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Spatial distribution and source
identification of metal
contaminants in the surface soil
of Matehuala, Mexico based on
positive matrix factorization
model and GIS techniques

Arnab Saha 1, Bhaskar Sen Gupta 1*, Sandhya Patidar 1

and Nadia Martı́nez-Villegas 2

1Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure &
Society, Heriot-Watt University, Edinburgh, United Kingdom, 2Applied Geosciences Department,
Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosi, Mexico
The rapid growth of urban development, industrialization, mining, farming, and

biological activities has resulted in potentially toxic metal pollution of the soil all

over the world. This has caused degradation of soil quality, lower crop

production, and risk to human health. For this work, two study sites were

selected to evaluate metal concentrations in the agricultural as well as the

recreational soil around the Cerrito Blanco in Matehuala, San Luis Potosi,

Mexico. The concentrations of eight metals, namely As, Ca, Mg, Na, K, Sr,

Mn, and Fe were analysed in order to determine the level of contamination risk

as well as their spatial distributions. However, this study is mainly focused on

toxic metals, e.g. As, Sr, Mn, and Fe. The contamination indices techniques

were used to evaluate the risk assessment of soil. Additionally, the positive

matrix factorization (PMF) model as well as the geostatistical analysis was used

to identify the contamination sources based on 64 surface soil samples. After

implementing PMF to analyze the soils, it was possible to differentiate the

variations in factors linked to the contaminants, farming impacts, and the

reference soil geochemistry. The soil in the two studied locations included

high concentrations of As, Ca, Mg, K, Sr, Mn, and Fe, including variations in their

spatial compositions, which were caused by direct mining activities, the

movement and deposition of smelting waste, and the extensive use of

irrigated contaminated groundwater for irrigation. The four possible factors

were identified for soil pollution including industrial, transportation,

agricultural, and naturogenic based on the PMF and geostatistical analysis.

The spatial distribution of metal concentrations in the soil was also presented
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using a geographical information system (GIS) interpolation technique. The

identification of metal sources and contamination risk mapping presents a

significant role in minimizing pollution sources, and it may be performed in

regions with high levels of soil contamination risk.
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1 Introduction

One of the most essential eco-environmental systems for

human existence and prosperity is the soil, and soil

sustainability is an important assurance of both global food

security and the wellbeing of humans (1–4). Soil pollution,

particularly soil heavy metal contamination and deposition, has

become a severe and environmentally critical issue. Therefore, it’s

receiving a lot of public attention due to societal concerns (5–9).

Since Mexico is a developing country that has recently considered

significant urban development, soil contamination by heavy

metals has emerged as a serious environmental issue (10, 11).

The Comarca Lagunera area, which covers the northern Mexican

states of Coahuila and Durango, first became aware of the issue of

arsenic (As) and other heavy metal contamination due to its

excessive concentrations in the sedimentary aquifer in 1958 (12–

14). In the City of Torreon in Mexico, 40 incidents (including 1

death) of As-related health problems were reported in 1962 (15).

Some of these recorded incidents might be thought of as the

beginning stages of As and other heavy metals-related

environmental, geochemical, and medical investigations in

Mexico (14). Heavy metal extraction from various mining waste

materials, and exposure through smelting dust and fumes,

including its distribution, were all explored at various mining

and ore processing sites in the regions of Baja California,

Guerrero, Guanajuato, Hidalgo, and San Luis Potosi (16–19). In

the San Luis Potosi area, soil contaminated by heavy metals from

the dissolution of natural metal sources could be distinguished

from various sources with metal contamination originating from

tailings by chemometric and isotopic approaches (20–22). Metal

contaminants may also rapidly translocate and concentrate in the

food chain posing substantial concerns to food security and

human wellbeing (23–26). In fact, quantitative evaluations of

the properties, toxicity, and origins of heavy metals in soil are

essential for public safety. Therefore, metal contamination in soils

might be a prominent indication of the influence of

anthropogenic activities.
The different techniques were utilised to determine the

distinctive distribution patterns and sources of metal

contamination in soils, including geographic information

system (GIS), positive matrix factorization (PMF), and principal
02
component analysis (PCA) (27–31). To identify the source

