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To explore how well large spatial scale digital soil mapping can contribute to efforts to
monitor soil organic carbon (SOC) stocks and changes, we reviewed regional and national
studies quantifying SOC within lands dominated by agriculture using SCORPAN
approaches that rely on soil (S), climate (C), organisms (O), relief (R), parent material (P),
age (A), and space (N) covariates representing soil forming factors. After identifying 79
regional (> 10,000 km2) and national studies that attempted to estimate SOC, we
evaluated model performances with reference to soil sampling depth, number of
predictors, grid-distance, and spatial extent. SCORPAN covariates were then
investigated in terms of their frequency of use and data sources. Lastly, we used 67
studies encompassing a variety of spatial scales to determine which covariates most
influenced SOC in agricultural lands using a subjective ranking system. Topography (used
in 94% of the cases), climate (87%), and organisms (86%) covariates that were the most
frequently used SCORPAN predictors, aligned with the factors (precipitation,
temperature, elevation, slope, vegetation indices, and land use) currently identified to
be most influential for model estimate at the large spatial extent. Models generally
succeeded in estimating SOC with fits represented by R2 with a median value of 0.47
but, performance varied widely (R2 between 0.02 and 0.86) among studies. Predictive
success declined significantly with increased soil sampling depth (p < 0.001) and spatial
extent (p < 0.001) due to increased variability. While studies have extensively drawn on
large-scale surveys and remote sensing databases to estimate environmental covariates,
the absence of soils data needed to understand the influence of management or temporal
change limits our ability to make useful inferences about changes in SOC stocks at this
scale. This review suggests digital soil mapping efforts can be improved through greater
use of data representing soil type and parent material and consideration of spatio-
temporal dynamics of SOC occurring within different depths and land use or
management systems.

Keywords: soil organic carbon, broad scale, environmental covariate models, SCORPAN model, digital soil
mapping (DSM), agriculture, variable importance
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1 INTRODUCTION

Interest in the use of agricultural offsets as a way to mitigate
climate change has hastened efforts to develop national and
regional soil organic carbon (SOC) inventory (1–4) that can
incentivize carbon sequestration and greenhouse gas reduction
(5) and inform end-users such as stakeholders, professional
organizations, and policymakers (6). Such efforts often utilize
digital soil mapping (DSM) and statistical modeling approaches
along with the ever-improving observations and inventories of
soil and environmental covariates (7–10). Applying DSM to
spatially-resolved covariate information can facilitate the
estimation of spatial variability in SOC (11–15) because the
influence of environmental covariates on SOC is well-known
(16–19).

Many DSM efforts on quantifying SOC have employed the
‘SCORPAN model’ term proposed by McBratney et al. (20). The
McBratney et al. (20) framework, which empirically describes the
deterministic relationship between soil attributes and
environmental covariates, is built upon Dukochaev’s early
work and Jenny’s model of soil forming factors that include
climate (CL), organisms (O), relief (R), parent material (P), and
time (T) (21). Deriving SOC with DSM approach is directly
descended from the soil foundational pedological concepts based
on soil forming factors and is more empirical (2, 22) compared to
process-based models that considers the dynamics of separate
soil C pools. In SCORPAN studies, environmental covariates are
grouped into seven categories as ‘SCORPAN predictors’, which
include: soil (S), climate (C), organisms (O), relief (R), parent
material (P), age (A), and space (N), but unlike the early
functional-factorial model, SCORPAN approach is considered
to be a hybrid of the ‘CLORPT’ concept and geostatistical
techniques (23).

Here we will use the SCORPAN framework to describe
DSM applications due to its wide acceptance (23–26), even
though the ‘SCORPAN’ term is not universally applied
because of reg ional di fferences among DSM-based
frameworks (27–30) and the data-driven nature of this
approach. Critiques of DSM-based approaches suggest they
may not adequately represent soil processes or changes in
climate or management that influence SOC (31, 32).
Moreover, the relationship between SOC and environmental
covariates is scale-dependent (33) but quantitative ranking of
covariates contributing to SOC is usually lacking at the large
spatial scale (34). To have confidence in predictions of SOC
that are based on DSM we must gain a better understanding of
strengths and weaknesses of SCORPAN-type efforts and
explore the key controlling factors.

A number of studies have skillfully discussed the history,
method and covariates, challenges, and new technologies
available for DSM-based efforts (7, 23, 35–37) but have not
attempted to assess the influence of meta-dataset. Quantitative
reviews by Grunwald (38) and Minasny et al. (39) and more
recent review work have not considered specific spatial scale (40)
or land use type (41). In this review, we analyzed previous studies
using SCORPAN-predictors to estimate SOC, to identify
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strengths and weaknesses of this approach, and determine
steps needed to improve method, datasets, and ultimately
model performance. We focused on large spatial extent
applications of SCORPAN-type approaches used to estimate
SOC from lands dominated by agriculture (henceforth,
referred to as agricultural lands) to quantitatively identify and
compare SCORPAN covariates through a meta-analytical
summary. The objectives of this study were to: (1)
quantitatively assess regional and national scale SCORPAN-
type studies regarding method, dataset, and model
performance, and (2) rank the importance of environmental
covariates used to quantify agricultural SOC.
2 MATERIALS AND METHODS

2.1 Data Collection and Screening
2.1.1 Extracting SCORPAN-Type Studies From the
Literature
We used “soil organic carbon” or “soil organic matter” and one
or more of the keywords including “SCORPAN”, “digital soil
mapping”, “soil forming factors”, “CLORPT”, “covariates”,
“kriging”, “regression”, and “machine learning” to extract
SCORPAN-type studies from articles and book sections
published between 1999 and 2019. The search was
implemented using Thomson Reuters Web of Science database
(Thomson Reuters, PA, USA) and Google Scholar (Google Inc.,
CA, USA), which returned more than 700 records.
Approximately one-fourth of the studies met the following
selection criteria: (1) the study quantified SOC concentration
or stocks; (2) the study used regression on spatially distributed
soil or environmental covariates for SOC quantification; (3) the
study did not use process-based model (e.g. CENTURY, RothC)
for SOC quantification; (4) the SOC data used for model
calibration were lab-measured rather than estimated indirectly
through infrared spectroscopic approach. Further, studies were
retained when the highest percentage of soil samples of the study
were collected from lands managed under agricultural use
(cropping or grazing). In the case where soil sample numbers
or locations from different land use types were not reported, we
assume that soil samples were collected homogeneously across
the space, so we included studies that had the largest proportion
of area under agricultural use.

2.1.2 Dataset 1: Regional and National Studies
A dataset of 79 SCORPAN-type studies that were carried out at
the regional or national scales for agricultural lands was retained
to address the first objective (Table 1). The regional scale was
defined as 10,000 to 10,000,000 km2 according to the IPCC
inventory (116). Studies with an extent smaller than 10,000 km2

or studies conducted at spatial extent larger than a nation were
excluded from this analysis. Here we use “scale” to refer to the
spatial extent as did by most DSM studies, but it should be noted
that the “scale” term is sometimes used to describe the pixel-
based spatial resolution. To avoid confusion, we referred to the
July 2022 | Volume 2 | Article 890437
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TABLE 1 | Regional and national SCORPAN-type studies quantifying soil organic carbon contents or stocks within agricultural lands.

