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Spatial distribution as a key
factor for evaluation of soil
attributes prediction at
field level using online
near-infrared spectroscopy

Ricardo Canal Filho* and José Paulo Molin

Precision Agriculture Laboratory, Department of Biosystems Engineering, Luiz de Queiroz College
of Agriculture, University of São Paulo, Piracicaba, Brazil
In soil science, near-infrared (NIR) spectra are being largely tested to acquire

data directly in the field. Machine learning (ML) models using these spectra can

be calibrated, adding only samples from one field or gathering different areas to

augment the data inserted and enhance the models’ accuracy. Robustness

assessment of prediction models usually rely on statistical metrics. However,

how the spatial distribution of predicted soil attributes can be affected is still

little explored, despite the fact that agriculture productive decisions depend on

the spatial variability of these attributes. The objective of this study was to use

online NIR spectra to predict soil attributes at field level, evaluating the

statistical metrics and also the spatial distribution observed in prediction to

compare a local prediction model with models that gathered samples from

other areas. A total of 383 online NIR spectra were acquired in an experimental

field to predict clay, sand, organic matter (OM), cation exchange capacity

(CEC), potassium (K), calcium (Ca), and magnesium (Mg). To build ML

calibrations, 72 soil spectra from the experimental field (local dataset) were

gathered, with 59 samples from another area nearby, in the same geological

region (geological dataset) and with this area nearby and more 60 samples

from another area in a different region (global dataset). Principal components

regression was performed using k-fold (k=10) cross-validation. Clay models

reported similar errors of prediction, and although the local model presented a

lower R2 (0.17), the spatial distribution of prediction proved that the models had

similar performance. Although OM patterns were comparable between the

three datasets, local prediction, with the lower R2 (0.75), was the best fitted.

However, for secondary NIR response attributes, only CEC could be

successfully predicted and only using local dataset, since the statistical

metrics were compatible, but the geological and global models

misrepresented the spatial patterns in the field. Agronomic plausibility of

spatial distribution proved to be a key factor for the evaluation of soil
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attributes prediction at field level. Results suggest that local calibrations are the

best recommendation for diffuse reflectance spectroscopy NIR prediction of

soil attributes and that statistical metrics alone can mispresent the accuracy

of prediction.
KEYWORDS

soil variability, geostatistics, diffuse reflectance spectroscopy, machine learning,
agriculture management
Introduction

Proximal soil sensing (PSS) is a relevant technique to make

soil data acquisition faster and more cost effective (1, 2). In this

sense, many authors have studied techniques to be adapted for

PSS. Diffuse reflectance spectroscopy (DRS) in the visible (Vis)

and near-infrared region (NIR) has been largely tested to

predict soil physical and chemical attributes (3, 4). The

prediction can perform on primary NIR response attributes,

which means attributes like clay and organic matter (OM), that

have direct spectral absorption patterns in this region or even

on secondary response attributes that do not have direct

patterns in NIR but can be predicted due to the construction

of indirect calibrations.

The idea of using machine learning (ML) models of DRS NIR

spectra for soil attributes prediction lies into the choice of the

statistical model and then in the accurate prediction of these

attributes. Dimensionality reduction models are often chosen due

to the multidimensionality of soil spectra (5). Besides coping with

multivariate data analysis (6), dimensionality reduction models

can sometimes smooth the values predicted, loosing extreme

values that the model considers as outliers (7) and therefore

needs careful implementation. In this sense, principal

components regression (PCR) is a multivariate method of

simple implementation, which had its potential demonstrated

since the beginning of studies for soil properties prediction

using DRS. Authors reported successful prediction of this

technique for diverse soil attributes, such as soil organic carbon,

organic matter, pH, and macronutrients, such as total nitrogen

and total and extractable phosphorus and potassium (8–12).

Then, statistical metrics are being used for the assessment of

ML model robustness (13), such as the coefficient of

determination (R2), which gives the idea of the variance portion

of the data that the model is explaining; the root mean squared

error (RMSE) and mean absolute error (MAE), which represent

the error of prediction the model offered; and the ratio of

performance to interquartile distance (RPIQ), which is
02
calculated using the RMSE and the range between first and

third quantiles of the data.

