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Soils are polluted by both organic and inorganic substances. Plants growing in

polluted soils suffer damages such as leaf rolls, chlorosis, growth inhibition,

root tips browning, and death of plant. Soil pollutants such as hydrocarbon and

heavy metals are absorbed by crops and such ends up being consumed by

human posing health risk like cancer and respiratory abnormally. Conventional

methods of remediation such as chemical and physical methods are very

expensive and not sustainable. Excavation, which is a type of physical method,

merely shifts the pollutant from one site to another. Bioremediation is a

biological method of reclaiming polluted soils. Bioremediation is less

expensive and more sustainable and safer when compared to the

conventional methods of reclamation of polluted environment. This

biological method of remediation is an extremely attractive, important, and

productive alternative for cleaning, debugging, managing, and rehabilitating

and consequently ameliorating contaminated environments via judicious

utilization of microbial activities. The rate, at which the waste substances are

degraded, is usually dictated by competitiveness among biological agents, sub-

optimal supply of essential nutrients, unconducive abiotic conditions (in forms

of temperature, aeration, pH, and moisture), and constrained pollutant’s

bioavailability. Bioremediation is often effective only under conducive

environmental conditions favorable for microbial growth and development. It

has been successfully used at various parts of the world. Based on the

significance of bioremediation in enhancing the reclamation of polluted

environments by decontaminating and degrading heavy metals and

xenobiotics, more focused researches would be needed so as to improve

contaminated environments in much safer ways and conditions through

bioremediation techniques. This research discussed the various types and

methods of bioremediation. The mechanisms of actions and strategies of

microorganisms in bioremediation were well expatiated. The interaction
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between bioremediators and the mineral particles in the soil environment

was explained.
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Introduction

Increase in global industrialization and intensive farming

due to the ever increasing human population has resulted into

pollution of the ecosystem including the soil (1). Soil pollutants

have immunotoxic, carcinogenic, and mutagenic effects which

causing changes to soil physical, chemical, and microbiological

characteristics (2). These soil pollutants can also find their way

into human food and water resulting in serious human,

environmental, and soil health issues (3). It, therefore,

becomes expedient for polluted soils to be recovered.

Several approaches such as incineration, excavation, and the

use of chemicals have been employed to clean up polluted soils

but these methods are too expensive and do not provide total

cure as some just shifted the contamination from one site to
02
another (4). Most of the times, they also result in production of

secondary pollutants, which incur another negative impacts on

the environment (5). This, therefore, necessitates the need for a

safer and more cost-effective alternative method.

Bioremediation refers to cleaning of polluted lands using

biological processes (5). It is an eco-friendly and highly

economical method of remediating polluted soils or water (6).

Biological method of remediation of polluted sites uses living

organisms, which could be plant or microorganisms to abate or

clean up pollutants. The use of plant is called phytoremediation.

The mechanisms of bioremediation degrade, mineralize,

transform, or detoxify the pollutants thereby reducing the

concentration of the pollutant to innoxious state (6). Soil

pollutants of environmental and health concern include

hydrocarbons, heavy metals, chlorinated compounds,
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pesticides, dyes, and so on (2, 7). Table 1 discusses some of the

soil pollutants, the microorganisms that had been used to

remove, transform, or reduce their concentration in the soil,

and their effect on crop growth and yield.

The growth and metabolism activities of the microbes

responsible for bioremediation are enhanced or limited by

environmental conditions, which include both soil and

climatic conditions.

Several researchers (6, 21) studied and discussed types and

methods of bioremediation and their effects on some crop

growth and yield but there is little or no records of the impact

of soil environment on the efficiency of bioremediation

techniques. There is little or no literature on the interaction

between bioremediators and the soil environment. The

relationship that exists between the bioremediators and the

soil minerals in a soil aggregate is scarcely reported. This

research was aimed to discuss the various strategies of

b ioremediat ion and the interac t ions between the

bioremediator and the mineral particles in the soil

environment. To develop an efficient bioremediation system

in the future, a good understanding of the factors that influence

the natural selection of organisms capable of remediating the

pollutant, the genomes, and proteasomes are necessary (22).

This article has, therefore, discussed the various techniques

of bioremediation and how they are affected by environmental

factors. The strategies and mechanism of actions of

microorganisms in remediating polluted soils are extensively

explained. The interaction and relationship between the

bioremediators and the soil minerals in a soil aggregate were

well explained. In addition, the knowledge that is required to

develop a more efficient bioremediation system in the future was

also highlighted.
Frontiers in Soil Science 03
Soil pollutants

Pollutants commonly found in soil are classified as

organic and inorganic pollutants. Organic pollutants from

industries are built up in soil. Anthropogenic activities

contribute immensely to the pollution of soil (23). These

anthropogenic activities include use of trichloroethylene by

drycleaners, pesticides like atrazine, and fuels naphthalene.