Country Model a Spatial
extent

Grid
distance

Max
sampling depth

SCORPAN
covariates b

SOC calibration dataset c Reference d

s c o r p a n
km2 m cm

North America
USA ANN, SVR 21,033 10,255 200 X X X X SSURGO 1
USA OK 94,319 100 100 X X X NSSC 2
USA GWR, MLR 107,311 30 100 X X X X NSSC 3
USA CRT 169,639 90 30 X X X X X NCSS and RaCA 4
USA RF 169,639 500 30 X X X X NASIS 5
USA RT, SVR 269,601 30 20 X X X X X NSSC 6
USA RF 277,000 30 100 X X X X NCSS 7
USA GWR, RK, MLR 615,168 30 50 X X X X NSSC and state-level legacy databases 8
USA MLR 1,320,000 30 200 X X X STATSGO 9
USA GWR, GWRK 1,980,000 30 100 X X X X NSSC 10
USA GBRT, RF 8,080,464 100 200 X X X X X X NCSS, NASIS, and RaCA 11
South America
Chile RF 147,959 90 200 X X X X X CIREN 12
Chile CART 177,500 100 200 X X CIREN 13
Chile CNN 177,500 100 100 X X CIREN 14 e

Brazil RK 44,000 90 10 X X X X State-level soil carbon project 15
Brazil OK, RF 851,000 30 100 X X X X X BSSL and FEBR 16
Europe
UK LMM 13,840 1,000 or

2,000
20 X X Regional soil geochemical survey 17

UK RK 14,130 1,413 20 X X Regional geological survey 18
UK ANN 80,077 100 100 X X X X NSIS 19
Ireland GWR, OK, IDW,

MLR
71,000 500 10 X X X National Soil Database of Ireland 20

France QRF, RFK 27,236 100 15 X X X X National legacy soil data of France 22
France CRT 542,000 90 100 X X X X X French Soil Monitoring Network and Soil

Inventory
23

France CRT, MLR 542,000 90 200 X X X X X French Soil Monitoring Network and Soil
Inventory

24

France BRT 543,965 16,000 30 X X X X RMQS 25
France SMLR 543,965 16,000 30 X X X X RMQS 26
France RF, RK 543,965 90 50 X X X X X RMQS 27 f

Germany CIF, GBM 357,386 8,000 100 X X X X X X X German Agricultural Soil Inventory 28
Spain MLR, RF 87,000 7,490 200 X X X X Regional legacy soil databases 29
Spain SMLR 500,000 35,000 18 X X X X Published soil studies across Spain 30
Belgium MR 10,179 15 100 X X X Belgian National Soil Survey 31
Belgium MR 15,521 1,489 100 X X X Belgian National Soil Survey 32
Italy RK 22,124 1,000 30 X X Agricultural extension services and regional soil

survey
33

Italy BRT 25,286 1,000 30 X X X X Italian national soil survey 34
Italy BRT 25,286 1,000 30 X X X X Soil Database of Sicily 35
Italy QR 25,286 1,000 30 X X X X X Soil Database of Sicily 36
Switzerland MLR 15,200 250 100 X X X Literature data and national and regional soil

surveys
37

Denmark CRT 43,000 7,000 100 X X X X X DSC and DSP 38
Sweden MARS 24,000 50 20 X X National and local soil sampling campaigns 39
Hungary QRF, RFK, SGS,

UK
93,030 500 30 X X X X X SIMS 40

Hungary QRF 93,030 100 30 X X X X X SIMS 41
Croatia MLR 56,610 1,000 30 X X X X National soil inventory of Croatia 42
Ukraine RF 603,628 1,000 30 X X X X National soil sampling campaign with an effort to

compile a Global Soil Organic Carbon map
43

Oceania
Australia DT 150,000 250 100 X X X X ASRIS 44
Australia LASSO 156,150 80 30 X X X X X X X SSD and SCaRP 45
Australia MCOR 175,271 5,000 30 X X Soil sampling campaign carried out according to

the national protocol
46

Australia LASSO 290,400 28,640 30 X X X X X SCaRP 47
Australia MLR, CRT, SVR 810,000 100 100 X X X X TERN 48
Australia MLR, RF 810,000 100 30 X X X X X X MER and SCaRP 49
Australia MLR, CRT 801,600 100 100 X X X ASRIS 50
Australia RF 801,600 23,920 30 X X X X X MER and SCaRP 51

(Continued)
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TABLE 1 | Continued

Country Model a Spatial
extent

Grid
distance

Max
sampling depth

SCORPAN
covariates b

SOC calibration dataset c Reference d

s c o r p a n
km2 m cm

Australia DT 2,687,500 1,100 60 X X X X X ASRIS 52
Asia
China RFK 10,000 400 20 X X X X X Soil sampling campaign 53
China BRT 13,237 90 20 X X X Soil sampling campaign 54
China CART 14,400 13,416 150 X X X Soil sampling campaign 55
China MLR 30,193 16,877 100 X X X Soil sampling campaign 56
China GWR, GWRR,

MLR, KED,
GWRSK

50,810 30 20 X X X X Regional soil survey and soil sampling campaign 57

China BRT, GLM, OK,
RF

102,646 250 30 X X X X X HWSD and soil sampling campaign 58

China BRT 140,000 90 100 X X X Soil sampling campaign 59
China RF 140,000 90 20 X X X Provincial soil survey 60
China BDT, DT, GBRT,

RF
185,900 500 20 X X X Provincial soil survey 61

China MLR 187,400 5,640 20 X X X SNSS and soil sampling campaign 62
China MLR, UK, RK,

ANNK, RT
187,693 22,865 100 X X SNSS 63

China SMLR, OK 620,000 40,000 40 X X X X Soil sampling campaign 64
China WT 642,000 30,000 20 X X X X Soil sampling campaign 65
China RF 642,000 30,000 20 X X X X SNSS and soil sampling campaign 66
China MLR 9,597,000 104,000 30 X X SNSS 67
China MLR, RK 9,597,000 1,000 30 X X X SNSS 68
China MLR, OK, RK 9,597,000 1,000 20 X X X X SNSS 69
China CRT 9,597,000 90 20 X X X SNSS 70
China GBM 9,597,000 90 200 X X X SNSS 71
India RF 128,228 90 50 X X X NBSS and LUP 72
India RK, GWRK 304,053 90 30 X X X X X Soil sampling campaign 73
India RF 352,181 1,000 30 X X X X Soil sampling campaign designed with

information from legay mapes
74

India RF 3,287,000 250 100 X X X X X Soil sampling campaign designed with agro-
ecological region, soil type, and land use type