However, precision agriculture (PA) has in its very definition

the consideration of temporal and spatial variability of

agricultural production (14). This fact comes from the

necessity of understanding the patterns of the variability in the

field, since agriculture needs to adapt or act in the variability of

production. Soil physical and chemical attributes have well-

known relations and patterns defined by soil science in the

study of agricultural soil fertility, and these relations are studied

by means of the spatial dependence in geostatistics (15). The

range of a fitted variogrammeans the distance in which a point is

still related, or spatial dependent, to another.

With this knowledge, investigations show that the relation

between soil attributes will affect the construction of ML models.

Early when DRS were tested for PSS, Stenberg et al. (16) stated

that prediction models using Vis-NIR spectrum should consider

only samples from the same morphopedological formation,

since the variations in soil mineralogy will affect the spectral

signature, and the model will not be able to accurately predict

attributes with this variation. Nevertheless, studies have been

reaching satisfactory prediction metrics in constructing models

not only with the fusion of samples from the same geological

region (17, 18) but also using samples from fields with different

soil formations (19).

The statistical metrics are important to define the accuracy

of a prediction model. However, the way the ML calibration

affects the distribution of attributes should be considered with

the same importance, since this distribution will directly affect

the decision making in agriculture productive process. Hence,

this study aimed to understand if the insertion of outside

samples in the calibration of NIR soil attributes prediction

models affects the spatial dependence of predicted values. The

objective was to define whether the spatial distribution should be

always taken into account when evaluating the quality of

prediction from an ML model for both primary and secondary

NIR response soil attributes.
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Materials and methods

The steps followed for this study development are

summarized by the flowchart shown in Figure 1. These steps

will be further explained in details.
Study area

The study area is located in Piracicaba, São Paulo state,

Brazil (22°43'03.51"S, 47°36'50.03"W), where online NIR spectra

were acquired for high spatial resolution prediction of soil

attributes. Following the criteria of using another area from

the same geological formation region, samples from another area

of 3,300 m distance from the experimental field, described in

Eitelwein (20), were used (22°41'57.64"S, 47°38'33.13"W). For

the composition of a dataset with samples from multiple

geological formations, samples were added from an area

located in Mato Grosso state, Brazil (14°06'05.02"S, 57°

46'01.66"W), also described in Eitelwein (20) (Figure 2).
Online spectral acquisition and
soil sampling

In November 2021, online soil spectral data were acquired

using a structure mounted on the three-point hydraulic hitch of

a tractor. A subsoiler shank was attached to this structure

carrying a steel armored case that protects the NIR

spectrophotometer (MicroNIR from VIAVI Solutions Inc.,

USA). The tip of the shank makes the 0.15-m-depth furrow,

and the soil is smoothed by the bottom of the case, where the

NIR spectrophotometer collects online soil spectra through a

sapphire window at a spectral resolution of 908.1–1676.2 nm,

every 6.2 nm, resulting in 125 different wavelengths. Spectra are

collected at the base of the case, which were transported by a
Frontiers in Soil Science 03
USB cable, converted for transmission via an ethernet cable, and

recorded on a laptop computer. A 99% reflectance disk was used

as reference for white (maximum reflectance), and the

equipment itself has an internal reference measurement for

black (minimum reflectance). Each spectrum collected in the

field was associated with its geographic coordinates using a

Global Navigation Satellite System (GNSS) Ag-Star (Novatel,

Calgary, Canada) receiver with TerraStarC differential

correction (Hexagon, Alabama, USA). The tractor traveled the

area in the normal direction of the machine traffic, limited by the

presence of terraces and with 12 m between each transect

sensored. The spectrometer carries an internal data acquisition

that groups spectra samples using principal components,

excluding samples that are outside the confidence interval

established in the software, and thus generates a spectrum by

the mean. The acquisition time was 10 s each at a speed of

0.583 m s−1 (2.1 km h−1), resulting in 383 online NIR spectra

acquired. During the field operation, 72 random starting sensing

points (12 samples ha−1), indicated by the acquisition software,

were demarcated and further sampled at the bottom of the

furrow, excluding 1.0 m at the beginning and at the end of the

transect, which aimed to overlap the area that corresponded to

an online spectrum acquired (Figure 3). Those samples were

submitted for laboratory analysis and used for model calibration.