Some of these organic compounds are highly toxic in the

environment (24).

Inorganic pollutants are non-biodegradable substances that

may be disposed from industrial chemicals or waste, such as

from refineries, pharmaceuticals factories, and even agricultural

chemicals such as fertilizers, pesticides, and herbicides. Other

inorganic pollutant include heavy metals (arsenic, cadmium, and

copper), some trace elements, sulphates, mineral acids, metals,

metal compounds, and some inorganic salts (1, 7). These

inorganic pollutants persist in the surrounding environment

causing health hazards (3, 7).
Bioremediation techniques

Bioremediation can be carried out outside the pollution site

(ex-situ) or at the site of pollution (in-situ) (Figure 1). Choice of

bioremediation technique depends on some factors that include

nature of pollutant, concentration of pollutant, type of

environment, cost of remediation technique, depth of

contaminant, and environmental policies [1, 3, and 7]. Other

abiotic/edaphic factors such as oxygen concentrations,

temperature, pH, determine the success of bioremediation

processes and hence could also considered (24, 25).
Table 1. Some common soil pollutants and microorganisms used in the process of remediation.

S/N Pollutant Microorganisms References

1 Lead, mercury and nickel Yeast Saccharomyces cerevisiae (8)

2 Crude oil Lactobacillus delbrueckiiin (9)

3 Petroleum Bacillus subtilis (10)

4 Phenol Penicillium chrysogenumerk1 (11)

5 Naphthalene Bacillus fusiformis (BFN) (12)

6 Aliphatic hydrocarbon Fusarium sp. F092s (13)

7 Diesel Bacillus coagulans, Citrobacter koseri and Serratia ficaria (14)

8 Oil-based paint Bacillus species (15)

9 Textile dye (Remazol Black B) Bacillus spp. (16)

10 Zinc, cadmium Saccharomyces cerevisiae (17)

11 Heavy metals in paper mill Pseudomonas spp. (18)

12 Uranium Geobacter spp. (19)

13 4-chloronitrobenzene Pseudomonas putida ZWL73 (20)
fr
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Types of bioremediations

Based on the place of application or where the process is

carried out, bioremediation techniques can by grouped into Ex-

situ and In-situ Bioremediations (Figure 1).
Ex-situ methods of bioremediation

Polluted soil is removed from site of pollution to another site

for treatment. This method is considered when favored by the

depth of pollution, concentration of pollutant, cost of treatment,

pollutant type, and geographical location of the polluted site

(26). The ex-situ technique can be carried using solids with

bioremediators or slurry containing bioremediators (25).

Treatment with solids containing
bioremediators

Solids containing bioremediators used in this technique

include organic waste such as animal manures, leaves,

domestic, industrial wastes, and so on. Polluted soil is

excavated, placed into piles, and mixed with aforementioned

solids containing bioremediators such as bacteria and fungi (26).

Air or ventilation is allowed through the piles to enhance

microbial respiration. This system of remediation requires

large space and clean-up takes longer time to complete
Frontiers in Soil Science 04
compare to the slurry containing bioremediator. Examples of

the use of solids containing bioremediators include biopiles,

windrows, land farming, composting, and the rest (27).

Treatment with slurry containing
bioremediators

In this type of treatment, stones and rubbles in the excavated

polluted soil are moved, and then the nutrient and the water are

mixed with the polluted soil and oxygen in a bioreactor. This

provides an enabling environmental condition for the soil

microorganisms to thrive and break down the pollutant

contained in the soil (26). After the degradation of the

pollutant, soil is removed and dried with the aid of vacuum

filters, pressure filters, and centrifuges. The cleaned soil is then

deposited, while the resultant fluid is further treated. The rate of

remediation by this process is faster compared to the other

treatment processes. The soil properties and concentration of the

pollutants determine the amount of water to be added to the

polluted soil to initiate the degradation process (28).
Biopile

Polluted soil is excavated and parked to another site where

they are pilled above ground (26) . The growth and activities of

microbes present in the soil are then stimulated by the addition
FIGURE 1

Bioremediation techniques.
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of air and nutrient (6). The biopile type of bioremediation is

employed in the treatment of volatile, low molecular weight

pollutants, and in extremely very cold environments (29–31).