contributions, standard source apportionment procedures (e.g.,

PCA and PMF) and contamination monitoring techniques (e.g.,

contamination indices and ecological risk factors) are often

implemented (32–36) and estimate the risk of metal

contamination in soils, accordingly (37–40). However, several

contamination indices such as the geo-accumulation index (Igeo),

contamination factor (Cf), pollution load index (PLI), degree of

contamination (Cd), potential ecological risk index, Nemerow’s

Pollution Index (PIN), and human health risk assessment analysis

(carcinogenic and non-carcinogenic risks) were used to assess

heavy metal contamination in soils systematically (19, 41–44). In

general metal contamination in soils is derived from two major

sources: natural (e.g., soil mineral and organic components) and

anthropogenic sources (e.g., agricultural activities, transportation,

mining activities, industrial activities, etc. However, it is critical to

differentiate contamination sources qualitatively and

quantitatively in order to preserve the soil ecosystem (45–49). A

common approach for distributing metal contamination sources

is to perform multivariate receptor models, which don’t even

require prior information on source characteristics (50). The

source identification of metal contamination in soils, various

hybrid receptor models, especially partition computing based

positive matrix factorization (PC-PMF), absolute principal

component score-multiple linear regression (APCS-MLR),

GeogDetector models, multivariate curve resolution-weighted

alternating least squares (MCR-WALS), and UNMIX have been

commonly implemented (4, 50–54). The significant disadvantage

of using a receptor model for metal contamination source

identification is that the approach does not usually satisfy

certain key assumptions (55, 56).
The positive matrix factorization (PMF) model is a

mathematical matrix decomposition approach that can

manage insufficient and imprecise data by applying non-

negative constraint criteria. This model is a common receptor

model which has been frequently utilised for the identification of

the source of metal contamination in the atmosphere, sediment,

and soil (31, 57, 58). However, the PMF model is empirical in

identifying sources of contamination and assumes contaminant

spreads as a linear process (56, 59). Hence, it discards critical

information detailed in the spatial correlation between soil
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samples. Unfortunately, the PMF model may have uncertainties,

which might cause some inaccuracies in the source

apportionment results (60, 61). The study by 62 describes that

data inconsistency, model structural disintegration, and model

parameter accuracy are the three key factors contributing to

uncertainty in PMF source identification. In most cases, data

inconsistency is related to quantitative measuring errors and

sample data inaccuracies. To assess the impact of stochastic

errors and a limited small amount of factorization in uncertainty

analysis on the PMF result, the essential bootstrap approach can

also be applied (61, 63, 64). Therefore, it is relevant to evaluate

the variation of uncertainty in PMF models.

This study was designed to ascertain the concentrations of

heavy toxic metals (e.g., As, Sr, Mn, and Fe) and light metals

(e.g., Ca, Mg, Na, and K) contamination in recreational and

agricultural surface soil of Cerrito Blanco area in Matehuala

municipality, San Luis Potosi, Mexico and to explore the factors

that affect the spatial distribution and source identifications. The

previous studies done in this particular region established Cd,

Cu, Cr, Zn, or Pb as primary contamination risk factors (19, 22,

65, 66). Therefore, these heavy metals were not repeated for this

study. The other reasons for choosing these metals found in this

same region are because of historic mining activities and the data

availability. Thus the main objectives of this study were as

follows: (i) to examine the significant relation between soil-

metals concentration and the spatial distribution of

contamination sources from hazardous areas; (ii) to evaluate

the source apportionment by identifying the different factors of

metal contamination in the surface soil using PMFmodel; (iii) to

assess the contamination risk levels based on different types of

contamination indices in the surface soil; and (iv) to classify the

spatial distribution patterns of metals contamination and

pollution source identification factors based on IDW

interpolation techniques.
2 Study area

In this study, two locations were selected from the

abandoned past mining and smelting areas surrounded by

recreational non-cultivated, and agricultural farmland in the

northeastern part of Matehuala municipality named Cerrito

Blanco, San Luis Potosi, Mexico. This study area is divided

into two parts according to soil sample characteristics, study area

1 refers to recreational soil, and study area 2 represents

agricultural soil. The study area is located between 23°40′30′′
N latitude and 100°35′27′′ W longitude, having a total

geographical area of approx. 4.84 ha (Figure 1). Study area 1

refers to a soccer club, also known as Joya Verde soccer sporting

club. This club has been in use for around 18 years and was

constructed on land that was communally owned and utilised for

farming between 1974 and 2003 (67). It consists of three half-

hectare soccer fields surrounded by sparsely vegetated areas
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identified as non-irrigated undeveloped cultivated land. Study