75

Sri Lanka GWRK, MLR 64,610 30 100 X X X X National soil carbon database of Sri Lanka 76
Kazakhstan MLR, RK, SKlm 25,000 250 15 X X Soil sampling campaign 77
Africa
Nigeria RF, CRT, BRT 923,768 1,000 100 X X X X Africa Soil Profiles Database 78
Ghana RK 238,533 1,000 30 X X X National legacy soil databases of Ghana 79
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a ANNK, artificial neural networkwith kriging; BDT, bagging decision tree; BRT, boosted regression trees; CART, classification and regression tree; CIF, conditional inference forests; CNN, convolutional
neural networks; CRT, cubist regression tree; DT, decision tree; GBM, gradient boosting machines; GBRT, gradient boosting regression tree; GLM, general linear model; GWR, geographically
weighted regression; GWRK, geographically weighted regression kriging; GWRR, geographically weighted ridge regression; GWRSK, geographically weighted regression simple kriging; IDW, inverse
distance weight regression; KED, kriging with an external drift; LASSO, least absolute shrinkage and selection operator regression; LMM, linear mixed model; MARS, multivariate adaptive regression
splines; MCOR, multivariate correlation analysis; MLR, multiple linear regression; MR, multiple regression; OK, ordinary kriging; QR, quantile regression; QRF, quantile regression forest; RF, random
forest; RFK, random forest with kriging; RK, regression kriging; RT, regression tree; SKlm, simple kriging with varying local means; SGS, sequential Gaussian simulation; SMLR, stepwise multiple linear
regression; SVR, support vector regression; UK, universal kriging; WT, wavelet transform.
b s, soil covariates; c, climate covariates; o, organisms (i.e. biotic) covariates; r, topographic covariates; p, parent material covariates; a, time covariates; n, location covariates.
c ASRIS, Australian Soil Resource Information System; BSSL, Brazilian Soil Spectral Library; CIREN, Chilean Natural Resources Information Center Soil Survey; DSC, Danish Soil Classification
database; DSP, Danish Soil Profile database; FEBR, Free Brazilian Repository for Open Soil Data; HWSD, HarmonizedWorld Soil Database; LUP, Indian Land Use Planning; MER, New South Wales
Monitoring, Evaluation, and Reporting program; NASIS, U.S. National Soil Information System; NBSS, Indian National Bureau of Soil Survey; NCSS, U.S. National Cooperative Soil Survey; NSIS,
National Soil Inventory of Scotland; NSSC, U.S. National Soil Survey Laboratory Database; RaCA, Rapid Assessment of U.S. Soil Carbon; RMQS, French soil survey network; SCaRP, National Soil
Carbon Research Program of Australia; SIMS, Hungarian Soil Information andMonitoring System; SNSS, Second National Soil Survey of China; SSD, South Australian Soil Site Database; STATSGO,
U.S. State Soil Geographic Database; TERN, Terrestrial Ecosystem Research Network collected by various institutions in Australia;
d 1 = Taghizadeh-Mehrjardi et al. (42); 2 =Mishra et al. (43); 3 = Kumar et al. (44); 4 = Adhikaria et al. (45); 5 =Huang et al. (46); 6 =Cao et al. (47); 7 = Flathers andGessler (48); 8 =Mishra et al. (49); 9 =
Guo et al. (50); 10 =Kumar (51); 11 =Ramcharan et al. (52); 12 =Reyes Rojas et al. (53); 13 =Padarian et al. (54); 14 =Padarian et al. (55); 15 =Mendonça-Santos et al. (56); 16 =Poppiel et al. (57); 17
=Rawlins et al. (22); 18 =Kerry et al. (58); 19 =Aitkenhead andCoull (59); 20 = Zhang et al. (60); 21 = Vaysse and Lagacherie (61); 22 = Vaysse and Lagacherie (62); 23 =Mulder et al. (63); 24 =Mulder
et al. (64); 25 =Martin et al. (65); 26 =Meersmans et al. (66); 27 =Chen et al. (67); 28 = Vos et al. (68); 29 = Armas et al. (69); 30 =Hontoria et al. (70); 31 =Meersmans et al. (71); 32 =Meersmans et al.
(125); 33 =Ungaro et al. (72); 34 =Schillaci et al. (73); 35 =Schillaci et al. (74); 36 = Lombardo et al. (2018); 37 = Leifeld et al. (75); 38 =Adhikari et al. (76); 39 =Piikki and Söderström (77); 40 =Szatmári
and Pásztor (78); 41 = Szatmári et al. (79); 42 = Hengl et al. (80); 43 = Viatkin et al. (81); 44 = Wheeler et al. (82); 45 = Liddicoat et al. (83); 46 = MacDonald et al. (84); 47 = Badgery et al. (85); 48 =
Somarathna et al. (86); 49 =Gray et al. (87); 50 =Gray et al. (88); 51 =Hobley et al. (89); 52 =Henderson et al. (90); 53 = Deng et al. (91); 54 =Wang et al. (92); 55 = Zhu et al. (93); 56 = Brus et al. (94);
57 = Song et al. (2016); 58 = Deng et al. (95); 59 =Wang et al. (2017); 60 = Chen et al. (96); 61 =Qi et al. (97); 62 =Ou et al. (98); 63 = Zhao et al. (99); 64 = Liu et al. (100); 65 = Zhou et al. (101); 66 =
Zhou et al. (102); 67 = Dai and Huang (103); 68 = Li et al. (104); 69 = Li et al. (105); 70 = Liang et al. (106); 71 = Liang et al. (107); 72 = Hinge et al. (108); 73 = Mitran et al. (109); 74 = Sreenivas et al.
(110); 75 = Sreenivas et al. (111); 76 = Vitharana et al. (112); 77 = Takata et al. (113); 78 = Akpa et al. (114); 79 = Owusu et al. (115).
e The study used the same dataset as Padarian et al. (2016). It was therefore excluded from further analysis to avoid double-counting.
f The study is on estimation of SOC sequestration potential, which is determined on fine fractions of SOC. Since the predictive power for SOC sequestration potential could be different from
that on SOC stocks, this study was excluded for further analysis on model performance and influential covariates.
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term resolution when describing grid distance or pixel size in this
paper. The SCORPAN covariates were grouped into S, C, O, R, P,
A, and N predictors. Other information collected from the
SCORPAN-type studies included predictive model type, study
region, error measurements, and key modeling factors (soil
sampling depth, spatial extent, and grid resolution) discussed
by Minasny et al. (39).

2.1.3 Dataset 2: Studies Reporting Covariate
Importance
All SCORPAN-type studies recovered that reported ranking or
importance of individual covariates for agricultural lands were
retained regardless of spatial extent for assessing the second
objective. We then screened the studies to keep the ones that
included at least three different SCORPAN predictors to avoid
generating bias. The dataset contained 67 studies, 54% (N = 36) of
which overlapped with the regional or national studies identified for
the first objective. Studies with various depths were reported as
separate records in Table S2. Besides the rankings of covariate
importance, information extracted from each study included study
region, spatial extent, soil sampling depth, and the statistical
technique used to generate covariate rankings.

2.2 Statistical Analysis
2.2.1 Evaluating Model Performance
We used Coefficient of Determination (R2) and Root Mean Square
Error (RMSE) as the criteria for evaluating the performance of
SCORPAN-type models. If multiple error measurements were
reported using different modeling techniques, the best-fitted
model (highest R2 or lowest RMSE) was used for the evaluation.
Results reported for different depth layers were treated as separate
records. The Spearman’s rank order correlation between the
goodness of model fit (R2) and modeling factors (soil sampling
depth, number of SCORPAN predictors, spatial extent, and grid-
distance) was calculated in R language (117) for the 130 records
(Table S1) extracted from dataset 1.