This system is preferred because it is cost effective. The rate of

biodegradation is pH, nutrient, temperature, and aeration

dependent (26). A heating system can be integrated into the

biopile to increase microbial activities and hence increase the

rate of biodegradation (32). Organic materials such as, straw,

saw dust, bark, or wood chips may be added to enhance

remediation process in a biopile site (33). Excessive heating of

air may lead to excessive drying of the soil and this will inhibit

microbial activities and, therefore, stimulate volatilization rather

than biodegradation (26, 33).
Windrows

Piled polluted soil is rotated periodically to improve

microbial degradation of pollutant in the soil (26). Windrows

treatment when compared to biopile treatment is more effective

in the removal of hydrocarbon from the soil (32). The choice of

windrows should not be considered in the remediation of toxic

volatiles compounds because of the periodic turning associated

with windrow treatment (34).
Land farming

In this type of bioremediation technique, aerobic

biodegradation of polluted soil is initiated by placing the

polluted soils on a fixed layer above the ground surface (35). It

could be carried out on the polluted site (in-situ) or at another

location (ex-situ). Land farming technique favors large area of

polluted soil because it requires low energy and capital and it is a

very simple technique with minimal environmental impact

(26, 36).
Composting

It can be employed for both ex-situ and in-situ

bioremediation techniques. Organic material is added to the

contaminated soil, this improves the porosity and air flow

through the soil (26, 37). Energy is released during the

degradation of the organic material resulting in temperature

rise, which stimulate the activities of both mesophilic and

thermophilic microorganisms (38). This was supported by

AdeOluwa et al. (2015) (39), who reported that compost can

have ameliorative effects on petroleum polluted soils and that the

effects increased with the increase in the level of amendment.

Biodegradation of contaminants carried out ex-situ

especially in a bioreactor is usually more manageable,

controllable, and predictable (26). A wide range of soil
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pollutant can be removed ex-situ. More also, the suitability of

ex-situ technique to remove a soil pollutant can be investigated

from site data (6). However, ex-situ techniques will not

efficiently remove heavy metals or chlorinated hydrocarbons

from soil. Additional processing is required to employ ex-situ

technique for remediation of contaminant from non-permeable

soil. When contaminated soil is extracted and put in a

bioreactor, the pollutant in the soil can be stripped off before

the soil is placed in the bioreactor (26, 40).
In-Situ bioremediation techniques

With in-situ techniques, soil pollutants are removed right at

the site of pollution. The polluted soil is treated right at the site of

pollution and is, therefore, more cost-effective than the ex-situ

bioremediation techniques (26) . Some in-situ bioremediation

techniques are enhanced by microbes present in the polluted

soil. In-situ bioremediation techniques have been effectively used

to treat chlorinated solvents, heavy metals, dyes, and

hydrocarbons polluted sites (17, 18, 41, 42).
Types of In-Situ bioremediation

In-situ bioremediation could be categorized into two types

based on whether the bioremediator is within the polluted soil

and is introduced from external source. These are intrinsic and

engineered bioremediation.

Intrinsic bioremediation
The remediation is carried out by the stimulation of

indigenous microbes of the polluted sites. This remediation

could be by both aerobic and anaerobic processes. It does not

require application of any external force of any sort; hence, the

technique is less expensive compared to engineered techniques

(26). It has the capacity to remove recalcitrant pollutant because

of the anaerobic process that could also be involved (6).

Engineered In-Situ bioremediation
In this system of remediation, an external microorganism

that is not indigenous to the polluted sites is introduced. The

introduced microorganism improves the chemical and physical

properties of the polluted site and, thereby, encouraged the

growth of the indigenous microorganisms. This, therefore,

accelerates the degradation process of the pollutants (43).
Bioventing

Bioventing is a technique use in in-situ bioremediation of

polluted site whereby airflow is controlled to deliver oxygen to
frontiersin.org
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unsaturated zone that also called vadose zone. This increases the

activities of indigenous microbes, thereby, enhancing

biodegradation of pollutants. Nutrients and moisture can also

be added to further enhance the activities of the microbes, which

are responsible for microbial conversion of the pollutants to a

harmless state (26, 44).
Bioslurping

In this technique, bioremediation is achieved by combining

the strategies of vacuum-enhanced pumping and soil vapor

extraction (45).The technique is commonly used for

recovering of products from capillary, light non-aqueous phase

liquids (LNAPLs), in saturated and unsaturated zones (26).