area 2 refers to agricultural land, which is located between 23°40′
08′′N latitude and 100°34′44′′ W longitude, having an overall

geographic area of approx. 25.28 ha (Figure 1). In this area,

farmers would cultivate rain-fed maize. Due to a lack of safe

water supply, contaminated water is sometimes used during the

cropping season (20). The type of maize farmed in this area

needs at least 500 mm of water, of which about 50% comes from

precipitation during the crop growing season, from May to

August, and the remaining 50% is supplied from the

contaminated groundwater source (20). These two study sites

are near a mining area where metals have been extracted for

more than 240 years (65, 66). According to previous research,

the distribution of mining slags and various waste materials also

affected the ecosystem over 100 km2 (19, 65, 67–69). Overall, the

climate in these regions is semi-arid and dry (20). The average

annual temperature in this region is 20.3°C, with the coldest and

hottest months being January and June (67, 70). This region’s

soil types include calcisol and gypsisol, and it only receives a

limited amount of precipitation each year - between 300 and

500 mm (20, 22, 70).
3 Materials and methods

3.1 Sampling of soil and chemical
analysis

A total of 64 surface soil samples (from 0 to 5 cm) were

collected from both recreational and agricultural areas, of which

39 samples were from recreational soil sites (study area 1) and 25

samples were collected from agricultural soil sites (study area 2).

A depth from 0 to 5 cm is appropriate and mandatory in the

Mexican regulations and recommendations for trace metal and

metalloid identification and quantification to characterize

potentially contaminated soils (71). In this study, a systematic

sampling technique was used based on a statistical method

(NMX-132-SCFI-2001) (71). These samples were taken with

an auger and stainless steel shovel to prevent contamination and

cleared of roots and rocks larger than 2 cm, before being placed

in a double polyethylene bag. Over the study area, soil samples

were distributed uniformly, with an average of 40-50 m for

recreational soil area and 80-100 m for agricultural soil area

between each sampling point. The agricultural land in the

sampling site had calcareous alluvium overlying soil with high

gypsum content. During the sampling campaign, the study

teams faced a few problems in collecting equidistant samples,

such as, consent from the owner of the farm, eroded topsoil, with

exposed gypsisol soil, and various forms of obstruction. For the

same reason, samples are fewer than the recreational soil.

Despite such constraints, a significant number of samples were

collected. As a standard procedure, a typical soil sample of 1 kg
frontiersin.org
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of fresh surface soil was collected from each sampling site and

wrapped in a sealed double polyethylene bag before delivering to

the testing centre (22, 67). All soil sampling sites were

georeferenced using a GPS tracking device called a Garmin

Etrex Personal Navigator. According to a slightly modified

version of ISO 11466:1995, soil samples were digested for

chemical analysis. For doing so, 10 mL of aqua regia (HNO3:

HCl) with a ratio of 3:1, were added to a beaker containing 1.0

gm of soil sample (20, 67). The beakers were heated to 85°C until

the digests had nearly dried out. The resolved residues were

added to volumetric flasks, allowed to cool, and then filtered

through Whatman filter paper no. 40 before being redissolved in

10 mL of acid and made up to 50 mL with 0.5 M nitric acid. All

digested and diluted samples were refrigerated at 4°C for

analyses (20, 67). After further diluting with deionized water,

aliquots of the digested samples were analysed for As, Ca, Mg,

Na, K, Sr, Mn, and Fe by using inductively coupled plasma

optical emission spectroscopy (ICP-OES) (67, 72).
Frontiers in Soil Science 04
3.2 GIS interpolation techniques for
spatial distribution mapping

When it is unfeasible, inconvenient, or costly to explore each

site within the selected study region, an interpolation technique

is applied to estimate unknown parameters for geospatial factors

like elevation, slope, concentration levels, rainfall, temperature,

and noise levels with a limited range of collected data points (73,

74). For assessing the spatial distribution of contaminants in

soils, inverse distance weighting (IDW) is a frequently used

interpolation technique because of its easy calculation and

convenient data analysis approach (37, 75, 76). The IDW is a

type of deterministic interpolation technique that works for data

points that are close to one another than distant points. The

spatial variability of the metal concentration levels and source

distribution factors was simplified using the IDW approach with

a weighting power of 2 (19, 37). The distance between

the estimated and observed sampling points, increased to the
FIGURE 1

Study area map showing metal concentrated soil sampling locations of (A) recreational soil and (B) agricultural soil.
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power values has a substantial impact on the weights. The

impact of the distant points decreases with an increase in

power while weights are distributed across adjacent points

more evenly for lower power (77, 78). For this interpolation

approach, the following formula is used.