2.2.2 Examination of Covariate Utility and Modeling
Data Sources
The frequency of SCORPAN predictors (i.e. S, C, O, R, P, A, N) and
covariate uses was computed for regional and national scale SCORPAN
studies compiled in dataset 1. In the case where a covariate may be
assigned to multiple predictor categories, we adopted the authors’
assignment of the original paper. Furthermore, we investigated the
frequency of using different combinations of SCORPAN predictors.
The data sources for SOC used in SCORPANmodel calibrations were
compiled for each study in dataset 1 alongwith a summary of common
data sources for SCORPAN covariates.

2.2.3 Investigating Covariate Importance
For investigating covariate importance, we built a system by
classifying covariates statistically ranked within the first-third as
‘very influential’ and the ones ranked between one-third and two-
thirds as ‘influential’ for studies retained in dataset 2. The analysis
was based on 120 records from 67 studies (Table S2). We used
rankings reported from original studies to identify the ‘very
Frontiers in Soil Science | www.frontiersin.org 5
influential’ and ‘influential’ covariates to reduce bias. Even though
our subjective ranking system is imperfect for quantitative summary
of influential covariates because the combinations of covariates used
to build models and the statistical criteria used to rank covariate
importance can differ among the SCORPAN studies, the goal is to
identify the relative influence of spatial extent and soil sampling
depth on covariate rankings by comparing frequency of covariates
ranked within the ‘very influential’ and ‘influential’ categories
among records assigned to different spatial extent (< 10,000 km2

and ≥ 10,000 km2) and sampling depth (≤30cm and > 30cm)
groups. Finally, the frequency of covariates included in the ‘very
influential’ and ‘influential’ categories was weighted based on the
number of times that the covariates were used to build SCORPAN
models to reduce bias.
3. RESULTS AND DISCUSSION

3.1 Model Performance and Influencing
Factors for Regional and National Scale
Studies
More than 85% of the regional and national SCORPAN-type
studies identified in dataset 1 were carried out during the last ten
years, with the growth rate in publications increasing rapidly
during recent years (Figure 1). This can largely attribute to the
rapid development of DSM technologies enabling easy access to
uniform or standardized environmental covariates needed for
SOC estimation at large spatial scales. The goodness of model fit
(R2) for estimations of agricultural SOC varied from 0.02 to 0.86,
with an averaged value of 0.45 and a median value of 0.47 for all
records from the selected regional and national studies (Table
S1). Spearman’s rank order correlation between R2 and modeling
factors indicates that the goodness of model fit decreased with
deeper soil sampling depth (Spearman R = -0.327, p < 0.001),
larger spatial extent (Spearman R = -0.472, p < 0.001), and smaller
grid-distance (Spearman R = 0.240, p < 0.01). The correlation
between R2 and the number of SCORPAN predictors was positive
but not significant (R = -0.063, p > 0.05) (Table S3).

Soil depth has been considered crucial for SOC quantification,
and it is well recognized that both surface and subsurface soil
layers must be considered for effective assessment (118–120).
Numerous works have called for the use of environmental
covariates that can predict the vertical distribution of SOC
(121–123). Despite this, only 48.1% of the studies (N = 38)
quantified SOC beyond 30 cm. Negative correlation between
model fit and soil sampling depth suggests that SCORPAN-type
models better quantified SOC in surface than subsurface layers
(Table S2). While models that included SOC beyond 60 cm
depths typically had poorer fits than those considering surface
depths (Figure 2A) and half of the studies (57.9%) reporting
results for separate soil sampling depths had clearly larger RMSE
values associated with SOC estimates in deeper soils, some
studies still obtained moderate estimates (R2 > 0.5) for deeper
soil layers (Table S1). Differences among studies from a larger
dataset might make it impossible to identify covariates
contributing to model success. Use of 3-D modeling
July 2022 | Volume 2 | Article 890437
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approaches to parameterize continuous depth functions has been
proposed as one way to efficiently predict subsoil SOC stocks (43,
53, 66, 94, 124–126), but this method does not always improve
the accuracy over that obtained with traditional 2.5D modeling
frameworks that rely on predetermined depth increments. Ma
et al. (127) found “stepped” depth function artifacts can occur for
Frontiers in Soil Science | www.frontiersin.org 6
SOC prediction when depth is used as a covariate in tree-based
algorithms. Obtaining finer resolution depth measurements to
overcome data paucity issues and incorporating key pedology
drivers separated for different depth layers in SCORPAN models
would be essential for improving SOC estimates from
different depths.
A B

DC

FIGURE 2 | SCORPAN-type model performance on soil organic C quantification from agricultural lands represented by Coefficient of Determination (R2) grouped by
(A) spatial extent and sampling depth, (B) spatial extent and grid-distance for surface soil layers, (C) grid-distance and sampling depth, and (D) grid-distance and
spatial extent for surface soil layers.
FIGURE 1 | Change of the total number of SCORPAN-type regional and national studies included in this review on soil organic C quantification from agricultural
lands during a 20-year time period. The studies were also regrouped based on whether they carried out validation, independent validation, and uncertainty analysis.
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Better model fits were typically observed in SCORPAN-type
studies that covered smaller spatial extents, particularly when
models were based on surface soil layers (< 30 cm) (Figure 2B;
Table S4). This is consistent with the idea that model fits are
improved by reducing both vertical and horizontal variability. Our
observation that models built with smaller grid-distance (< 500 m),
or greater sampling intensity, did not have greater performance
(Figures 2C, D; Table S4) regardless of sampling depth and is
inconsistent with the basic rules for statistical sampling. Studies like
the work of Minasny et al. (39) find that model’s statistical power
increases with better representation of the sampled population.
These kinds of geostatistically based conclusions, which are drawn
using data mainly from field or local-scale studies with grid spacing
up to 1 km, may not apply to regional or national studies
summarized by us that consider grid distances ranging from
15 m to more than 100 km. Even though finer spatial resolution
should provide more detailed model prediction (128), the lumped
effects of variability associated with larger grid distancesmay have a
smoothing effect that reduces complexity and explain why model
fits did not decline with grid size expansion (129). Similarly,
increasing the total number of predictors involved in
SCORPAN-type model building did not have significant
influence on model performance based on the studies considered
(Table S3). This explains why the assumption that increased
availability of data representing SCORPAN covariates would
improve model predictions might fail in the situation where
added covariates cause artifacts or model-overfitting that do not
mechanistically explain the distribution of SOC (130). To further
validate the assumption, future work should test the use of different
covariate sets to identify the optimized number of predictors
needed to capture SOC variability.
3.2 Modeling Techniques and Evaluations
for Large Spatial Extent Studies
Although simple linear regressions were predominantly used,
tree-based regression techniques such as Random Forest,
Decision Tree, and Cubist Regression Tree were examined in
more than half of studies reviewed (53%, N = 42), and these
techniques were more often applied in recent publications. Only
22 studies (28%) interpolated regression residuals (unexplained
variation) using kriging to account for spatially auto-correlated
errors (Table S1), even though spatial information provided by
kriging is known to be of vital importance (131, 132). Even fewer
studies used data mining techniques such as Support Vector
Regression and Artificial Neural Network (10%, N = 8). These
machine learning techniques can potentially characterize
complicated and indirect relationships between soil properties
and environmental covariates (133, 134). Although the reported
R2 values had mixed results for different modeling approaches,
better goodness of fit was generally obtained from tree-based and
machine-learning methods than from other techniques (Table
S1). To move beyond using a single modeling technique, the
study of Tajik et al. (135) reported that the ensembled learning
technique, which utilizes multiple learners based on a number of
hypotheses, might be more robust at quantifying SOC.
Frontiers in Soil Science | www.frontiersin.org 7
Even though the need for model validation and uncertainty
analysis for SOC quantification is well-recognized (136–140),
only 49% (N = 39) of the studies we reviewed validated their
results independently. This is a slight improvement over earlier
reviews (38, 39). Other studies either used cross-validation
(37%; N = 29) or did not provide any type of validation
(14%; N = 11). We also found that less than half (N = 36,
46%) of the regional and national scale studies included model
uncertainty analysis but is more frequently included in more
recent studies (Figure 1). Most often, uncertainty is
represented by confidence intervals for model predictions that
reflect uncertainty associated with model inputs. While data
quality is a well-known source of SCORPAN model uncertainty
(38, 88), other sources including data interpolation or rescaling
(141, 142) and spatial and temporal mismatches (38, 143, 144)
were largely unaddressed.