In addition, the density of 12 samples ha−1 allowed to generate

maps from laboratory analysis to be used as counter proof of the

models’ prediction.
Soil physicochemical analysis

Soil physicochemical analysis were carried out on a

commercial laboratory. The soil attributes that were

considered and the respective analysis method were as follows:

clay and sand, HMFS+NaOH; OM, oxidation; cation exchange

capacity (CEC), sum of basis (resin) plus soil total acidity (KCl);

and magnesium (Mg), potassium (K), and calcium (Ca), resin.
FIGURE 1

Flowchart of steps developed in this study.
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Phosphorus models were discarded, as the preliminary analysis

presented its independence distribution with primary NIR

response attributes in the experimental area (7).
Prediction models calibration

The software Jupyter Notebook (21, 22) was used for data

processing. Calibration models were built using three datasets:

local—only the 72 samples from the experimental field;

geological—adding 59 samples from a field of the same

morphopedological region, nearby; and global—adding 60

samples from a field in Mato Grosso on the geological

dataset. Adding samples from other areas is a strategy

adopted by researchers to augment the number of
Frontiers in Soil Science 04
observations in the calibration, thus improving the accuracy

of model (19, 23, 24).

The statistical model used was the principal components

regression (PCR). PCR is a dimensionality reduction model,

indicated to build calibrations with soil spectra due to its

multidimensionality characteristic and the possible collinearity

among variables (5). Velliangiri and Alagumuthukrishnan (6)

described that dimensionality reduction models, such as PCR,

can aid ML models in the removal of noisy and redundant data.

Therefore, raw spectral data were used for models calibration in

this study.

Each dataset was randomly divided in the proportion of 70%

for calibration and 30% for validation, using k-fold (k = 10)

cross-validation (25), which is recommended for the evaluation

of ML models to reduce bias. A random state in the software
A

B

FIGURE 3

(A) Scheme of subsoiler shank carrying the spectrophotometer; (B) scheme of spectral acquisition, associated soil sample, and coordinate.
FIGURE 2

Location of areas from where samples were acquired for models’ calibrations. Highlighted, located in Piracicaba, São Paulo State (SP), the
experimental field shape, sensored transects, spectral points acquisition, and associated soil samples. Samples from another field nearby were
used to compose geological dataset. Global dataset was built by adding samples from another area, located in Mato Grosso (MT) state.
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function was always set to ensure repeatability and that after the

split, the same 21 samples from the experimental field would be

used for the validation of all three calibration strategies. The

assessment of the models’ accuracy was performed using

common metrics from the literature of soil attributes

prediction using Vis-NIR spectra: R2, RMSE, MAE, and RPIQ.

The parameters were evaluated and showed that the higher the

R2 and RPIQ values and the lower the RMSE and the MAE

values, the better is the model performance.
High spatial resolution prediction and
data interpolation

The models calibrated were then used to predict the soil

attributes considered using the online spectra acquired in the

experimental field. A descriptive analysis aiming to exclude

acquisition points, like field borders, was carried out before the

prediction, which resulted in the use of 303 online spectra for

prediction that were then used for data interpolation. Data of

each attribute were individually interpolated by ordinary kriging,

using the software VESPER (26). The method used was block

kriging, in 3.0 × 3.0 m pixels, and the minimum and maximum

neighboring points for interpolation was determined as 4 and

300, respectively. Additional kriging parameters are available in

Supplementary Material Table A1. After kriging interpolation,

the maps generated for each predicted attribute were exported to

QGIS software (27) for analysis and comparison.
Results and discussion

Soil attributes correlation

The correlation observed among soil attributes can indicate

that a secondary calibration can be explored (7). The Pearson
Frontiers in Soil Science 05
correlations of datasets used in this study are presented in

Figure 4. For the local dataset, which only contains samples

from the experimental field, the only primary–secondary NIR

response attributes correlation observed is OM-CEC of 0.76. On

the other hand, the geological and global datasets presented all

common physicochemical correlations: clay and OM strongly

and positively correlated to CEC and, consequently, to plant

nutrients (28).
Prediction models performance

The results for k-fold cross-validation of local, geological,

and global prediction models are presented in Table 1. The

local model usually performed its best prediction using fewer

principal components than geological and global calibrations.

