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Shrub encroachment is a common phenomenon in grasslands all over the world.
However, little is known about the consequences of shrub encroachment on soil
microbial community structure in different layers. We investigated the effects of three
common shrub encroachment (Potentilla fruticosa, Spiraea alpina, and Caragana
microphylla) on grassland soil bacterial communities at the surface and deep layers in
Qinghai–Tibetan Plateau. 16S rRNA gene sequencing was used to investigate the
bacterial communities, and Fourier translation infrared spectroscopy (FTIR) was
conducted to assess the soil organic carbon (SOC) chemical composition in surface
and deep layers of shrub-encroached alpine grassland. Shrub encroachment has
significantly increased SOC degradation in deep layer. After shrub invasion, the
bacterial alpha-diversity in the surface and deep soil was higher than in grassland soil
(except for the surface layer of C. microphylla). Factors driving bacterial community
changes in soil surface and deep layer were different. Among the soil properties that were
measured, SOC content was the primary factor that altered soil bacterial community
composition in surface soil, while SOC chemical composition (aromatic and
polysaccharides) was the main driver in the deep layer. A total of 39 and 42 biomarkers
were found by linear discriminant analysis (LDA) effect size (LEfSe) in the surface and deep
soil layer among the four sampling groups, respectively. Phylogenetic investigation of
communities by reconstruction of unobserved states (PICRUSt) showed that the most
abundant predicted functional genes belonged to categories of metabolism (52.83%) in
the primary metabolic pathway. Redundancy analysis (RDA) results also showed that the
key factors affecting bacterial metabolic function appear to be SOC, pH, and aromatics,
which are largely consistent with those affecting community composition. We suggest that
shrub encroachment affect the structure, diversity, and predicted functions of bacterial
communities, thus affecting the C cycle in this region.

Keywords: shrub encroachment, bacterial community, soil organic carbon, 16S rRNA, Fourier translation infrared
spectroscopy (FTIR), soil layer
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INTRODUCTION

Grasslands around the world are experiencing a rapid transition
from herbaceous to shrub dominance, a phenomenon known as
shrub encroachment (SE) (1, 2). This process is driven by many
factors, such as climate change, gas/nutrient cycling, human
management, edaphic characteristics, and moisture, which vary
from different regions (3). Changes in the dominance of
herbaceous to woody plants alter primary production, plant
distribution, and root depth, which may potentially persist to
several meters belowground (4), and nutrient cycling and carbon
storage (5). Soil organic carbon (SOC) is the largest reservoir of
organic carbon in terrestrial ecosystems, and the effects of shrub
encroachment on the soil organic carbon cycle are particularly
important (6). The topsoil has more extensive organic carbon
content than deep soil; hence, it plays an important role in the
global C cycle (7). Previous studies showed inconsistent results of
the effect of shrub encroachment on SOC, reporting an increased
SOC storage (8), while some showed that it remained constant
(9) or decreased (10). These discrepancies may be primarily
attributed to climate, vegetation types, soil properties, historical
land-use patterns, and scales (10, 11). Therefore, exploring the
impact of shrub encroachment on microbial community in the
Qinghai–Tibetan Plateau can help us further understand the
response of soil carbon pool to shrub encroachment in
alpine grassland.

Soil microorganisms are sensitive to the changes in the
external environment, including dynamics of plant community
composition (12). Vegetation types are the primary determinants
of soil microbial community structural and functional diversity
to different degrees (13). Plant community shapes bacterial
communities through inputting litter and root exudates into
the soil (14). Furthermore, different root exudates will largely
contribute to the heterogeneity of microorganisms. Mixing of
woody and herbaceous plants’ litter increased the chemical
complexity of the matrix pool and further increased the
microbial niche space and diversity (15). With the deeper and
broader roots, the shrub can transport organic carbon from the
surface layer to the deeper soil (16), potentially increasing the
diversity of the bacterial community in the deeper soil.
Microorganisms in deeper soils have a greater influence on
soil-forming processes than topsoil due to their proximity to
soil parent material (17). Soil properties are highly
heterogeneous in the profile, which can be seen at different soil
depths. The topsoil is rich in available carbon substrates due to
the input of root exudates, litter, and root detritus. In contrast,
the input ratio of C to the deep layer is generally lower (18). Soil
C is generally divided into labile C (easy to mineralize, with short
turnover time) and recalcitrant C (not easy to mineralize, with
long turnover time) (19). Generally, according to SOM
availability, the soil microbiome can be classified into
oligotrophic and copiotrophic categories (20). The
oligotrophics are characterized by their ability to grow at low
substrate concentrations and generally have higher substrate
utilization efficiency. In contrast, the copiotrophics are more
sensitive to available carbon sources (21). Although the effects of
Frontiers in Soil Science | www.frontiersin.org 2
shrub encroachment on aboveground and belowground
communities have been extensively studied, little is known
about the effects of shrub encroachment on deep soil microbial
communities and the vertical spatial distribution of soil
microbial community structure.