3.3 Predictors Adopted by Large Spatial
Extent Modeling Efforts
Of the 79 regional and national-scale studies, the most widely
used SCORPAN predictors were R (93.7% of the cases; N = 74), C
(87.3%; N = 69) and O (86.1%; N = 68), followed by S (57.0%;
N = 45) and P (46.8%; N = 37). Less commonly used predictors
includedN (10.1%; N = 8) and A (5.1%; N = 4) (Figure 3A). Over
80% of the regional and national scale studies used covariates
representing 3 (25%, N = 20), 4 (34%, N = 27), or 5 (23%, N = 18)
SCORPAN predictors, with SCORP, SCOR, COR, and CORP
being the most commonly adopted combinations (Figure 3B). A
smaller percent of studies adopted covariates from two (13%; N =
10) or more than 5 predictors (5%, N = 4). The fact that studies
rarely utilize all seven SCORPAN predictors is probably because
too many covariates can cause multicollinearity issues (145) or
because of parsimony considerations. This trend may alter in the
future as more recent studies tend to use a larger number of
predictors due to increased data availability. Priorities should be
given to covariates that can best represent processes known to
influence SOC variability. Because of this, our following texts
tried to explain the physical meanings of the SCORPAN
covariates based on their frequency of use.

Our finding that relief (R) was the most used predictor
(Figure 3A) agrees with a review of soil mapping and scale
finding that soil maps at large cartographic scales have relied
more on topography than other variables (146). The R predictor
is critical for water movement and material accumulation (147)
and thus can indirectly affect predictors S, C, and O. For
example, R covariates were found to influence or correlate
with soil moisture conditions, temperature, precipitation, and
vegetation patterns (148–151). Many of the studies we reviewed
here used multiple covariates from both the ‘primary’ and
‘secondary’ attributes of the R predictor (Table 2). Primary R
attributes usually include elevation, slope, aspect, catchment
area, and landform curvatures while secondary attributes (e.g.,
soil water and erosion indices) are derived from them (152–
155). Although some R covariates are relatively independent
(e.g., Soliveres et al. (156): elevation and topographic index),
secondary R covariates may be strongly correlated (e.g., Wilson
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et al.’s (2000) stream power index and slope length factors).
Therefore, future studies may use techniques to identify and
exclude R covariates that are repeated and non-important for
SOC quantification (157–159).

Climate (C) and organisms (O) covariates are widely used in
large spatial extent studies (Figure 3A) because both factors are
likely to vary to the degree that can significantly influence
agricultural SOC (146). Climate is the main driving factor for
SOC at the large scale because of its direct influence on SOC
Frontiers in Soil Science | www.frontiersin.org 8
decomposition and indirect impacts on other S (i.e. through soil
pH and texture), O (i.e. through C inputs), and P (i.e. through
mineralogy) covariates (160, 161). Over 60% (N = 42) of the
studies that included C covariates only used precipitation and
temperature for SOC quantification. The rest of the studies
mostly used covariates including potential evapotranspiration,
solar radiation, humidity, and vapor pressure (VPD) (Table 2).
Predictor O included covariates that relate to both human
activities such as agricultural management and vegetation
TABLE 2 | The SCORPAN covariates used by studies (N =79) quantifying soil organic carbon contents or stocks within lands dominated by agriculture.

Covariate
categorya

Covariates (times used)

s soil texture (19), soil type (14), soil order or suborder (6), bare soil reflectance (5), soil available water capacity (4), soil erosion rate (4), soil
alkalinity (3), mean soil particle size (3), soil depth (3), gravel content (3), soil group or subgroup (3), soil pH (3), soil carbonate contents or index (3), cation
exchange capacity (2), soil mapping unit (2), K content (2), P content (2), N content (2), soil moisture (2), rate of river network development and persistence
(2), electrical conductivity (1), sum of exchange cations (1), drainage class (1), inherit fertility rating (1), soil intensity index (1), Ca content (1), Mg content (1),
Na content (1), soil structure (1)

c precipitation (67), temperature (66), potential evapotranspiration (13), solar radiation (9), relative humidity (4), vapor pressure deficit (4), water
or moisture regime (3), direct or diffuse insolation (2), aridity index (1), duration of sunshine (1), ecological region (1), Emberger index (1), hydro-thermal
coefficient (1), Martonne index (1), geographical region (1)

o land use, land cover, or vegetation form and cover (54), normalized difference vegetation index (35), sensor-based surface vegetation
reflectance (17), enhanced or soil-adjusted vegetation index (10), net primary production (8), synthetic fertilizer application (3), manure application
(3), cropping or rotation system (2), normalized difference wetness index (1), brightness index (1), C inputs from fertilizer, crops, straws, and root residues
(2), farm type and number of farmers (1), grain yield (1)

r slope (61), elevation (59), topographic wetness index (36), aspect (29), profile curvature (17), total or mean curvature (14), multi-resolution valley
bottom flatness (14), plan curvature (13), catchment or command area (13), altitude (9), topographic index (9), topographic position index (9), terrain
ruggedness index or number (9), valley depth (8), mid-slope position (8), flow accumulations (7), mass balance index (6), multi-resolution ridge top flatness
(6), channel network base level (6), hill shade (5), compound topographic index (4), landform type (4), terrain roughness (4), stream power index (4),
convergence index (3), vertical distance to channel (4), depth of water table (3), Bouguer anomaly (2), cross-sectional curvature (2), longitudinal curvature
(2), tangential curvature (2), land disturbance index (2), diurnal anisotropic heating (2), exposition (2), relative height (2), wind effect (2), closed depressions
(1), horizontal distance to channel network (1), ridge distance (1), sediment transport index (1), topographic openness (1), topographic class (1)

p soil parent material (13), radiometric K (9), bedrock geology (8), radiometric Thorium (6), radiometric Uranium (6), geology index (4), rock type
(3), rock fragments (2), silica content class (2), hardness of alteration material (2), mineralogy of alteration material (2), silica index (2), texture of alteration
material (2), X-ray fluorescence SiO2 (1), land type of geomorphic unit (1), smectite/kaolin ratio (1)

a period of native vegetation clearance (2), anthropogenic changes to the soil (1), stratigraphy (1), weathering intensity index (1), landform evolution (1)
n coordinates (4), distance from the coast (3), distance from groundwater (1), distance from residence area (1), distance from stream (1), location of the

district (1)
The 10 most commonly used covariates among all covariate categories were emphasized with underlines and the top 5 most commonly used covariates for each category (excluding A
and N categories) were emphasized in bold font.
as = soil covariates; c = climate covariates; o = organisms (i.e. biotic) covariates; r = topographic covariates; p = parent material covariates; a = time covariates; n = location covariates.
Number within the parenthesis refer to the frequency of covariates being used by SCORPAN studies.
A B

