG, Milan grassland; MW, Milan woodlot; MP, moldboard plow under continuous soybean (SS)
system; NCCT, no cover with chisel plow under continuous cotton (CC) system; NCNT, no cover with no tillage under CC system; NT, no tillage under SS system; NTW, NT with wheat cover
under SS system; VCNT, hairy vetch cover with no tillage under CC system; POM-C, particulate organic matter C; 4d CO2, KOH trap-based CO2 from 4-day incubation; SMA-C, small
macroaggregate-associate C; PR15, surface hardness; BD, bulk density; MBN, microbial biomass N.
iersin.org

https://doi.org/10.3389/fsoil.2023.1118526
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Singh et al. 10.3389/fsoil.2023.1118526
WSHI could easily be adapted to other regions and cropping

systems. However, adoption of this process and framework could

lead to different set of indicators, MDS, and scoring functions for

different regions as compared to this study. In addition, there are

some potential caveats and limitations associated with this

approach such as: (i) This approach is somewhat limited by the

availability of long-term field studies and undisturbed natural soils

for testing and finding suitable soil health indicators; (ii) In some

cases, natural undisturbed soils could show lower soil health scores.

For e.g., human inputs, especially water and nutrients, in an arid or

desert region. In this case, values of soil health indicators could be

higher than that of natural undisturbed soils, therefore this could

show higher soil health scores for managed systems (41). This could

further complicate the interpretation of the soil health indicators

and scores under different management. Despite these caveats and

limitations, this approach provides the much-anticipated insights

into conservation management practices and soil health and can be

used as a tool to promote healthy soils.
Soil health gap

Due to the region-specificity of soil health assessment, the need to

account for regional reference or benchmark soil health is obvious.

Since historical intensive soil management led to the deterioration of

soil health (98), assessing the soil health gap (SHG) between cropping

system management and a nearby undisturbed natural system could

more meaningfully quantify the magnitude of soil health degradation/

improvement under specific management (38). Soil health gap, a

concept similar to extensively used “yield gap”, can be utilized as a

universal standard to assess the performance of conservation

management practices to build soil health. Additionally, SHG can

provide a realistically achievable regional soil health goal when

conventional systems are transitioned to more sustainable systems by
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adopting conservation practices (38). The SHGs, calculated as the

difference between the WSHI score of undisturbed natural system and

cropping system treatments, in the present study are presented in

Figure 2. Since WSHI scores among the three undisturbed natural

systems were similar, we averagedWSHI scores of all three undisturbed

natural systems and assigned a maximum score of 100 to the

undisturbed natural system. The SHGs under MP, NCCT, NCNT,

NT, NTW, and VCNT were 85.5, 79.9, 68, 45.1, 25.2, and 24.3,

respectively (Figure 2). Higher SHG under MP is expected and it

reiterates the degraded soil health due to 41 years of intensive MP

tillage in a soybeanmonoculture system. This also demonstrates a great

opportunity for soil health improvement in heavily tilled monoculture

cropping systems. On the other hand, long-term no tillage combined

with a cover crop (NTW, VCNT) brought soil health closer to the

natural sites. Use of SHG for regional soil health assessment and as a

potential universal soil health index deserves more attention as the

SHG concept can address multiple ongoing challenges in soil health

assessment due to differences in indicator selection, analytical

protocols, soil types, climates, and conservation management practices.
Conclusions

This study developed a refined regional soil health assessment

by utilizing a weighted soil health index (WSHI) approach and

regional undisturbed natural systems as benchmark soils. This

approach under a multivariate framework showed promise in

effectively discerning soil health differences among various

conservation and conventional managements in the tested

cropping systems. Though we proposed a region-specific

approach, this process of deriving WSHI can easily be adapted to

other regions and cropping systems. Further, the soil health gap

(SHG) concept applied in this study revealed the extent of

degradation of soil health under intensive cropping systems
FIGURE 1

Relative weighted soil health index (WSHI) scores under different cropping and undisturbed natural systems. Different lowercase letters denote
significantly different across all treatments at p < 0.05. Different uppercase letters denote significantly different across only cropping system
treatments at p < 0.05. MW, Milan woodlot; JW, Jackson woodlot; MG, Milan grassland; VCNT, hairy vetch cover with no tillage under continuous
cotton (CC) system; NTW, no tillage with wheat cover under continuous soybean (SS) system; NT, no tillage under SS system; NCNT, no cover with
no tillage under CC system; NCCT, no cover with chisel plow under CC system; MP, moldboard plow under continuous SS system.
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management practices and showed promise to be used as a

standardized tool to assess and compare soil health across

agroecological regions.
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