Z =o
n

i=1
(Zi=d

p
i )=o

n

i=1
(1=dpi ) (1)

Where Z is the projected value at an interpolated point, Zi is

the measured value at point i ; n denotes the total amount of

measured values used for interpolation; di is the distance

between interpolated value Z and measured value Zi ; p

indicates the weighting power, which specifies how the weight

reduces as the distance rises. A methodological flowchart that

illustrates how soil samples are obtained and subsequent

methods for identifying the sources of toxic elements in the

surface soil are shown in Figure 2.
3.3 Risk assessments of metal
contamination based on indices

3.3.1 Geo-accumulation index
The geo-accumulation index (Igeo) has been widely used

as a biogeochemical criterion to assess the contamination

level of a specific metal in environmental soil or sediments

since 1969 (44, 79). This index (Igeo) was developed by Muller

(80) to determine the contamination level of toxic metal

concentration in soil by comparing the total metal

components measured to its reference level or background

value of concentrations. To assess the level of metal pollution
Frontiers in Soil Science 05
in the soil, Igeo is calculated using the following equation:

Igeo = log2
Cn

1:5  Bn
(2)

Where, Cn is the observed metal concentration in the soil

sample (mg/kg), Bn indicates the background reference value for

n metal in the soil (mg/kg), and the constant factor 1.5 was used

to adjust the background matrix for any differences induced by

lithospheric influences (44). Table 1 shows the seven different

classifications of Igeo according to the contamination levels.
3.3.2 Contamination factor
The contamination factor (Cf) index is considered to be a

valuable approach for detecting and identifying hazardous metal

contamination over time (86, 87). In order to estimate the

amount of contaminat ion for spec ific metals , the

contamination factor is commonly implemented, and it is

specified as the proportion of the metal concentration to the

mean of background reference level concentrations. This index is

also known as the single pollution index (82). The

contamination factor (Cf) is determined using the following

equation:

Cf =
Cm

Cb
(3)

Where, Cm denotes the observed metal concentration in the

soil sample and Cb is the background reference level

concentration of the selected metal. The contamination factor

(Cf) is divided into seven classes, as indicated in Table 1.
FIGURE 2

Flowchart illustrating the methodology of this study.
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3.3.3 Modified degree of contamination
The modified degree of contamination (mCd) is the ratio of

the sum of the contamination factor of each selected metal to the

total number of measured metals in the soil, which is used to

calculate the absolute degree of contamination in a specific soil

sample (88). The mCd computation includes the inherent

characteristic of providing an average total value for a variety

of contaminants (89). The following equation is a modified

generalised approach to calculating the degree of contamination:

mCd =
on

i=1Cf

n
(4)

Where, Cf refers to the contamination factor, i is the i th

metal or selected specific metal in the soil sample, and the total

number of metals in the soil sample is denoted by n . The

modified degree of contamination (mCd) is divided into seven

different classes, as indicated in Table 1.
3.3.4 Nemerow pollution index
The Nemerow Pollution Index (PIN) is a technique for

measuring the comprehensive level of contamination in the

surface soil based on contamination factors, and it comprises
Frontiers in Soil Science 06
metal concentration assessments (19, 85, 90). This approach

may offer a logical explanation of the heavy metal contamination

at each site in its entirety because many contaminants can affect

a specific site (91). The following equation is used to compute

PIN:

PIN =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Cfmax)

2 + (Cfaverage)
2

2

s
(5)

Where, Cfmax is the highest contamination factor value of

each metal in the soil samples and Cfaverage is the average

contamination factor value of all the collected soil samples for

each specific metal. The five different classes of metal

contamination in soil are shown in Table 1 based on PIN values.
3.4 Positive matrix factorization
model analysis

The PMF receptor model 5.0, which was developed by the

US Environmental Protection Agency, was used to identify, and

distribute the pollution sources of contaminants (92). Paatero

and Tapper (93) introduced the improved factorization
TABLE 1 Contamination indices based on the classification of soil.