SOC mainly derives from plant litter (i.e., shoot and root
litter) and root exudates (22). Plant litter comprises
polysaccharides, aromatic compounds, and aliphatic
compounds (23). Previous research has demonstrated that the
quality and quantity of plant litters contribute to the
accumulation of organic carbon at the surface (24), while root
litter and root deposits are the main carbon sources in deep soils.
The above- and below-ground inputs of plants are often different
in chemical composition and quantity (23), which may affect C
accumulation in the soil profile. Recalcitrant plant inputs lead to
higher carbon stocks, while labile plant inputs lead to lower
carbon stocks (25, 26). Soil carbon cycling is ultimately the result
of the growth and activities of microorganisms (27), like
abundance, diversity, or community composition (28). For
example, dilution of soil suspension leads to a decline in
microbial diversity, reducing the degradation of readily
degradable and persistent decomposition of carbon sources in
grasslands (29). Most soil microorganisms rely on carbon
decomposition for energy, and a recent meta-analysis based on
a global scale concluded that SOC content is a key driver of soil
bacterial diversity (30, 31). Moreover, some microbial groups
also participate in the decomposition of soil organic matter,
causing changes in soil organic carbon composition and
ultimately affecting soil CO2 emission (32). There are
significant differences in carbon dynamics and biological
processes between surface and deep soil due to vertical
variations in substrate quality and microbial activity with soil
depth (7). However, the changes in SOC in the soil profile after
shrub encroachment in the Qinghai–Tibetan Plateau are still
unclear, and there is still a lack of understanding of the
relationship between SOC and soil bacterial communities.

Qinghai–Tibetan Plateau (QTP) is the highest plateau on earth,
the largest single geographical unit in the world, and is known as
the “Third Pole” (33). This region is also considered as the
sensitive area for global climate change and an initiation zone
for climate change in China. The alpine grassland is the dominant
ecosystem on the QTP, accounting for more than 50% of the total
area of the plateau (34). Similarly, grasslands on the QTP are
encroached by shrubs. Previous studies have focused on the effects
of shrub encroachment on aboveground and soil microorganisms
in arid and semi-arid regions. The effects of shrub encroachment
on soil microbial communities may vary with different climates,
vegetation, and soil types (35). However, the relationship between
shrub encroachment and the soil microbial community in
different soil layers in alpine grassland remains largely unknown.
Therefore, in this study, we use high-throughput techniques to
investigate the diversity and composition of bacterial communities
and their potential functions in the surface (0–10 cm) and deep
(50–60 cm) layers of three common shrubs (Potentilla fruticosa,
Spiraea alpina, and Caragana microphylla) on the Tibetan Plateau.
Our major hypotheses were as follows: (1) the shrub
June 2022 | Volume 2 | Article 829575
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encroachment would not significantly change the soil organic
carbon content in surface and deep layers; (2) the shrub
encroachment would increase the diversity of soil microbial
communities and alter the soil microbial composition in the
surface and deep layers; (3) the shrub encroachment would alter
the carbon cycle of alpine grassland in Qinghai–Tibetan Plateau by
changing the composition and predicted functions of the
bacterial communities.
MATERIALS AND METHODS

Study area
The study was conducted near the Qinghai–Tibetan Plateau
Research Station of Southwest Minzu University (N 32°49'38",
E 102°34'21"), located in Hongyuan County, Sichuan Province,
China (Figure 1). The region is located on the eastern edge of the
Qinghai–Tibetan Plateau, a transition zone from the
mountainous region to the plateau in the northwest of
Sichuan. The altitude of the study area is 3,500 m, the average
annual temperature is 0.9°C, and the average annual
precipitation is 690 mm (36). The soil type is alpine shrub
meadow soil, and the parent material of soil is slope deposit. S.
alpina, C. microphylla, and P. fruticosa are three shrubs growing
in the sampling area for 20 years. The main species in the
grassland matrix belong to the Gramineae family.

Soil Sampling
Soil samples were collected at 18 shrub-encroached and 6
grassland matrixes in early August 2019. In this study, we
selected three typical shrubs (S. alpina, C. microphylla, and P.
fruticosa) and a grassland matrix without shrub growth as a
Frontiers in Soil Science | www.frontiersin.org 3
control. Each matrix is 100 m apart. The area of each plot is
about 50 m×50 m. Each plot has six small quadrants of 1m×1m
(Figure 1). The surface layer (0–10 cm) and deep layer (50–60
cm) soils were collected within each plot. Using the 5-point
approach (four vertices and the center of plots), soil from
grassland plots was collected and then mixed as one sample for
control soils. Each shrub-encroached soils were collected under
six shrub canopies (near the roots), which were closest to the four
vertices and the center of the plot, and then mixed as a sample
(Supplementary Figure S1). A total of 48 samples, 12 (6 sites × 2
layers) from control grassland and 36 (3 species ×6 sites × 2
layers) from shrub-encroached soils were analyzed in this study.