FIGURE 3 | The frequency of SCORPAN (A) covariate categories and the (B) combination of covariate categories used by regional and national scale studies to
estimate soil organic carbon contents or stocks within agricultural lands.
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cover and production. Most utilized O covariates are land cover
(68.4%, N = 54) and vegetation indices (53.2%, N = 42). Despite
the fact that tillage and fertilizer management significantly
impact agricultural SOC (162–164) and that the influence of
anthropogenic factors on the vertical and horizontal variability of
soil properties should be better accounted for within the
SCORPAN framework (165, 166), only 6 studies extracted
information about manure or fertilizer application and 2
studies extracted crop or rotation type. None of our reviewed
studies reported the use of tillage or residue management
practices as model covariates.

Soil (S) and parent material (P) covariates were less commonly
used than R, O, and C covariates for the large spatial extent studies
(Figure 3A). While Grunwald (38) found S covariates were used
84% of the cases to estimate various soil attributes and classes, with
SOC being used as an S covariate, we found quantification efforts
for SOC valued the utility of S factors less (< 60%). Soil
classification (25.3%, N = 20) or taxonomic data (24.1%, N =
19), followed by bare soil reflectance (6.3%, N = 5) and soil erosion
rate (5.1%, N = 4) were among the more commonly used S
covariates (Table 2). Rasmussen et al. (167) proposed that
properties such as exchangeable Ca and Fe-oxyhydroxides are
more explanatory of SOC due to their associations with SOM
stabilization mechanisms. However, those S factors are less used in
large-scale models due to a lack of data products. The most widely
used P covariates (gamma-ray spectroscopic measures, rock
fragments, and geological indices) were employed in less than a
quarter of the reviewed studies and so their utilities are difficult to
evaluate and compare with other more commonly adopted
covariates. This calls for selection and potential incorporation of
pedolologically-relevant SCORPAN covariates that can
authentically capture distinctive information about SOC
variability. Covariates like the subsolum reference groups
associated with different weathering stages proposed by Juilleret
et al. (168) are examples of P covariates that could improve
modeling of subsurface soils. In addition, established soil-
geomorphic associations such as simple and complex catenas
(169), soil associations, and other aggregations of landscape scale
soil patterns, can be configured into elements with embedded soil
covariate properties. An example of this approach is illustrated by
Atkinson et al. (170) where geomorphon (a geomorphological
phonotype) is used for digital geomorphological mapping. They
point out that geomorphon feature relevance for defining
landscape structure and terrain spatial heterogeneity must be
framed in the context of landscape or terrain detail, soil
covariate membership, DEM pixel resolution, and user
preference. Similarly, Jafari et al. (171) identified geomorphic
surfaces and terrain attributes to be effective at capturing spatial
patterns in soils. The prospect of using scale-appropriate soil
geomorphic units as components of regional-scale investigations,
which incorporate continuous variation of soil properties is a
potentially lucrative approach for improving modeling of SOC and
other soil attributes at the large spatial scale.

Even though SOC is known to vary spatially, predictor N
that explicitly describes location or space received relatively little
attention (Figure 2A). This may be because spatial information
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can be easily reflected by other SCORPAN predictors such as C
or R covariates (145, 172). Studies that considered N covariates
generally included spatial coordinates or proximity to objects in
the model (Table 2). Arguments in favor of using independent N
covariates are that variables are relatively easy to obtain and can
be used as proxies for other more complicated variables, and
can account for within-grid heterogeneity, correct spatial
autocorrelation of model residuals, and explain model
uncertainty and spatial patterns not captured by other
environmental covariates (173–176). Bjørn Møller et al. (177)
proposed the use of coordinates adjusted to oblique angles to
alleviate orthogonal artifacts, but this idea has yet to be tested in
regional or national scale SCORPAN studies.

Predictor A was even less commonly used than predictor N
in studies contained in our dataset (Figure 2A). This is
consistent with previous reviews finding limited use of
SCORPAN covariates tracking temporal trends (20, 38, 39).
We found the majority of the studies (89.9%, N = 71)
investigated SOC from just one sampling time or assumed
that SOC collected within a period of time from years to
decades from the national library were constant. Even when
studies sampled SOC multiple times to investigate changes in
SOC (46, 73, 79, 96, 97, 102), models were built separately for
each year rather than based on use of A covariates likely due to
the difficulty to resample the same soil profile. The review of
Croft et al. (178) showed that RS data may be promising for
modeling temporal SOC changes through the monitoring of
soil structural changes, soil erosion, agricultural practices in
time, but the accuracy of these covariate data obtained at the
large spatial extent need to be tested further.

3.4 Data Sources of SOC and Covariates
for Regional and National Scale Studies
The majority of the regional and national scale studies (76%)
directly utilized existing SOC databases for SCORPAN model
calibration (Table 1) while smaller percentages of the studies
combined survey data with literature values or additional field
sampling campaigns (5%). One key issue is that most databases
(Table S5) only reported SOC from a single sampling time. Since
spatial differences among soil properties can be confounded with
temporal changes when soils are collected over relatively long
time periods (e.g., decades), it would be challenging to use a
single, one-time sampling SOC database to build temporal
SCORPAN models. By harmonizing multiple soil databases or
using additional measures designed to address spatial variability
(179), enhanced SOC datasets may be incorporated into time-
space modeling frameworks for calibration to reflect SOC
dynamics (23, 38, 180, 181). However, differences among
sampling and testing methods used by databases can confound
comparisons so soil inventories must use standardized
procedures to accurately quantity change in SOC or other
dynamic soil properties. Additional opportunities may arise for
future work as networks (e.g., The Soils 2026 and Digital Soil
Mapping’ initiatives) are established to provide continuous
predictions of soil properties and the associated estimates of
uncertainty for the U.S. (30).
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The S covariates can be accessed from a large number of
gridded or point-based databases (Table S5) which most
commonly included soil order and series, and measures or
pedo-transfer function-based estimates of soil texture, bulk
density, pH, available water capacity, and cation exchange
capacity, followed by horizon depth, total N, drainage class,
and moisture. The gridded soil datasets have spatial
resolutions ranging from approximately 30 m to more than
10 km, with the finer resolution databases being mostly
interpolated (e.g., gSSURGO (182) from coarser resolution
products or estimated with the remote sensing (RS) technique
(e.g., POLARIS (183)). The majority of the soil databases
report site-based point observations rather than interpolated
results and so are often rescaled by the SCORPAN studies to
match the mapping unit and resolution of other covariates.