Lower values for prediction errors (RMSE and MAE) were

observed for the local model for all soil attributes predicted,

except OM. On the other hand, R2 and RPIQ values for

geological and global models overcame the local strategy,

which presented R2 >0.60 for only OM and CEC and its best

RPIQ of 1.35 for Ca prediction, while both geological

and global models surpassed RPIQ = 2.00 for al l

attributes predicted.

Note that RPIQ values variation follows R2 values, departing

from the prediction error presented by the model, since the

smallest errors of the local model were not accompanied by

better RPIQ values. This may imply that another parameter is

needed to fully comprehend if the prediction model is

sufficiently assertive to be used as a field technique for soil

data acquisition. Agriculture is an activity that depends on the

soil and its characteristics in deciding on productive steps. Not

only the statistical distribution but also knowing the soil

attributes content in the determined location is crucial for

decision making (15). The spatial dependence of an attribute is

known to be described by geostatistics, fitting variograms with
A B C

FIGURE 4

Pearson correlation matrix of laboratory analysis from soil samples that composed the three strategies of datasets used in this study. (A) Local
dataset; (B) geological dataset; (C) global dataset.
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the samples of the area (29). In this sense, it is suggested that the

comprehension of the predicted values variation can contribute

to a precise decision-making process of DRS NIR as a technique

applied in the context of PA, both in quantitative terms, by the

error of prediction, and in qualitative terms, by evaluating the

spatial distribution of predicted values.

However, before evaluating the models in terms of variation

in values observed, defining what is implied in the construction

of soil attributes ML models is needed. A set of 72 soil samples

from the nearby area located in Piracicaba (SP, Brazil) added to

build geological and global datasets was divided and submitted

for analysis to four different commercial laboratories, aiming to

verify the difference in values that a standard laboratory analysis

of a soil sample can present. A mean variation of 21.4 g kg−1 for

clay content and 24.4 g kg−1 for sand content was observed

between the analysis of the four laboratories. For chemical

attributes, the results were even more discrepant. The analysis

of OM and CEC exhibited a maximum Pearson correlation

coefficient of 0.51 between laboratories. It is noteworthy that the

mean error of prediction of the models calibrated in this study

presented lower values than the variation observed among the

different laboratories. The complete analysis of the 72 soil

samples from the four laboratories is available in (20).

The certification of soil analytical laboratories in

international level is a competence of the International

Organization for Standardization (ISO) (30, 31). The standards

of procedures and certification include acceptable errors and

calibration limits for soil testing. This means that every analysis,

even from certified laboratories, is susceptible to errors in some

scale, and stakeholders of agriculture production always dealt

with these possible variations.

Finding the correct values instead of generalizing attributes

and variability is an obvious goal of PA (14), but the calibration

of ML models depends on the reference values inserted in the

calibration. DRS is directly related to the intrinsic content of an
Frontiers in Soil Science 06
attribute of response in the determined electromagnetic

spectrum region (3, 32). Thus, if there is no consensus in the

value inserted for calibration, a misbalance of predicted versus

observed values occurs, and the models automatically

incorporate errors of prediction in some magnitude. This

could imply that while we use this basis for ML models using

DRS in soil science (33), we will hardly reach an accuracy level

that allows to find the exact same values due to the model input,

one of the three main sources that can lead to output uncertainty

(34). Instead, we should aim to minimize the errors of prediction

as much as possible and look forward to the repeatability of

distribution and the agronomic plausibility of predicted

attributes distribution, assuming that variations of some kind,

already present in current analytical methods used, will not

overcome the benefits that the technique can offer. Therefore, we

suggest that evaluating the predicted attributes in quantiles

associated with the prediction errors (35–37) is an effective

approach rather than equalizing categories (17, 38, 39).