Soil Properties
To evaluate the soil pH, the soil was sieved (2 mm mesh) to
carefully remove fine roots, seeds, and plant materials after air
drying. Soil pH was determined with acidity meter, and the soil
to water ratio was 2.5:1. The remaining soil samples were divided
into two sub-samples and sieved (0.125 and 0.15 mm) to
determine the SOC content and chemical composition,
respectively. The SOC content as determined using an
Elementar Variomax CNS Analyzer (Elementar Corp.,
Hannau, Germany). Fourier translation infrared spectroscopy
(FTIR) can be combined with high-throughput gene sequencing
to clarify the relationship between soil microbial community
structure and SOC chemical composition. The soil/97%KBr mix
(1:80 w/w) was homogenized by grinding with an agate mortar
and pestle. The spectral range was 4,000–400 cm−1 and an
average of 16 scans with a resolution of 4 cm−1 for each
sample. The relative peak area (S, %) was calculated as the
ratio of the area of an obviously reflected peak (e.g., 3,435,
2,930, 1,620, or 1,034 cm−1) to the sum of all four selected
FIGURE 1 | The map of sampling sites and experimental design.
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peaks (37). The S provided an estimate of the relative abundance
of different chemical composition in SOC: aliphatic (2,930 cm−1),
aromatic (1,620 cm−1), polysaccharides (1,034 cm−1), and
alcohol (3,435 cm−1) (38).

Index 1 =
S2930 + S1620
S3435 + S1034

Index 1 is a relative peak area ratio of aliphatic and aromatic
to polysaccharides and alcohol, an increase of which is thought to
be associated with greater recalcitrance of SOC (39). S is the
relative peak area; each number represents the corresponding
wavelength of the characteristic peak (cm−1).

Soil DNA Extraction, PCR, and Illumina-
Based Sequencing
Microbial DNA was extracted using the PowerSoil® DNA
Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA) from
0.25 g of fresh soil according to the manufacturer’s protocols.
After that, agarose gel and Nanodrop (Nanodrop 2000, Thermo
Scientific) were used to detect the purity and concentration of
DNA. The extracted DNA was diluted to 10 ng/ml with sterile
water and stored at −40°C.

Using the diluted genomic DNA as a template, the V4–V5
region of 16S rRNA gene was amplified using the primers
(forward primers 515F:5’-GTGCCAGCMGCCGCGGTAA-3’
and reverse primers 909R:5’-CCCCGYCAATTCMTTTRAGT-
3’) (40). PCR was carried out in 25 ml reaction mixtures
containing 2× Taq MasterMix, 12.5 ml; forward primer, 1 ml,
reverse primer, 1 ml; ddH2O, 9.5 ul; DNA (10ng/ml), 1 ml. The
PCR amplification program included initial denaturation at 94°C
for 3 min, followed by 30 cycles of 94°C for 40 s, 56°C for 60 s,
and 72°C for 60 s, and a final extension at 72°C for 10 min (41).
Two PCR reactions were performed for each sample and
combined after amplification. The PCR products were
evaluated using 1% agarose gel electrophoresis, the target band
was recovered with the DNA Gel Extraction Kit, and the
concentration and quality were determined by Nanodrop. The
samples were mixed according to the concentration of PCR-
recovered products. Sequencing libraries were generated using
the TruSeq® DNA PCR-Free Sample Preparation Kit. After
Qubit quantification, the libraries were sequenced using
Illumina NovaSeq 6000 (2×250 bp).

Sequence Data Processing
Sequences were merged using FLASh (V1.2.7, http://ccb.jhu.edu/
software/FLASH/) (42). The merged sequences with high quality
(reads length >300 bp, without ambiguous base “N,” and average
base quality score >30) were used for further analysis. The aligned
16S rRNA gene sequences were used for a chimera check using
the Uchime algorithm (43). After removing the chimera, effective
tags were obtained for the subsequent analysis. The effective tags
of each sample were clustered into an operational taxonomic unit
(OTU) matrix using USEARCH (http://drive5.com/usearch) at a
97% similarity threshold (44). Sequences annotated as
chloroplasts or Viridiplantae were removed. Representative
sequences for each OTU were selected using the command
Frontiers in Soil Science | www.frontiersin.org 4
“pic_rep_set.py” in QIIME (V1.9.0) (45), and singletons were
also removed. QIIME was used to annotate OTU representative
sequences, and Silva V132 was used as the reference database
(46). Finally, the OTU table was rarefied to a depth of 10,595
reads per sample. Alpha diversity, including Shannon and
observed species, and beta diversity based on Unifrac distance
were calculated by QIIME. The original sequence data are
available at the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) by accession number
PRJNA801100, and additional data are available from the
corresponding author on reasonable request.

Statistical Analysis
For the differences in soil variables, including soil pH, SOC
content, SOC chemical composition, bacterial composition, and
alpha diversity, the Shapiro–Wilk normality test and Levene’s
test were used to test the normality and homoscedasticity of the
data, respectively. When the data could meet the normality and
homoscedasticity criteria simultaneously, ANOVA and Tukey’s
honestly significant difference (HSD) comparisons were used to
test the significance of difference among four groups, or
Wilcoxon’s test was used in SPSS version 22.0. Redundancy
analysis (RDA) was employed using Canoco (version 5.0) to
evaluate the relationship between soil properties and the relative
abundance of bacteria and bacterial function. The differences in
bacterial community composition among groups were analyzed
by principal coordinate analysis (PCoA) with Unifrac distances
and permutational multivariate analysis of variance
(PERMANOVA; permutations = 999) using R v.3.6.1. The
microbial biomarkers were obtained by the linear discriminate
analysis (LDA) effect size (LEfSe) method (http://huttenhower.
sph.harvard.edu/galaxy) using the Kruskal–Wallis test to
determine the significant different taxa among four groups
(47). LDA was performed to evaluate the difference of each
microbial taxon with a threshold value of 4.0. PICRUSt (http://
huttenhower.sph.harvard.edu/galaxy) was used to predict
functional characteristics that may be conveyed by bacterial
communities. The functional genes were identified from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
However, there are some limitations when interpreting PICRUSt
predictions. For example, the ability of PICRUSt detection
patterns depends on the input data used. If the marker gene
sequences used between strains are the same, the software cannot
distinguish the variation at the strain level; if these genes are not
included in the input genome data used, or if the path annotation
is currently poor, the software cannot detect gene families (or
summarize them into the path) (48).
RESULTS