The C covariates including precipitation, temperature,
potential evapotranspiration, solar radiation, and VPD have
been covered by a large number of databases (Table S6), with
the spatial and temporal resolution varying from 1 to 130 km,
and from sub-hourly to monthly, respectively. There are
generally two different types of databases for C covariates, one
type uses directly measured data from stations such as the
APHRODITE (184) and the USHCN (185) databases; the
other type of datasets for C covariates are interpolated based
on measured and RS-derived data and are more widely used by
SCORPAN-type studies. For instance, the PRISM dataset that is
commonly used by U.S. studies employed elevation for data
interpolation (148) and the NASA AIRS dataset relies on the
detection of infrared energy emitted from Earth’s surface to
derive temperature and water vapor measures. The C covariates
are commonly reported at coarser spatial but finer temporal
resolution than O or R covariates (Table S6). Unfortunately, C
covariates were generally averaged in time as inputs for the
SCORPAN models especially when temporal SOC changes were
not considered. Ideally, studies could also use variance associated
with C covariates as model inputs to couple spatial SOC
estimates with temporal drivers.

The O covariates including Normalized Difference Vegetation
Index (NDVI), land use or land/vegetation cover (LULC), and
net primary production (NPP) can be easily extracted from RS-
derived datasets (Table S6). While regional and national scale
efforts typically process RS data and derive LULC products along
with more detailed crop types (e.g., CDL dataset (186)) annually
or every few years, NDVI and other vegetation indices can be
estimated at much finer temporal resolutions. Even though only
10% (N = 8) of the reviewed studies utilized NPP as a SCORPAN
covariate (Table 2), Running et al. (187) predicted that NPP
estimates can be reported as frequently as weather products in
the future. In contrast, current large-scale datasets addressing O
covariates cannot precisely identify where component practices
(e.g., fertilizer and manure application (188); tillage and residue
management (189)) are applied within agricultural landscapes.
Future SCOPRAN-type efforts on SOC modeling should make
use of more spatially-resolved management datasets provided
that there is a close association between changes in SOC stocks
and management practices (190, 191).
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The R covariates can be extracted from Digital Elevation
Models (DEMs) (192) that are built at the large spatial scales
(Table S6). The SCORPAN studies we reviewed most commonly
extracted DEMs from the Shuttle Radar Topographic Mission
(SRTM) (193), which produced a near-global database with
relatively fine spatial resolution (30 m). More recent efforts
have applied the light Detection and Ranging (LiDAR)
technology to further enhance the data quality and resolution
of R covariates by capturing fine terrain features from
complicated ecosystems (194, 195). For example, the LiDAR-
derived DEMs available for the U.S., U.K., Australia, and
Denmark have the finest resolutions among all the R data
sources (Table S6).

Although P covariates were not frequently used by studies
reviewed, some P covariates such as soil parent material,
lithology, bedrock depth, and gamma-ray spectroscopic
measures have been included in global or national datasets
(Table S6). Likewise, N factors either in the form of
coordinates or distance to specified objects is not widely
adopted but should be relatively easy to extract from GPS or
legacy maps. In contrast, information about A covariates is
generally lacking, particularly for legacy data that underpins
most soil surveys. Obtaining N factors may need to rely on
genesis type (loess, fluvial, aeolian, arid, glacial, and periglacial
landforms) or topographic proxies (196).

The advancements of RS have addressed data paucity issues by
providing a large number of SOC and SCORPAN covariate
datasets (Tables S5, S6). However, not only the spatial and
temporal coverages and resolution of the datasets but also their
data quality are major concerns for building empirical soil models
(61, 197, 198). This calls for future SCORPAN-type efforts to
thoroughly compare and check the consistency of the RS datasets
before choosing proper sources for SCORPAN covariates.
Incorporating temporal RS data as model covariates (e.g.,
vegetation cover and type, climate factors) can potentially
reduce the uncertainty of empirically estimated large spatial
scale soil properties (199, 200). Future studies may also consider
the use of temporal SOC measures enhanced with RS images (e.g.,
soil reflectance (201, 202); LULC (203)) for improving
SCORPAN-type models. It is crucial to investigate if RS
measures based on spectral analysis can be meaningfully
correlated with SOC and other S factors, or to properly
represent O factors that are indicative of biological activities or
ecosystem types within the modeled pixels. Future work should
explore if the combined use of mechanistic functions and RS-
derived SCORPAN covariates can reduce the uncertainty
associated with simulating soil processes through time (38,
180, 204).

3.5 Influential SCORPAN Covariates
Affected by Soil Depth and Study Scale
Among the covariates used, precipitation (56% of the cases) and
elevation (40%) were most commonly identified as ‘very
influential’ (Figure 4A) for quantifying agricultural SOC
estimation from surface soil layers (< 30 cm) at the regional or
broader scale (Table S2). The most commonly identified
July 2022 | Volume 2 | Article 890437

https://www.frontiersin.org/journals/soil-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/soil-science#articles


Xia et al. Review of SCORPAN for Agriculture
covariates included precipitation (73%), temperature (62%),
elevation (60%), slope (58%), NDVI or other vegetation indices
(44%), and land use/cover (38%), topographical wetness index
(33%), aspect (23%), multi-resolution valley bottom flatness (19%)
when the groups of ‘very influential’ and ‘influential’ were both
considered. These influential covariates are mainly comprised of
C, R, and O predictors. Key S covariates, including soil type and
texture, were less commonly identified as ‘very influential’ or
‘influential’ but had comparable weighted-rankings with other
covariates. This is because the S covariates were less frequently
chosen for SCORPAN model building (Table 2). Future large
spatial scale work should incorporate S covariates more often in
order to compare their utilities with other SCORPAN predictors.
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According to studies carried out to quantify agricultural SOC
from subsurface soil layers (> 30 cm) at the regional or broader
scale (Table S2), temperature (48%), elevation (41%), slope
(41%), and precipitation (37%) were most frequently identified
as ‘very influential’ (Figure 4B). By combining ‘very influential’
and ‘influential’ groups together, we identified covariates with
good utilities that included slope (78%), precipitation (63%),
topographical wetness index (59%), temperature (59%),
elevation (59%), aspect (37%), valley depth (37%), and
vegetation indices (37%). The relative rankings weighted by the
frequency of covariates being used in SCORPAN models
emphasized the significance of R covariates involving valley
depth, mid-slope position, multi-resolution ridge top flatness,
A B

DC

FIGURE 4 | The frequency of covariates identified as important for quantifying soil organic carbon from agricultural lands based on (A) large spatial extent studies
(>10,000 km2) for top soil layers (≤30 cm), (B) large spatial extent studies (>10,000 km2) for subsoil layers (>30 cm), (C) small spatial extent studies (<10,000 km2)
for top soil layers (≤30 cm), (D) small spatial extent studies (<10,000 km2) for subsoil layers (>30 cm). Covariates ranked within the first one-third of each record were
labeled as ‘very influential’, and the ones ranked between one-third and two-thirds were labeled as ‘influential’. The scaled frequency shown for regional and national
scale studies were calculated as the frequency of covariate identified divided by the times they were used to build SCORPAN models.
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and hill shade. Even though agriculture area is generally located
in flat area where the influence of R covariates are likely reduced,
it seemed difficult to capture spatial dynamics of subsurface SOC
with covariates or measures (e.g. from RS) that focus on surface
heterogeneity. Miller et al. (205) pointed out that SOC levels of
soil subsurface layers were largely influenced by hydrologic
factors rather than O factors, which is consistent with our
finding that some of the key C and R covariates that can
greatly affect hydrological processes were identified as ‘very
influential’, while vegetation indices and land use/cover were
more commonly identified as ‘influential’ rather than ‘very
influential’ for this category.