Volatile and semi-volatile organic compounds can be removed

by this technique (45). Via upward movement, the pumping

machine transports LNAPLs to the surface. Here, the LNAPL

becomes separated from air and water, hence, reduces microbial

activities (25). This technique is less suitable for remediation in

low-permeable soil, but the cost of operation procedure is lesser

compared to some other in-situ techniques (44, 45).
Biosparging

In biosparging technique, microbial activities in polluted sites

are improved by injection of air into the soil subsurface (26). This

makes biosparging similar to bioventing. In bioventing high air-

flow is required for volatilization of pollutant, whereas injected air in

biosparging stimulates biodegradation. Soil permeability and

pollutant biodegradability are two major factors that determine

the success of biosparging technique (26).
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Bioaugmentation

This technique is characterized by the increase of the native

microbiota by the inoculation of exogenous microorganisms

(46). Generally, the microorganisms used are bacteria,

filamentous fungi, and yeasts.
Phytoremediation

Phytoremediation is the removal of pollutants from

contaminated soil using plants (4). The success of this

technique depends on the amount and nature of pollutant.

Mechanisms of phytoremediation include phytoextraction,

degradation, filtration, accumulation, stabilization, and

volatilization. Extraction, transformation, and sequestration

will effectively remove pollutants such as heavy metals and

radionuclides. With the use of some plants, such as willow and

alfalfa organic pollutants, hydrocarbons and chlorinated

compounds are mostly removed by degradation and

mineralization mechanisms (47, 48). Table 2 shows some

plants (phytoremediators) and the pollutants that they

removed. Some important characteristics that qualify a plant

as a phytoremediator include root system (fibrous or tap), above

ground biomass, toxicity of pollutant to plant, plant adaptability

to predominant environmental conditions, and plant growth

rate. More also, the plant must be resistant to diseases and pests

(1, 62). In phytoremediation, removal of pollutant involve

translocation from roots to shoots (46). Furthermore, the rate

of translocation and accumulation depends on transpiration and

partitioning (63). Most often, plants growing in any polluted site

are good phytoremediators, hence, great success of

phytoremediation is reported by improving the remediation
Table 2. Some phytoremediators and the pollutant they removed.

S/N Phytoremediator Contaminant Reference

1 Ricinus communis L Hexachlorocyclohexane (HCH), Dichlorodiphenoxytrichloroethane
DDT, heptachlor, aldrin

(49)

2 Eucalyptus globulus Cadmium (50)

3 Helianthus annuus. Cadmium, chromium, and nickel (51)

4 Cyperus rotundus L. cadmium and chromium (52)

5 Alyssum and Thlaspi (Brassicaceae) Nickel (53)

6 Kenaf Cadmium, chromium manganese (54)

7 Kenaf (Helianthus annuus cannabinus L.) Cadmium and zinc (55)

8 Tobacco and sunflower Zinc (56)

9 Pteris vittata Arsenic and chromium (57)

10 Linum usitatissimum Cadmium (58)

11 Kenaf (Hibiscus cannabinus), mesta (Hibiscus sabdariffa L.), and jute
(Corchorus capsularis L.)

Arsenic (59)

12 Cowpea Aluminum and Manganese (60)

13 Sunflower Lead and zinc (61)
fro
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potentials of native plants growing in polluted sites either by

bioaugmentation with endogenous or exogenous plant. One of

the major advantages of phytoremediation is the possibility to

recover plant accumulated metals after remediation through a

process called phytomining (46).
Permeable reactive barrier

This technique is sometimes refers to as a physical method

for remediating contaminated groundwater. However, biological

mechanisms such as precipitation, degradation, and sorption of

pollutant are employed in permeable reactive barrier (PRB)

method. Hence, this technique can be called biological PRB of

bio-enhanced PRB or passive bio-reactive barrier. In general,

PRB is an in-situ technique that is used for remediating heavy

metals and chlorinated compounds in groundwater

pollution (64).

The in-situ methods of bioremediation do not require

excavation of the contaminated soil.It treats both dissolved

and solid contaminants. The accelerated in-situ method of

bioremediation will treat sub-surface pollution faster than the

pump and treat processes. Via in-situ techniques, organic

contaminants are transformed into innocuous substances such

as carbon dioxide, water, and ethane. Since there is minimal site

disruption, in-situ techniques are cost-effective (4, 44).

However, in in-situ techniques, some pollutants may not be

completely transformed to harmless products depending on site

characteristics. If it happens that transformation stops at an

intermediate compound, the intermediate may be more toxic

and/or mobile than the original compound. Some are

recalcitrant contaminants that can no longer be biodegraded.