Soil pH
The pH of the surface soil beneath S. alpina was significantly
higher than that of the grassland soil (p =0.01), whereas the
topsoil pH of P. fruticosa (p > 0.05) and C. microphylla (p > 0.05)
shrubs was not significantly different from that of the grassland
June 2022 | Volume 2 | Article 829575
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soil (Figure 2). The deep soil pH of the three shrubs was not
significantly different from the pH of the grass matrix (Figure 2).
In addition, the difference between surface and deep soil pH of
the grassland was significant (p = 0.04), while the pH of the three
shrub matrixes was not (p > 0.05) (Figure 2).

SOC Contents
The SOC content of three shrubs matrixes did not significantly
change in surface and deep layers (Figure 3) compared with that
of grassland. We found that the SOC content of the grassland
was significantly higher in surface layer than deep layer (p =
0.02), and this phenomenon was not found in any of the three
shrub matrixes (Figure 3).

The SOC Chemical Composition
The infrared spectrum characteristic peaks of three shrub and
grassland matrixes in alpine grassland were similar, mainly at
3,435, 2,930, 1,620, and 1,034 cm−1, and they were alcohol,
aliphatic, aromatic, and polysaccharides, respectively, according
to their FTIR spectral absorption peaks. There was no significant
difference in SOC chemical composition between shrubs and
grassland matrixes in surface layer. The invasion of C.
microphylla and P. fruticosa shrubs significantly increased the
content of polysaccharides (p = 0.00) and alcohol (p = 0.00),
respectively, compared to the grassland deep layer. P. fruticosa
also decreased the content of aliphatics in deep layer when
compared with that in grassland (p = 0.03). None of the three
shrubs significantly affected surface SOC recalcitrance, compared
to the grassland surface layer (p > 0.05) (Table 1). For the deep
layer, the invasion of S. alpina (p = 0.04), C. microphylla (p =
0.00), and P. fruticosa (p = 0.01) significantly reduced the
resistance to the decomposition of SOC (Table 1).
Frontiers in Soil Science | www.frontiersin.org 5
Soil Bacterial Alpha-Diversity
Soil bacterial alpha-diversity (Shannon index and observed
species) was calculated at a depth of 10,595 random sequences
per sample. In the 0–10 cm and 50–60 cm layer, the Shannon
diversity of P. fruticosa (p = 0.002; p = 0.027) and S. alpina (p =
0.000; p = 0.001) was significantly higher than that in grassland
(Figure 4A). For the observed species, P. fruticosa shrub
increased the number of OTUs (p = 0.007) compared to that
in grassland. In the deep layer, the observed species were higher
than that in grassland (p<0.05) (Figure 4B). The Shannon
diversity and observed species of soil bacteria in the surface
layer of P. fruticosa (p = 0.002; p = 0.004) and grassland (p =
0.000; p = 0.000) soil were significantly higher than that in the
deep layer, but not in C. microphylla (p > 0.05) (Figure 4).
Soil Bacterial Community Composition
Across all soil samples, we obtained 2,798,400 high-quality
bacterial sequences with 10,000–10,595 sequences per sample.
Soil bacterial community composition was analyzed at a depth of
10,595 randomly selected sequences per sample. The dominant
phyla (average relative abundance >1%) in the study were
Acidobacteria, Proteobacteria, Actinobacteria, Chloroflexi,
Gemmatimonadetes, Latescibacteria, Planctomycetes,
Rokubacteria, and Bacteroidetes (Figure 5; Supplementary
Figure S2). The abundance of Acidobacteria in S. alpina (p =
0.003; p = 0.032) and C. microphylla (p = 0.013; p = 0.018)
matrixes was lower than in grassland in the surface and deep
layer, respectively (Figure 5). However, the abundance of
Actinobacteria in S. alpina (p = 0.037; p = 0.022) and C.
microphylla (p = 0.000; p = 0.002) matrixes was higher than in
grassland in the surface and deep layers (Figure 5).
FIGURE 2 | Soil pH. Different lowercase letters indicate significant differences between the different soil layers within the same vegetation types (p < 0.05,
independent-samples t-test). Different uppercase letters indicate significant differences between the different vegetation types within the same soil layers (p < 0.05,
Tukey’s HSD test).
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We utilized PCoA to analyze differences in surface and deep
soil bacterial communities between three shrub and grasslands
matrixes. The two PCs explained 38.24% (PC1) and 18.12%
(PC2) of the variance, respectively (Figure 6). PERMANOVA
analysis confirmed that the soil microbial composition was
significantly different under three typical shrub and grassland
in surface and deep soil (p < 0.05), respectively (Supplementary
Table S1).