For quantifying agricultural SOC estimation from surface
soil layers (< 30 cm) at the field or local scale (Table S2),
elevation (65%) and vegetation indices (42%) were more
frequently identified as the ‘most influential’ covariates than
others (Figure 4C). The ‘most influential’ together with
‘influential’ groups identified elevation (77%), topographical
wetness index (50%), vegetation indices (46%), slope (42%),
and multi-resolution valley bottom flatness (31%) with good
model utility. The results differed from the ones identified by
regional and national scale studies, in that only R and O
covariates seem to be most important at this spatial scale.
Typical C covariates such as temperature and precipitation
were not as frequently identified as influential in these studies.
Climate conditions as the first-order control have more
predominant influences on SOC at a broader spatial scale,
while second-order controls such as microtopographic
covariates are better at describing erosion and water flow
over small areas and therefore are more influential on SOC
distribution at the local scale (206, 207).

Among studies quantifying agricultural SOC estimation from
subsurface soil layers (> 30 cm) at the field or local scale (Table
S2), elevation (47%) and slope (33%) were most frequently
identified as ‘most influential’ (Figure 4D), and covariates
identified as ‘influential’ or ‘very influential’ most commonly
included slope (80%), elevation (73%), topographical wetness
index (47%), plan curvature (47%), and profile curvature (40%).
It should be noted that the dataset is too small for this category so
our results might be biased towards studies with more records
than others. However, the observations we reviewed here showed
much stronger utility of R than other covariates. This is in line
with our regional and national scale results where O covariates
showed weaker utility in quantifying agricultural SOC from
subsurface than surface soil layers compared to R covariates. It
should be noted that the comparison of importance between O
and R covariates might differ for regional and national scale
studies that involve more heterogeneous ecosystems and
vegetation types.

The identification of covariate importance is critical for
building effective SCORPAN models at the large spatial extent
because use of redundant covariates would cause additional
computation costs and introduce sources of uncertainty.
However, it is unrealistic to generate a universal set of
important covariates because the covariates identified are
influenced by the characteristics of the studies (e.g., site
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characteristics, spatial extent and resolution, soil depth,
modeling methods, data sources and interactions among
covariates). For example, the R covariates were illustrated to be
more influential for SOC estimation compared to S or P factors in
higher elevation areas where lower temperature favored the
efficiency in SOC stabilization, while the opposite were found in
lower elevation regions (208). Viscarra Rossel et al. (209) also
reported the significance of regional controls on SOC mapping for
large spatial extent and the importance of considering the
interactions between C and S, R, and P covariates. These
findings call for regionally or locally calibrated SCORPAN
models (e.g., separate calibration samples and covariate selection
for each predictive point or group of predictions), which, to our
knowledge, has not been incorporated to the regional and national
scale modeling scheme but should be plausible in the future with
the advancement of high-performance computing platforms.
Moreover, even though our work points to use of C, R, and O
predictors as generally effective SCORPAN covariates for
estimating agricultural SOC from the large spatial extent, more
efforts are needed to confirm the role of S or P factors regarding
whether they contribute to additional predictive power that cannot
be achieved with regularly used covariates. It might be the case that
S or P factors can be used effectively to delineate representative
landscapes (210) for regional or national scale within which the C,
R, and O predictors could be applied to build robust SCORPAN
models for SOC estimation.
4 SUMMARY AND FUTURE WORK

Our meta-analysis examined studies estimating agricultural
SOC stocks at the regional and national scales. Although
estimation methods and selection of environmental
covariates varied among the studies, we identified several
shortcomings, gaps and opportunities that can provide
guidance for future refinements. Our statistical summary of
current national and regional SCORPAN-type studies showed
that: (1) the performance of SCORPAN models decreased
with spatial extent, increased with grid-distance, and had no
obvious correlation with the number of predictors employed;
(2) instead of pursuing finer resolution grids and models with
many predictors, refinements should focus on model
performance and their underpinning structures, and quality
of data sources; (3) there is a general lack of investigation on
using the SCORPAN method for modeling both SOC in time
and space due to the difficulty of obtaining a temporally-
resolved calibration dataset for the large spatial extent; (4)
more work is needed to evaluate the modeling of SOC from
deeper depth layers using SCORPAN covariates; (5) in
addition, future work should carry out rigorous independent
validation and examine model uncertainty estimates
associated with not only the individual data source but also
combined effects of all error sources.

To date, SCORPAN-type estimation of agricultural SOC
has relied mostly on topography (R), climate (C), and
organisms (O) covariates, which can be easily obtained
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from national databases and RS-derived products. Fewer
studies considered soils (S) and parent material (P)
covariates in SCORPAN models regardless of their
influences on soil processes. The frequency of SCORPAN
covariate usage generally aligned with our quantitative
analysis on covariate importance which found that
precipitation, temperature, elevation, slope, vegetation
indices, land use/cover, and topographical wetness were the
most consistent predictors for large spatial extent SOC
estimates. Especially, R factors including elevation and
slope were among the most influential covariates for
SCORPAN-type estimation of SOC regardless of soil depth
or spatial extent. The O factors, such as vegetation indices
and land use/cover, were influential for estimation of surface
SOC but less effective for the modeling of SOC at subsurface
depths. However, differences in data quality and availability,
and modeling approaches likely account for some of the
ranking variations. Inter- and intra- regional soil-landscape
variation coupled with the influence of land use and
management type may also contribute to covariate ranking
differences that are worth exploring, which calls for more
explicit investigation of S and P factors in establishing model
geographic integrity and utility.

The dynamic nature of SOC in time and space (both
horizontal and vertical) presents an essential challenge for
advancing the utility and relevance of SOC estimation.
However, the time (A) and space (N) covariates are only
sparsely represented in current studies. The implementation of
time-space modeling framework together with the use of more
spatially and temporally resolved SOC databases as well as
improved environmental covariate datasets are needed to
improve SOC estimates. Moreover, management datasets
derived from remote sensing and large scale survey can
provide valuable opportunities for improving the estimation of
SOC dynamics. The regional and national-scale SCORPAN
studies generally had poorer predictive powers for deeper soil
depths. Efforts to improve estimates of SOC from the whole soil
profile require measurements of different soil depths for
SCORPAN model calibration and the optimization of
continuous depth functions coupled with depth-dependent
Frontiers in Soil Science | www.frontiersin.org 13
environmental covariates. For the next step, digital soil
mapping should: (1) take advantage of the evolving datasets to
locally select calibration datasets for estimation that can better
reflect SOC dynamics in space; (2) evaluate the utility of
SCORPAN models for estimating SOC changes in time by
harmonizing survey datasets in time at the large spatial extent;
(3) carry out model performance comparisons among
SCORPAN models (e.g. different machine learning models,
different resolution of inputs) and between SCORPAN and
process-based models; (4) select and compare SCORPAN
model performance in relation to the set of selected covariates;
and (5) explore covariates needed to better explain SOC
dynamics in deeper soil depths.
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