PCR models presented a described characteristic of this

statistical method of smoothing predicted values when

compared to those inserted in calibration (7) (Table 2).

Besides the loss of extreme values of all datasets, the major

portion of the population followed the distribution (6)

(Figure 5). For clay and Mg prediction, the local model caused

the major concentration of values when compared to geological

and global predictions. The global model followed the exact

range of values observed in the laboratory for its clay prediction.

The global model presented the major concentration of

values for Ca prediction. For OM and K, the three strategies

presented similar population distribution, even though all three

flattened the distribution curve observed in the values of

laboratory analysis. CEC prediction is highlighted as the most

similar distribution for all populations. Nevertheless, the range

of predicted values places the local calibration as the closest to

laboratory population.
TABLE 1 Results of online prediction of soil clay, sand, organic matter (OM), cation exchange capacity (CEC), and calcium (Ca) using principal
components regression (PCR) models developed for the different calibration strategies of only in-field samples (local), adding samples from the
same geological region (geological), and from different geological regions (global).

Local Geological Global

NC R² RMSE MAE RPIQ NC R² RMSE MAE RPIQ NC R² RMSE MAE RPIQ

Clay 4 0.17 19.88 15.08 0.67 7 0.97 25.83 20.71 11.34 8 0.95 28.96 23.25 9.58

Sand 1 0.05 23.41 17.53 0.12 9 0.97 30.45 25.33 15.76 10 0.97 36.74 29.10 12.64

OM 9 0.75 3.11 2.28 1.25 9 0.87 2.64 2.26 4.36 10 0.80 3.03 2.22 3.73

CEC 6 0.60 3.51 2.78 1.10 8 0.73 11.92 8.74 3.06 5 0.76 11.60 8.66 3.69

K 6 0.14 0.93 0.77 0.51 4 0.56 2.11 1.57 2.20 5 0.72 1.51 1.03 3.62

Ca 10 0.39 2.54 2.08 1.35 8 0.68 6.91 5.01 2.13 3 0.55 7.01 5.17 2.43

Mg 1 0.01 1.83 1.41 0.52 8 0.65 7.10 5.10 2.27 3 0.57 6.99 4.83 2.51
frontier
NC, number of principal components used in calibration; R2, coefficient of determination; RMSE, root mean square error; MAE, mean absolute error; RPIQ, ratio of performance to
interquartile distance.
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High spatial resolution prediction and
data interpolation

The parameters of fitted variograms for clay, sand, OM,

CEC, K, Ca, and Mg, using the three strategies of calibration,
Frontiers in Soil Science 07
hardly presented similar values (Table 3). However, the nugget

to total sill ratio (40) presented moderate spatial dependence for

almost all predicted attributes. Only Ca prediction from the local

dataset and sand prediction from the global dataset exhibited

pure nugget effect, indicating the inexistence of spatial
FIGURE 5

Kernel density estimate plots of clay, organic matter (OM), cation exchange capacity (CEC), potassium (K), calcium (Ca), and magnesium (Mg) for
the attributes observed in the laboratory analysis of experimental area and predicted using online spectra on three strategies of calibration: only
in-field samples (local), adding samples from the same geological region (geological), and from different geological regions (global).
TABLE 2 Range of values observed for clay, organic matter (OM), cation exchange capacity (CEC), potassium (K), calcium (Ca), and magnesium
(Mg) in laboratory analysis (Lab), and predicted values using online spectrum of experimental field from three different calibration strategies of
only in-field samples (local), adding samples from the same geological region (Geo), and from different geological regions (global).