LEFSe analysis further identified the microbial groups with
statistical differences among the four groups of soils. The results
showed 39 and 42 biomarkers in the surface and deep layer
among the four groups, respectively (Figure 7). In the surface
soil of grassland patches, the abundance of bacteria was
significantly higher in two phyla (Acidobacteria and
Frontiers in Soil Science | www.frontiersin.org 6
Chloroflexi), five genera (freshwater sediment metagenome,
GOUTA6 , HSB OF53 F07 , Ellin6067 , and Candidatus
Solibacter) than in the shrub patches; C. microphylla patches
had a significantly higher abundance of bacteria in one phylum
(Actinobacteria) and three genera (Acidothermus, Conexibacter,
and Bradyrhizobium); P. fruticosa patches had a significantly
higher abundance of bacteria in two genera (Gaiella and
Pseudonocardia); S. alpina patches had a significantly higher
abundance of bacteria in one genus (MND1) (Figure 7A). In the
deep soil of grassland patches, the abundance of bacteria was
significantly higher in two phyla (Chloroflexi and Rokubacteria),
three genera (freshwater sediment metagenome, GOUTA6,
Candidatus Methylomirabilis, and Geobacter) than in the shrub
patches; C. microphylla patches had a significantly higher
FIGURE 3 | Soil organic content. Different lowercase letters indicate significant differences between the different soil layers within the same vegetation types (p <
0.05, independent-samples t-test). Different uppercase letters indicate significant differences between the different vegetation types within the same soil layers (p <
0.05, Tukey’s HSD test).
TABLE 1 | The chemical composition and recalcitrance of SOC in surface and deep layers of shrub and grassland patches on the Qinghai–Tibet Plateau.

Potentilla fruticosa Caragana microphylla Spiraea alpina Grassland soil

Surface layer
(0-10cm)

Deep layer
(50-60cm)

Surface layer
(0-10cm)

Deep layer(50-
60cm)

Surface layer
(0-10cm)

Deep layer(50-
60cm)

Surface layer
(0-10cm)

Deep layer(50-
60cm)

Aliphatic(%) 11.48 ± 4.69Aa 4.95 ± 2.24Ba 22.36 ± 12.63Aa 20.36 ±
4.28ABa

13.80 ± 6.53Aa 11.85 ±
4.98ABa

19.20 ± 5.96Aa 20.43 ± 4.56Aa

Aromatic (%) 44.14 ± 12.29Aa 56.83 ± 2.41Aa 53.01 ± 4.89Aa 24.25 ± 1.12Ab 53.26 ± 1.19Aa 53.89 ± 1.82Aa 50.47 ± 1.41Aa 53.74 ± 2.18Aa
Polysaccharides
(%)

24.76 ± 13.58Aa 14.40 ± 3.71Ba 11.62 ± 2.60Ab 36.84 ± 2.12Aa 16.81 ± 0.42Aa 16.47 ± 0.67Ba 15.96 ± 1.61Aa 12.89 ± 3.63Ba

Alcohol (%) 19.62 ± 6.12Aa 23.82 ± 3.83Aa 13.02 ± 7.25Aa 18.54 ±
1.05ABa

16.13 ± 6.30Aa 17.80 ±
4.60ABa

14.37 ± 8.42Aa 10.43 ± 1.96Ba

The recalcitrance
of SOC

1.29 ± 0.37Aa 1.62 ± 0.03Ba 3.45 ± 1.53Aa 0.81 ± 0.10Bb 2.11 ± 0.60Aa 1.95 ± 0.36Ba 2.51 ± 0.93Aa 3.53 ± 1.10Aa
June
 2022 | Volume 2
Values are given as mean ± standard error (n=6).
Different lowercase letters indicate significant differences between the different soil layers within the same vegetation types (p < 0.05, independent-samples t-test). Different uppercase
letters indicate significant differences between the different vegetation types within the same soil layers (p < 0.05, Tukey’s HSD test).
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abundance of bacteria in two phyla (Actinobacteria and
Nitrospirae) and two genera (Gaiella, Nitrospira); P. fruticosa
patches had a significantly higher abundance of bacteria in one
phylum (Acidobacteria) and one genus (MND1); and S. alpina
patches had a significantly higher abundance of bacteria in one
genus (RB41) (Figure 7B).

Redundancy analysis showed that the explanatory rate of all
physical and chemical factors was 80.62% in the surface layer and
77.78% in the deep layer (Figure 8). In the topsoil, pH, aliphatic,
SOC stability, and SOC were positively correlated with the relative
abundances of Actinobacteria, Bacteroidetes, Planctomycetes, and
Proteobacteria (Figure 8A). Aromatic and alcohol were positively
Frontiers in Soil Science | www.frontiersin.org 7
correlated with the relative abundances of Chloroflexi,
Latescibacteria, Rokubacteria, and Gemmatimonadetes
(Figure 8A). In the deep soil, aromatic, SOC, and SOC stability
was positively associated with Latescibacteria and Acidobacteria.
pH and polysaccharides were positively associated with the
relative abundances of Thaumarchaeota, Actinobacteria,
Bacteroidetes, Planctomycetes, and Proteobacteria (Figure 8B).