In such an instance, the problem of the contaminated soil

remains. In-situ bio-augmentation requires acclimatization of

microorganism, which may not develop for pollutants such as oil

spills and recalcitrant compounds. Activities of indigenous

microorganisms may be inhibited by the concentration of

pollutants. If not accurately applied, profuse microbial growth

may block injection wells (6, 45).
The soil environment

Soil is the principal facilitator of terrestrial ecosystem and its

particulate and colloidal composition, either in organic matter,

minerals, or microorganisms form, which are not unconnected

beings. They are, rather, continually interacting with one

another in affecting the transformation and fate of inorganic

and organic pollutants (65). Soil is a term that is understood by

virtually everyone but being variously defined based on areas of

specialization by chemists, farmers, geologists, engineers, and by

laymen. However, Turgut et al. (2004) (51) considered soil as

natural bodies that cover parts of the earth’s surface that is
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known to support plants’ growth and that have properties due to

integration of the effects related to climate and organisms acting

on parent material as conditioned by relief over a span of time.

Soil is, therefore, the unconsolidated upper or superficial layer of

the earth’s crust that is transformed by biological, chemical, and

physical processes through weathering (66). It is composed of

organic matter, mineral particles, air, water, and living beings

apportioned in soil horizons. Soil’s health and quality, on the

other hand, are the capability of a soil to continuously function

as an essential system for conducive life process in a given

ecosystem and land-use cycles so as to sustainably promote

water and air quality; and biological productivity, thereby,

consequently preserving human and even plant’s and animal’s

health (67). Soil can, therefore, be put as an essential resource for

life (66) as it plays varied roles in the provision of habitat, source

of food and other materials, platform for growth, and other

environmental interactions.

Soil pollution, on the other hand, generally means the

presence of a chemical substance or compound that is foreign

and/or at higher concentration in the soil environment that

poses adverse threats to un-targeted organisms (68). This

menace is often not easily perceived visually or assessed

directly, which makes it a hidden but real danger, as exclaimed

by Eugenio (2018) (69).

Many governments had, by the late 1970s, banned the

production of such chemicals as polychlorinated biphenyls

(PCBs), yet a serious environmental pollution and/or

contamination still persists (68) consequent to deliberate and/

or accidental spills/leaks of solvents or petroleum products

following improper disposal, transport, or storage (69, 70).

Some of the disposal practices that was acceptable in the past,

due to lack of proper understanding of their harmful effects, have

also resulted in contaminated soils today. Persistent organic

pollutants (POPs) within the environment, for example, will

negatively affect food production and human and environmental

health as stated by (71). Therefore, soil is the major sink for most

persistent pollutants in the environment. Soil environmental

changes can, however, change the rates of apportionment of

POPs within the soil.

Naturally occurring compounds in soils, such as metals and

petroleum seeps, may also be very problematic. Contaminants

released at the surface can be transported vertically and laterally

into surface and ground waters and eventually ingested by both

private and municipal water users, thereby, representing fatal

human health risks, among others. Adsorbed contaminants into

soil can be directly ingested or inhaled by humans. They can also be

taken up by plants, accumulated in animal tissues, and be eventually

found in the foods ingested by the human kinds. Literally, there

exist thousands of chemicals used in industry and agriculture for

human benefit. As such, there are diverse types of compounds that

become lethal soil contaminants. Some of such common pollutants

and classes of contaminants include the following: Benzene, toluene,

ethylbenzene, and xylene (BTEX). Specific components of
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petroleum and petroleum–related compounds that is carcinogenic

and relatively mobile in soil. These compounds can fortunately be

microbially degraded both aerobically and anaerobically by

adjusting the in-situ conditions to promote BTEX degradation.

Methyl tertiary–butyl ether (MTBE) a chemical compound known

as oxygenate, which is used as a petrol additive in order to increase

octane rating since 1979 as a substitute to the dangerous use of lead

(Pb). Aerobic and anaerobic MTBE transformations have recently

been identified, although it was initially considered as too

recalcitrant for bioremediation. Polycyclic aromatic hydrocarbons

(PAHs) present in many petroleum–based compounds, which are

less mobile than BTEX compounds and tend to remain near the soil

surface. Many PAHs are carcinogenic and more recalcitrant than

BTEX. Polychlorinated biphenyls (PCB) commonly occur in

mixtures of compounds called congeners, which consist of

different arrangements of chlorine on the biphenyl structure

resulting in mixtures classified as arocolor, many of which are

carcinogenic and also recalcitrant. Chlorinated solvents such as

trichloroethylene (TCE) and tetrachloroethylene (PCE), for long

being used as cleaning agents, are typically found as groundwater

contaminants and pose a serious health threat. The redox potential

of affected soil determines the ease of biodegradation of chlorinated

solvents. The initial biotransformation steps are usually favored in

reduced environments, yet subsequent transformations are often

favored by aerobic processes. Other soil contaminants include

energetics and explosives, such as 2, 4, 6–trinitrotoluene, and

hexahydro–1, 3, 5–trinitro–1, 3, 5–trizine (RDX); metals such as

chromium (Cr) and lead (Pb); and radionuclides such as plutonium

(Pu) and uranium (U), and inorganic compounds include N and P.
The role of microorganisms in
bioremediation