Clay OM CEC

g kg−1 mmolc kg
−1

Min Max R Min Max R Min Max R

Laboratory 51 183 132 12 35 23 44 68 24

Local 89 149 60 12 26 14 45 70 25

Geological 79 175 96 11 29 18 37 74 37

Global 50 182 132 11 30 19 43 65 22

K Ca Mg

mmolc kg
−1

Min Max R Min Max R Min Max R

Laboratory 0 5 5 10 34 24 5 22 17

Local 0 4 4 12 29 17 8 12 4

Geological 1 4 3 9 33 24 −1 19 20

Global 1 4 3 15 26 11 5 19 14
frontiersin.o
Min, minimum value observed; Max, maximum value observed; R, range (Max − Min).
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dependence on the distribution of these attributes contents on

the experimental field. Regardless, for Ca, geological and global

calibrations were able to find spatial dependence. The same was

observed for sand, in which local and geological calibrations

pointed spatial dependence. This indicates that the spatial

distribution of predicted values can be affected depending on

the calibration model, despite the prediction error presented,

corroborating with the results found in (39).

Clay prediction was not considerably affected by the

addition of samples from outside areas, which could have

happened due to the relation of clay and the fundamentals of

NIR with soil mineralogy (32). Due to the direct response of this

attribute in Vis-NIR, other authors even reported satisfactory
Frontiers in Soil Science 08
prediction in independent tests, extrapolating predictive models

in scanned but previous unsampled agricultural areas (41). The

range presented by the three variograms fitted for clay prediction

was discrepant: 230.3 m for local dataset, 52.2 m for geological

dataset, and 139.9 m for the global dataset. Despite that, the

ordinary kriging reached similar patterns and also similar values

for the attribute (Figure 6), highlighting the variation amplitude

observed in quantiles division, which is small. Class discrepancy

of values was also lower than the MAE of prediction models

(15.08 g kg−1 for local, 20.71 g kg−1 for geological, and 23.25 g

kg−1 for global). The evaluation of R2 and RPIQ would lead to

the discarding of clay local model. However, the spatial

distribution of predicted values alongside the error of
TABLE 3 Parameters of fitted variograms for clay, sand, organic matter (OM), cation exchange capacity (CEC), potassium (K), calcium (Ca), and
magnesium (Mg) predicted values using online spectra of experimental field from three different calibration strategies of only in-field samples
(local), adding samples from the same geological region (geological), and from different geological regions (global).

Local Geological Global

C0 C1 A C0 C1 A C0 C1 A

Clay 115.8 67.2 230.3 187.5 167.5 52.2 213.1 500.1 139.9

Sand 7.0 3.4 196.9 154.1 126.0 33.5 – – –

OM 5.3 2.8 189.3 3.4 3.3 28.5 5.9 1.9 37.0

CEC 32.7 35.0 199.2 13.6 20.3 21.8 0.0 17.6 142.4

K 0.04 0.02 197.6 0.08 0.04 85.7 0.02 0.1 21.3

Ca – – – 2.7 7.9 26.4 2.7 1.3 89.4

Mg 2.7 1.3 89.5 4.6 3.9 27.7 3.2 1.28 108.1
frontiersi
C0, nugget; C1, sill; A, range.
FIGURE 6

Maps of the five quantiles obtained by ordinary kriging for clay prediction using three different strategies of calibration only in-field samples
(local), adding samples from the same geological region (geological), and adding samples from different geological regions (global).
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prediction proved the ability of the local calibration to predict

this attribute of primary response in NIR.

The prediction of OM is widely explored using DRS NIR due

to the fact that OM is a primary response attribute in this region of

electromagnetic spectrum, with its typical wavelength absorption

being reported to comprise (nm) 1,660, 1,728, 1,754, 20,56, 2,264,

2,306, and 2,347 (42). Its prediction can also arise in moist soil

(not in field capacity) (43), a condition often observed in field

soils. This is the most likely explanation for the satisfactory

prediction of OM using the local, geological, and global dataset

calibrations (Figure 7). Although with different calibrations, the

models reached similar patterns of distribution, which was also

observed by Pouladi et al. (39). As was observed for clay, the

variation amplitude in quantiles distribution is small for OM

prediction. The most divergent area was observed in the

northwest portion of the field, where the local calibration

pointed a zone of high OM content and geological and global

calibrations pointed the opposite. In addition, the addition of

outside samples in the calibration set clearly affected the spatial

dependence of prediction of OM, since the range of the

variograms expressively decreased. For local calibration, a spatial

dependence until 189.3 m of distance was observed from one

sampling point to another. For geological and global calibration,

however, the spatial dependence was found until 28.5 and 37.0 m.
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Although there were similarities among the maps of local,