Predicted Soil Bacterial
Metabolic Functions
Shifts in the microbial community caused changes in soil
microbial predicted functions. In this study, 5 primary and 27
A B

FIGURE 4 | Soil bacterial alpha-diversity (A) Shannon diversity; (B) Observed species. Different lowercase letters indicate significant differences between the different
soil layers within the same vegetation types (p < 0.05, independent-samples t-test). Different uppercase letters indicate significant differences between the different
vegetation types within the same soil layers (p < 0.05, Tukey’s HSD test).
A

B

FIGURE 5 | The relative abundance of soil microbial communities at phylum taxonomic level. (A) Surface layer; (B) Deep layer. Bars represent mean; error bars
denote standard error. Different lowercase letters indicate significant differences between the different soil layers within the same vegetation types (p < 0.05,
independent-samples t-test). Different uppercase letters indicate significant differences between the different vegetation types within the same soil layers (p < 0.05,
Tukey’s HSD test).
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secondary predicted metabolic pathways were found. The most
abundant predicted functional genes belonged to categories of
metabolism (52.83%) in the primary metabolic pathway, followed
by genetic information processing (16.20%), unclassified (13.32%),
environmental information processing (13.22%), and cellular
processes (4.21%) (Figure 9). In the surface layer, the richest
predicted functional genes in C. microphylla, P. fruticosa, and
grassland belonged to categories of cell communication, genetic
information process , and metabol ism, respect ively
(Supplementary Figure S3A), while in the deep layer, they were
cell motility, genetic information process, and metabolism,
respectively (Supplementary Figure S3B). No significant
predicted bacterial genes were observed for S. alpina when
compared to the other two shrub and grassland patches. The
microbial community predicted functional genes in the surface
layer were mainly influenced by SOC content (p=0.01) and pH
(p=0.016), while the microbial community predicted functions in
the deep layer were affected by aromatics (p=0.018)
(Supplementary Table S2). In the surface layer, pH and SOC
were positively associated with the relative abundances of
predicted functional genes belonging to categories of transport
and catabolism, metabolism of other amino acids, and xenobiotics
biodegradation and metabolism (Supplementary Figure S4A). In
the deep soil, pH and polysaccharides were positively associated
with the relative abundances of predicted functional genes
belonging to categories of membrane transport and xenobiotics
biodegradation and metabolism (Supplementary Figure S4B).
DISCUSSION

The Effect of Shrub Encroachment on
Soil pH
Soil pH is determined by the balance between acid and non-acid
cations on colloid surfaces and the balance between hydrogen
ions (H+) and hydroxide ions (OH−) in soil solution (49). We
found that S. alpina significantly reduced soil acidity (Figure 2).
Previous studies have recorded high soil pH under shrubs
compared with grass areas in semi-arid systems (50). A
potential mechanism explaining this phenomenon might be
due to the large canopy of the shrub and the leaching intensity
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of surface soil being lower than that of grassland soil. Leaching
may cause the loss of non-acidic cations (i.e., Ca+2 , Mg+o2 ,K+, and
Na+) from humus–clay colloidal exchange sites and their
replacement by H+, allowing more H+ to remain in the soil
and making it more acidic (51). Therefore, S. alpina may inhibit
soil acidification by weakening the intensity of the leaching,
probably because of the higher coverage of S. alpina compared to
the other two shrubs. Furthermore, the pH of the surface layer of
grassland was significantly higher than that of the deep layer,
while the pH of the surface and deep layers of shrub patches did
not differ significantly (Figure 2). This may be related to the fact
that shrubs with deeper rooting patterns and perennial nature
are more likely to trap more soil nitrate than annual pastures,
thereby reducing nitrate leaching and decreasing net acid
input (52).

The Effect of Shrub Encroachment on
SOC Content
The quantity and quality of aboveground litter and root exudates
of shrubs affect carbon sequestration. Eldridge et al. (35) and Li
et al. (11) observed that shrub encroachment contributed to the
accumulation of SOC in arid and humid regions. However, our
study showed that the invasion of C. microphylla, P. fruticosa,
and S. alpina had no significant effect on the soil carbon pool of
alpine grassland, supporting our first hypothesis. This is
probably due to the replacement of pr ior carbon
decompositions with the fresh input of shrub leaves and roots
(24, 25). Interestingly, our results show a significant difference in
SOC content between the surface and deep layers of grassland,
but no such difference was found among the three shrubs
(Figure 2). The C content in the surface soil of shrub patches
was mainly derived from leaves, while the root and leaf C sources
were more dominant in the grass matrix (53). Carbon in the deep
soil layer is mainly derived from plant root secretions and fine
root turnover, which, however, was not quantified in the present
study and should be considered in future research. More root
compounds can be produced in shrub patches than in grassland
matrixes (54), which would enhance C accumulation. Therefore,
compared with grassland, the amount of shrub root compounds
in the deep layer weakened the difference in C content between
the surface and the deep layer, resulting in no significant change
in SOC content. While grasses allocate a significant amount of
carbon below ground, their short, dense root systems cannot
reach deeper soil layers, resulting in a heterogeneous vertical
distribution of SOC content.