The quality of life on Earth is linked to a large extent to the

overall quality of the environment. A large amount of wastes

from agriculture, industries, and other activities of man, ranging

from raw sewage to nuclear waste, are let out or dumped into the

ecosystem (Soil, water and air), further posing serious problems

for the survival of mankind itself on Earth (3). Traditional

disposal of waste was done by digging a hole and filling it with

waste material in the past. This method of waste disposal was

difficult to sustain due to lack of new dumpsites each time the

former is exhausted. New technologies for waste disposal that

use high-temperature incineration and chemical decomposition

(e.g., base-catalyzed dichlorination, and ultra-violent oxidation)

evolved. Though this can not only be greatly effective at reducing

a wide range of contaminants but at the same time have several

disadvantages. These methods are complex, uneconomical, and

are not acceptable generally. The related disadvantages of these

methods have channeled efforts towards harnessing modern-day

bioremediation processes as a suitable alternative (72).
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In recent times, where the whole world’s ecosystem is faced

with the problem of various types of environmental pollution,

microorganisms are essential for a solution to overcome these

challenges. According to Abatenh (2017) (73), the multiple

functions of microorganism’s chemical wastes and physical

hazardous materials can be degraded, eradicated, immobilized,

or detoxified. Some microorganisms obtain energy by

converting, modifying, and utilizing toxic pollutants for

biomass production (74).

Mineralization is a type of biodegradation and is defined as

the conversion of an organic substance to its inorganic

constituents, rendering the original compound harmless.

According to (75), bioremediation involves three major

interactions between three factors, namely, substrate

(pollutant), organisms, and the environment. The interactions

of these factors affect biodegradability, bioavailability, and

physiological requirements, which determine the success of

bioremediation. He opined further that biodegradability of a

chemical is determined by the presence or absence of organisms

that are able to breakdown a chemical of interest and how

widespread these organisms are in that site. The pollutant can

interact with its surrounding to change its availability to

organisms that can degrade it. For instance, pollutant has low

bioavailability if it is tightly bound to soil organic matter or

adsorb by soil aggregates. Physiological factors required by

organisms to carry out bioremediation in the environment

include nutrient availability, optimal pH, and availability of

electron acceptors, such as oxygen, nitrate, and conducive, and

also climatic environment (1).
Microbial enzyme activity in
bioremediation

Enzymes are biological substances also known as catalysts

that provide favorable conditions that lower the activation

energy of a reaction to enhance the conversion of substrates

into products. Enzymes are proteins or glycoproteins. They

consist of at least one polypeptide moiety. The regions called

the active sites are directly involved in the catalytic process. The

detoxification of toxic organic compounds by various bacteria

and fungi and higher plants through oxidative reaction is

mediated with oxidoreductases. Microbes extract energy

through energy-yielding biochemical reactions mediated by

these enzymes to cleave chemical bonds and to assist the

transfer of electrons from a reduced organic substrate (donor)

to another chemical compound (acceptor). The oxidation-

reduction reactions oxidize the contaminants to harmless

compounds (75).

The oxidoreductases take part in the humification of various

phenolic substances that are produced from the breakdown of

lignin in a soil environment. Likewise, Dias et al. (2015) (64)
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reported that toxic xenobiotics, such as phenolic or anilinic

compounds, can be detoxify via oxidoreductases by binding to

humic substances or by polymerizing and copolymerizing with

other substrates. Oxygenases play major roles in the metabolism

of organic compounds by increasing their reactiveness, water

solubility, or ability to cleave to the aromatic ring. Oxygenases

have a wide substrate range and are active against a wide range of

compounds, including the chlorinated aliphatics. Generally, the

introduction of Oxygen (O2) atoms into the organic molecule by

oxygenase results in cleavage of the aromatic rings. According to

Chen et al. (2019) (65), the most studied enzymes in

bioremediation are bacterial mono- or di-oxygenases. Mono-

oxygenases have high region-selectivity and stereoselectivity on

wide range of substrates and, therefore, act as biocatalysts in

bioremediation process and synthetic chemistry. Most mono-

oxygenase has cofactor, but there are certain mono-oxygenases

that function independent of a cofactor. These enzymes use the

substrate as reducing agent and molecular oxygen for their

activities. Multicomponent enzyme systems that introduce

molecular oxygen into their substrate are called dioxygenases.