geological, and global calibrations, when comparing the map

generated from the high density of 72 soil samples analyzed in

the laboratory, it is noted that the local model presented the best

fitted prediction for OM in the experimental field, similar to that

reported by Stevens et al. (44). An explanation for local better

prediction can be that changes in iron oxide content can cancel

variations in OM absorption features (45). The major portion of

the area presented a difference of <2.5 g kg−1. The greatest

difference was observed in the same region that the local model

disagreed with geological and global calibrations. Exactly in this

region, laboratory analysis presented a single sample with 35 g

kg−1 of OM content. The second highest OM content observed

in the laboratory was 28 g kg−1. The upper limit loss in the range

presented for local calibration was clearly affected for this sample

only (Table 2). The errors of prediction of this model (MAE =

2.28 g kg−1 and RMSE = 3.11 g kg−1) were also increased due to

what was quoted. Thus, it is assumed that a resampling of that

area is needed to verify if the sample of 35 g kg−1 was accurate or

it was an outlier due to the error in the sampling procedure/

laboratory analysis (46). Nevertheless, if laboratory analysis

predicted greatest values than the local model, which classified

the area as a high content one, geological and global calibrations

are wrong in the assumption of a low OM content area.
FIGURE 7

Maps of the five quantiles obtained by ordinary kriging of organic matter (OM), in red, and cation exchange capacity (CEC), in green. Maps are
presented in the order of: laboratory analysis; prediction model calibrated with only in-field samples (local); difference of laboratory and local
values (Lab − Local); prediction model calibrated adding samples from the same geological region (geological) and adding samples from
different geological regions (global).
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CEC prediction was discrepant between the three models

(Figure 7). The geological model reached an irregular

distribution of patterns in the field. While local calibration

presented a variogram range of 199.2 m and global calibration

of 142.4 m, the geological model reduced the range to 21.8 m.

The difference between local and global prediction stands for the

inversion of patterns observed, changing high CEC values zones

into low ones. Although the range of 24 mmolc kg
−1 in CEC

values was observed in the laboratory, followed by three datasets

predictions (Table 2), the quantiles limits presented a small

variation of 1.5–2.0 mmolc kg
−1.

Attributes that do not have direct spectral response in the

region studied can be predicted if the attribute presents

covariation with another of primary response (16). Thus,

various authors have dedicated their attention to construct

indirect Vis-NIR calibrations to predict these soil attributes (23,

47, 48). The use of calibrations that compile soil samples from

different areas to predict these attributes is a common practice,

usually gathering data from the same morphopedological region

(16). Nevertheless, the strategy of putting together the areas from

different regions is also observed and stated as an effective

approach depending on the results demonstrated (49). In this

study, although smaller prediction errors were obtained from local

model prediction of CEC, geological and global models presented

better R2 and RPIQ and metrics similar to others (18, 50, 51).
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However, it is noted that the values obtained from different

strategies led to different patterns of attributes spatialization in

the field, affecting the spatial dependence as for the geological

model or the inversion of patterns as for the global model.

The comparison between the kriging maps obtained for

CEC analysis in the laboratory and that obtained using local

model calibration leads to the conclusion that the local model

was the only strategy among the three that successfully predicted

the attribute. At the north of the area, the region of greatest

discrepancy was observed, where even though the model

accurately defined the region of higher CEC at the field, it

downsized the value observed by the laboratory analysis,

smoothing the characteristics reported for PCR prediction

models (7). It is highlighted that, although there was a small

range of CEC values from both laboratory analysis (24 mmolc
kg−1) and local prediction (25 mmolc kg

−1) and a small variation

amplitude in quantiles division, the local calibration was able to

accurately identify the spatial patterns in the field.