The Effect of Shrub Encroachment on SOC
Chemical Composition
We found that aromatics were the highest among the four SOC
chemical compositions, indicating that SOC was more stable in
QTP grassland soil during chemical and biological degradation
(Table 1). Previous studies have also shown that soil recalcitrant
C, such as from lignin compounds, is abundant in the bark and
roots of shrubs (55). Labile substances such as sugars are
decomposed by microorganisms quickly, and organic carbon
components such as lignins, which are difficult to be degraded by
FIGURE 6 | Principal coordinate analysis (PCoA) of soil bacterial community
in the shrub and grassland patches based on weighted Unifrac distance.
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microorganisms, can accumulate in the soil and transform into
recalcitrant organic carbon fractions. Moreover, pH higher or
lower than 6.5 also decreases the SOC decomposition (56). In the
present study, the lower soil pH in the four patches might partly
Frontiers in Soil Science | www.frontiersin.org 9
account for the high resistance to decomposition. Our results
showed no significant changes in the recalcitrance of SOC in the
surface layer after shrub encroachment, compared to grassland
soil. Prior work has shown that the harvesting energy from
A

B

FIGURE 7 | LEFSe analysis of biomarkers in the four groups of soil bacteria. (A) Surface layer; (B) Deep layer. Cladogram representing the taxonomic hierarchy of
biomarkers for four soil types. The circles radiating from the inside to the outside represent taxonomic levels from phylum to genus. LDA score >4 indicates a
biomarker with statistical differences among the groups
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recalcitrant compounds does not maintain microbial activity,
and soil decomposition is extremely restricted in deep soil (25),
which is inconsistent with our findings that the recalcitrance of
SOC in three shrubs decreased significantly with depth,
compared to that in grassland soil (Table 1). The deep root
distribution of shrub allows the transport of plant C (i.e., root
exudates, root detritus) into deeper soil (16). As a result, deep soil
microorganisms are supplied with nutrients, increasing their
activity and biomass, leading to the decomposition of deep
SOC (57). Therefore, shrub encroachment affected the carbon
cycle in deep soil by changing the decomposition of organic
carbon (Table 1).

The Effect of Shrub Encroachment on Soil
Bacterial Structure and Diversity
In this study, P. fruticosa and S. alpina had significantly higher
Shannon diversity relative to grassland in the surface and deep
soil, while C. microphylla did not in surface soil (Figure 4A). The
former conclusion is consistent with the research of shrub
encroachment on soil bacterial diversity conducted by Xiang
et al. (58) in Inner Mongolia grassland, supporting our second
hypothesis. The latter finding is consistent with the meta-analysis
performed by Custer and van Diepen (59) that plant invasion has
limited and variable effects on the alpha-diversity of soil
microorganisms. The differences in the Shannon diversity
index for the three shrubs indicate that plant species is a
significant predictor of bacterial diversity in the Qinghai–
Tibetan Plateau. Even under similar environmental conditions,
the chemical composition of plant root exudates may vary
depending on the plant species, thus affecting the diversity of
soil microorganisms (60). Our results also showed that the SOC
chemical composition (polysaccharides and alcohol) was slightly
higher in P. fruticosa and S. alpina than in grasslands (Table 1),
which are considered to be labile substrates and can be quickly
absorbed by microorganisms (39). This may also be one of the
reasons for the higher microbial diversity under the two shrubs
than grasslands. In deep soil, the three shrubs significantly
increased the number of observed species (Figure 4B). This
may be because shrubs cause an increase in nutrients in deep soil,
reducing competition among bacterial communities and
allowing rare species to survive, leading to an increase in
bacterial alpha-diversity in soil (14). In this study, shrub
encroachment triggered significant changes in soil bacterial
community composition (Figure 4). This is consistent with
previous studies showing that aboveground vegetation notably
alters the belowground bacterial communities (61), restructuring
bacterial communities of shrub encroached and grassland soils,
indicating that soil bacterial community appears to be a sensitive
indicator of plant cover type.