Aromatic hydrocarbon dioxygenases belong to a large family of

Rieske nonheme iron oxygenases (76).

Hydrolytic enzymes also break major chemical bonds in the

toxic molecules causing reduction of their toxicity. Oil spill,

organophosphate, and carbamate insecticides are, in most times,

effectively degraded by this mechanism. Amylases, proteases,

lipases, DNases, pullulanases, and xylanases are examples of

extracellular hydrolytic enzymes use for diverse purposes in

different areas. The hemicellulase, cellulase, and glycosidase are

of much importance due to its application in biomass

degradation (75).
Effects of soil environment on
bioremediator/bioremediation
techniques

Before any bioremediation technique to be successful, the

methods of bioremediation to be employed should depend on

the right microbes in the right place and with the right

environmental factors for a judicious degradation to occur.

The right microorganisms are bacteria and/or fungi, which

have the physiological and metabolic capabilities to

degrade pollutants.

Bioremediation, a scientific and an intensive procedure,

must be directed towards a site-specific condition. Observing

the site characteristics is necessary to know whether the

biodegradation will take place at the site or not (65).

Bioremediation process is influenced according to the

activities of heterotrophic microorganisms, both aerobic and

anaerobic. The activity of microorganisms in the soil is affected

by a number of physical and chemical environmental
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specifications. Factors that affect bioremediation directly are

temperature, electron donors (as source of energy), pH,

nutrients electron acceptors, and inhibitory metabolites or

substrates (77). One of the most important disparities between

the surface soil, groundwater sediments, and vadose zone soil is

their organic materials composition. Hence, surface soil usually

have a more preponderant organic matter content, which

typically receive regular inputs of organic materials from

plants, and an advanced presence of microorganisms, vis-à-vis

their abundant population diversity. Organic matter stores

carbon (C) and energy and is a source of such other

macronutrients as nitrogen (N), phosphorous (P), and sulphur

(S). The sub-surface soils and ground water sediments, on the

other hand, have lower statuses of the organic matter and,

consequently, lower levels of microbial population and

diversity than their surface soils counterparts (78). This is very

attributable to the bacterial ability to utilize alternative electron

acceptors other than oxygen. Other established factors

control l ing the populations of microorganisms are

temperature, dissolved oxygen, and moisture content.

Among the most common bioremediation techniques are

bioaugmentation (79), biostimulation (80), composting (81)

bioventing (82), bioleaching (83), bioreactor (84) and farming

(85), phytoremediation, and rhizofiltration (86). Bacteria are

most often highly dominant in the community of microbes with

an increase in soil depth along the soil profile than the

populations of such other organisms such as actinomycetes or

fungi, which decrease.

A primary metabolic process in organic compounds is

defined as a use of a substrate as C and energy source. The

substrate functions as electron donor, which results in the

growth of microbes. Hence, the use of co-metabolism to site-

specific amelioration of xenobiotics polluted environments is

required. Co-metabolism refers to the metabolism of a non-

carbon/energy producing compound. Aerobic process is

featured by metabolic activities that involve reactant oxygen.

Mono-oxygenases and di-oxygenases are two enzymes out of the

primary ones employed by aerobic microbes in the process of

transforming and mineralizing of xenobiotics (77). The

anaerobic microorganisms, therefore, take advantage of an

array of electron acceptors, which include Mn, Fe, SO4, CO2,

and NO3, depending on prevailing redox conditions

and availability.
Interaction between bioremediators
and the mineral particles in the
soil environment

Bacter ia l ce l l s ( the most populous among the

bioremediators) with coat of extracellular polysaccharides

(EPS) are enveloped by clay particles. The pore space where
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clay particles and bacteria interact, bound by silt- and sand

particles, is relatively enriched with organic matter including

EPS residues as illustrated in Figure 2. Fungal hyphae are

attached to the outside surface of an aggregate (87).
Factors affecting bioremediation

Among the major variables that affect microbial activity is

the ability of the microbes to reduce organic materials to serve as

sources of energy. An average oxidation state of C in a

contaminant serves as an effective source of energy for an

aerobic heterotrophic organism. Higher oxidation state,

therefore, corresponds to a lower energy yield, which,

therefore, provides less energy outcome for microbial

degradation. The result of any biodegradation practice hinges

on microbial (population diversity, enzyme activities, and

biomass concentration), substrate (physical and chemical

characteristics, molecular concentration, and structure), and an

array of environmental factors (pH, moisture content,

temperature, EC, availability of electron acceptors and carbon,

and energy sources). These parameters influence the adaptation

period of the microorganisms to the given substrate. The

contaminants concentration and molecular structure are

known to strongly influence bioremediation practicability and

the type of microbial transfiguration that occurs, and whether or

not the compound will serve as a primary, secondary, or co-

metabolic substrate (88).