The failure of the prediction of CEC for geological and

global models, despite the considered good metrics presented by

these two strategies, can be explained by the correlation observed

between soil attributes (52) (Figure 4). For only the experimental

area, CEC had a strong correlation with OM of 0.76, which is a

primary response attribute in NIR. Note that in the experimental

area, CEC is almost independent from clay, with a correlation
FIGURE 8

Maps of the five quantiles obtained by ordinary kriging of calcium (Ca) values of laboratory samples analysis (Lab) and the prediction models
using three different strategies of calibration: only in-field samples (local), adding samples from the same geological region (geological), and
adding samples from different geological regions (global).
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coefficient of −0.06. By the addition of samples from the area of

the same geological region than the experimental field, the

correlation of CEC with OM is maintained at 0.76. Yet, the

model identifies a strong correlation with other primary NIR

response attributes, where CEC and clay had a correlation

coefficient of 0.75. The similar effect happened for the global

dataset. Although the KDE plots pointed the same statistical

distribution of predicted values for all datasets (laboratory

analysis, and local, geological, and global predictions)

(Figure 5) and satisfactory metrics were presented (R2, RMSE,

MAE, and RPIQ) (Table 1), the prediction of CEC with neither

geological nor global models was accurate, which places spatial

distribution and agronomic plausibility of this distribution as a

fundamental factor for classifying the model as robust or not.

Even though other authors found a positive influence of creating

calibrations from multiple fields (23, 53), this was not the case

for the one tested in this study when the field spatialization

parameter was taken into account. This could also be possible

due to the use of other techniques more related to fundamental

vibrations of soil attributes in the spectra, like mid-infrared

(MIR) (54) or X-ray fluorescence (55), or other factors that were

not investigated in this study.

The prediction of plant nutrients was not consistent for any

of the datasets used for model calibration, and Ca maps

represented the same values observed for K and Mg (Figure 8).

Local and geological datasets resulted in a prediction without

coherent spatial patterns, and for the global dataset, although the

north portion of the area presented the same pattern and similar

values to those observed in the laboratory, it may be assigned by

chance, once the other patterns were not steady.

The unsuccessful prediction of Ca can be related to the

correlations presented for this attribute (Figure 4), as it was for

the successful prediction of CEC (16, 52). In the experimental

field, Ca had an average correlation with OM of 0.44. This fact

could explain the slightly better R2 and RPIQ values presented in

the validation of local Ca model, although this was not true for K

(Table 1), even with a 0.55 positive correlation with OM

presented in the local dataset. Nevertheless, this correlation

magnitude proved to be insufficient to allow an accurate

prediction using DRS NIR. For geological and global models,

once outside samples were entered in the dataset, nutrient

correlations were modified, presenting, in both cases,

significant positive correlation with clay and OM and negative

correlation with sand. Therefore, the ML models used in this

study, which are helpful tools to deal with spectral data and

correlations between soil attributes (33), were not able to

perform a consistent prediction.

This study suggests that the correlation coefficient itself, even

when corroborated with satisfactory statistical metrics on

prediction models validation, cannot identify if a secondary
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response attribute can be predicted with DRS ML models (56).

The correlation observed in the target area alone must be taken

into account, and it is of high importance that this correlation is

not twisted after the union of outside samples in the model

calibration, which can cause the distortion of the attributes

spatial distribution in the field.
Conclusions

Spatial distribution in terms of zones and agronomic

plausibility of predicted values obtained from DRS NIR

prediction models proved to be a key factor of robustness

evaluation. Using R2 and RPIQ without field spatialization is

suggested to be a vulnerable strategy due to misleading decisions

that these metrics would lead into in the present study. This

study suggests to further investigate the spatialization of soil

attributes predicted using NIR spectra in areas with greater

variability. It is necessary to further check the weaknesses that

ML models of NIR spectra calibrated with samples from more

than one area presented in the spatialization of the predicted

attributes. If the observed results in the present study are

repeated for other agricultural fields, it may indicate that local

models are the best recommendation for DRS used for field-

scale PSS.
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