One of the aims of this study was to investigate whether the
diversity and structure of the soil microbial communities were
related to soil properties after shrub encroachment. We found
that different factors affected the composition of microbial
community in the surface and deep layers after shrub
encroachment. The microbial community in the surface layer
was mainly influenced by SOC content (p=0.004), while the
Frontiers in Soil Science | www.frontiersin.org 10
microbial community in the deep layer was affected by aromatics
(p=0.008) and polysaccharides (p=0.02) (Figures 8, 10;
Supplementary Table S3). Xiang et al. (58) also showed that
SOC was the most important factor for the difference in bacterial
community composition after shrub encroachment in temperate
grassland. Shrub encroachment may have changed the quality
and composition of plant litter and root exudates, thus affecting
bacterial communities (14, 62). This is consistent with the results
found by Shao et al. (20) in a forest succession experiment, where
changes in aliphatics, aromatics, and polysaccharides were the
main drivers for the differences in microbial community
composition. The statistical analysis and LDA results showed
that the relative abundance of Actinobacteria was higher in
surface and deep layer of the C. microphylla patches, and
Acidobacteria was enriched in surface layer of grassland soils
(Figures 5, 7). In addition, the relative abundance of
Proteobacteria, Actinobacteria, and Acidobacteria were the
highest in our study (Figure 5). Our study showed that
Actinobacteria were positively correlated with SOC and
polysaccharides in the surface and deep layers, respectively
(Figure 8). Actinobacteria play a key role in the decomposition
of organic matter and the formation of humus (63), and they play
an important role in the turnover of SOC compounds and
significantly influence soil C storage (64). Therefore, we
suggest that shrub encroachment may have affected C cycling
in alpine grassland. This is consistent with our third hypothesis
that shrub encroachment alters the C cycle by changing the
composition of the bacterial community. Aromatic groups and
Acidobacteria were positively correlated in deep soil (Figure 8B).
Bacteria belonging to Acidobacteria are considered oligotrophic,
which contain genes encoding cellulose and hemicellulose
decomposit ion and play an important role in the
decomposition of recalcitrant C (65). Acidobacteria is normally
enriched in soils with low nutrient availability (66). To maintain
their physiological activity, they break down recalcitrant
substances in the soil for energy. Proteobacteria are generally
considered copiotrophic (or R-strategists) that thrive under
conditions of high nutrient availability (21).

The Effect of Shrub Encroachment on Soil
Bacterial Predicted Functions
Functional diversity of soil microbial communities is an essential
indicator of structure and ecological function, which is of great
importance to clarify their role in different environments (67). In
the KEGG2 level of metabolic pathway, cellular motility pathway
was enriched in the surface layer of grassland, compared to C.
microphylla and S. alpina (Supplementary Figure S3). Our study
also showed that the SOC content in the surface layer of
grassland was slightly lower than that of the C. microphylla
and S. alpina. This may provide a competitive advantage for
bacterial communities in these two shrublands to move towards
nutrients (68). In C. microphylla, lipid metabolism was enriched
in the surface and deep layers (Supplementary Figure S3),
which might indicate that soil bacteria preferentially use lipids
as a source of carbon and energy in this shrub (69). The relative
abundance of carbohydrate and amino acid metabolism were
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high, as carbohydrate metabolism can be closely related to the
formation, breakdown, and conversion of carbohydrates.
Carbohydrates are synthesized by plants from the atmosphere
through photosynthesis and can be used as substrates for cellular
respiration (70). Moreover, carbohydrate metabolism was
enriched in surface and deep layer of C. microphylla
(Supplementary Figure S3). Amino acid metabolism can help
bacteria obtain amino acids, which is conducive to the survival
and reproduction of bacteria (71). Some microbes (e.g.,
Rhizobium) can convert N2 in the air into ammonia to
synthesize amino acids. The result of LEFSe also showed that
amino acid metabolism and Rhizobiales were enriched in surface
and deep layers of C. microphylla (Supplementary Figure S3).
Therefore, we think that the invasion of C. microphylla may also
affect the C cycle of alpine grassland. RDA results showed that
Frontiers in Soil Science | www.frontiersin.org 11
SOC (p=0.01) and pH (p=0.016) appeared to be key factors
influencing the bacterial predicted metabolic functions of shrub
encroachment surface layers, as opposed to aromatics (p=0.018)
in the deep layers (Supplementary Figure S4; Supplementary
Table S2; Figure 10). This is similar to the key soil properties
that influence the composition of bacterial communities.
CONCLUSIONS

This study evaluated the impact of shrub encroachment on the
surface and deep SOC content and its chemical composition,
microbial community composition, diversity, and predicted
functions on the Qinghai–Tibetan Plateau grassland. Our
results showed that different shrub-encroached grasslands had
A B

FIGURE 8 | RDA analysis of soil physicochemical properties on microbial community composition. (A) Surface soil (0–10 cm), (B) Deep soil (50–60 cm).
FIGURE 9 | The metabolic function of bacterial communities in the shrub and grassland patches predicted by PICRUSt.
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different effects on soil pH value. S. alpina significantly reduced
soil acidity in the surface layer, while no similar phenomenon
occurred in the other shrub species. The shrub encroachment
had no significant effect on SOC content, but weakened the
difference between the surface and the deep layer in the eastern
edge of the Tibetan Plateau. Shrub encroachment reduced soil
organic carbon recalcitrance and did not contribute to the
storage of deep soil organic carbon. Shrub encroachment was
associated with a significant increase in bacterial alpha diversity
and changes in bacterial community composition. The key
factors influencing surface and deep bacterial communities
were different. Abiotic factors, such as SOC content and SOC
chemical composition (aromatics and polysaccharides), regulate
soil surface and deep microbial communities. By LEFSe and
PICRUSt analysis, we suggest that shrub encroachment might
have affected C cycling of alpine grassland by changing bacterial
community composition and functioning. This work will help to
further refine our knowledge of how shrub encroachment affects
bacterial community structure in grassland ecosystems.
However, we did not investigate the effect of encroachment on
soil fungal communities, which might be more important for
carbon cycling and closely related to changes in vegetation. This
limitation should be addressed in future studies.
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