The rate at which a contaminant is taken, metabolized and

transferred to the cell (i.e., mass transfer) depends on the rate at

which microbial cells can readily convert contaminants during
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bioremediation process. Boopathy and Manning (1998) (28)

explained that an increase in microbial conversion capabilities

do not necessarily lead to a higher rate of biotransformation

when mass transfer is a limiting factor. Biodegradation is

drastically stimulated by mixing the soil rigorously to break up

the larger soil particles (89). The bioavailability of a contaminant

is controlled by some physical and chemical processes such as

sorption and desorption, diffusion, and dissolution. A slow rate

of mass transfer from contaminants to the degrading microbes

results in reduced bioavailability of contaminants to microbes in

soil. When the rate of mass transfer is zero, the contaminants

become absolutely unavailable to the microbes (77). The

reduction in the bioavailability of pollutants in the course of

time is called aging or weathering, and this can occur due to: i)

chemical oxidation reactions incorporating contaminants into

natural organic matter, ii) slow diffusion into very small pores

and absorption into organic matter, and iii) formation of semi-

rigid films around non-aqueous-phase liquids (NAPL) with a

high resistance towards NAPL-water mass transfer. These

bioavailability problems can be defeated in using food-grade

surfactants (89), which increase the availability of contaminants

for microbial degradation (28).

The term bioactivity is used to indicate the operating state of

microbiological processes. Improving bioactivity implies that

system conditions are adjusted to optimize biodegradation

(90). For example, if the use of bioremediation requires

meeting a certain minimum rate, adjustment of conditions to

improve biodegradation activity becomes important and a

bioremediation configuration that makes this control possible

has an advantage over one that does not. In nature, the ability of

organisms to transfer contaminants to both simpler and more
FIGURE 2

Illustration of the interaction between bioremediators with mineral particles in the soil environment.
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complex molecules is very diverse. In light of our current limited

ability to measure and control biochemical pathways in complex

environments, favorable or unfavorable biochemical conversions

are evaluated in terms of whether individual or groups of parent

compounds are removed, whether increased toxicity is a result of

the bioremediation process, and sometimes whether the

elements in the parent compound are converted to measurable

metabolites. These biochemical activities can be controlled in an

in-situ operation when one can control and optimize the

conditions to achieve a desirable result.
Future prospects

The future use of genetically engineered microorganisms

(GEM) in enhancing bioremediation ability will be a favorable

approach. This is because engineering a designer biocatalyst target

pollutant, including recalcitrant compounds by combining a novel

and efficient metabolic pathways, will widen the substrate range of

existing pathways and will increase the stability of catabolic activity

(91). More also, using parallel gene transfer and multiplication of

GEMwill be an encouraging approach. In addition, using derivative

pathway of genetically engineered microorganisms with a target

polluted compound will increase bioremediation efficiency. Nano

materials can prevent microorganisms from the toxicity of pollutant

because nano materials increase surface area and lower activation

energy, this will reduce the time and cost of bioremediation (92).

There is need for further understanding of the relevant genomic and

proteomic sequences of bioremediators that exist in nature. The

understanding of their diversity and evolutionary relationships

existing between the bioremediator will help to develop a more

efficient bioremediation system in the future (22).
Conclusion

Bioremediation is uses natural processes to remove, remediate,

clean, manage, recover, or solve the problem of polluted soils. The

rate of pollutant degradation is determined by competition between

the biological agents (such as bacterial, fungi, and algae) nutrient

availability, abiotic factors (aeration, moisture, pH, and

temperature), and population of biological agents. Choice of

bioremediation technique depends on several factors, which
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include but not limited to cost, site characteristics, type, and

concentration of pollutants. The site characteristics help to

identify the most suitable and promising bioremediation

technique (ex-situ or in-situ). Ex-situ bioremediation techniques

tend to be more costly due to excavation and transportation from

polluted site. However, they will be wont to treat wider range of

pollutants. In contrast, in-situ techniques have no extra cost for

excavation; however, the cost of on-site installation of equipment is

an additional challenge. More also, the need for effective measure to

prevent the contamination of subsurface of polluted site can reduce

effectiveness of in-situ bioremediation methods.

Increased knowledge of the response of microbial

communities of polluted soil to the pollutant will enhance the

identification of the right microbes from the polluted site with

which field trials for bioremediation can be conducted and this

understanding will improve the capability to biodegrade

the pollutant.
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