Index Category Description References

Geo-accumulation index (Igeo) Igeo< 0 No contamination 44, 80, 81

0 ≤ Igeo< 1 Slight to moderate contamination

1 ≤ Igeo< 2 Moderate contamination

2 ≤ Igeo< 3 Moderate to high contamination

3 ≤ Igeo< 4 High contamination

4 ≤ Igeo< 5 High to extreme contamination

Igeo ≥ 5 Extreme serious contamination

Contamination factor (Cf) Cf< 1 Low contamination 82, 83

1 ≤ Cf< 2 Low to moderate contamination

2 ≤ Cf< 3 Moderate contamination

3 ≤ Cf< 4 Moderate to high contamination

4 ≤ Cf< 5 High contamination

5 ≤ Cf< 6 High to very high contamination

Cf ≥ 6 Extreme contamination

Modified degree of Contamination (mCd) mCd< 1.5 Very low degree of contamination 19, 44, 84

1.5 ≤ mCd< 2 Low degree of contamination

2 ≤ mCd< 4 Moderate degree of contamination

4 ≤ mCd< 8 High degree of contamination

8 ≤ mCd< 16 Very high degree of contamination

16 ≤ mCd< 32 Extreme degree of contamination

mCd ≥ 32 Ultra-high degree of contamination

Nemerow pollution index (PIN) PIN< 0.7 Safe region 19, 43, 85

0.7 ≤ PIN< 1 Precaution region

1 ≤ PIN< 2 Slightly contaminated region

2 ≤ PIN< 3 Moderately contaminated region

PIN ≥ 3 High contaminated region
fr
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technique known as PMF in the early 1990s (50). The PMF is the

statistical technique for determining the contribution of sources

to sample datasets depending on the patterns of the sources. The

identification and classification outcomes of the PMF model

offer significant advantages compared with other approaches,

such as principal component analysis (PCA) (94). The purpose

of this model is to factorise the initial matrix X (i x j) into two-

factor computational matrices F (k x j) and G (i x k), and an

additional residual matrix E (i x j). The fundamental PMF

formula is as follows:

Xij = o
p

k=1

(Gik � Fkj) + Eij (6)

Where, Xij represents the concentration amount of jth metal

observed at the ith sampling point, Gik denotes the contribution

of the kth source to ith sample, Fkj represents the concentration

amount of jth metal from the kth source, Eij denotes the residual

error matrix, and p indicates the individual sources. The PMF

model uses uncertainty in data quality to normalise each

element’s prediction error in matrix X. It generates the

optimal concentration matrices, G and F, within non-negative

ranges that minimise the objective function Q (61). The

calculation of Q is as follows:

Q =o
n

i=1
o
m

j=1

Xij −op
k=1Gik � Fkj
Uij

 !
=o

n

i=1
o
m

j=1

Eij
Uij

 !2

(7)

Where Uij denotes the uncertainty in the jth metal for the ith

sample, Eij indicates the residual error matrix, m refers to the

number of metals, and n is the number of samples. The data

regarding concentration and uncertainty are necessary for the

PMF model. The uncertainty in the Method Detection Limit

(MDL) of a specific metal uses its concentration and specified

error fraction. If the MDL value is exceeded by the metal

concentration, the following formula can be used to determine

the uncertainty:

Uij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s � c)2 + (MDL)2

p
(8)

Where, s denotes the relative standard deviation of each

metal or error fraction and c represents the concentration

of metals.

Otherwise, the uncertainty is calculated using the following

equation:

Uij =
5
6
�MDL (9)

The value of the method detection limit (MDL) is calculated

as follows (95):

MDL = t(n=1,  1−∝=0:99)Ss (10)

Where, t(n=1, 1−∝=0.99) represents the Student’s t-value,

appropriate for a single-tailed 99th percentile t statistic and a
Frontiers in Soil Science 07
standard deviation estimate with n-1 degrees of freedom, and Ss
is the sample standard deviation of the replicate spiked

sample analyses.

The Bootstrap (BS) approach was used to evaluate the PMF

results’ uncertainties and included random errors which reflect

variability in the samples, or the disproportionally effect of the

observations on the PMF result (37, 96). The uncertainties might

be represented by the mean uncertainty, which is the range

between the concentration of the base factor and the upper

uncertainty limits for the BS. The USEPA PMF 5.0 User Guide

(the 92) is followed for all calculations.
3.5 GIS and statistical analysis

The statistical analyses were performed on the data using the

SPSS v28.0 statistical package (IBM Inc., USA) and Microsoft

Excel 2016 to identify the statistical descriptions of metals in

surface soil samples. The observed data were initially assessed

using the Kolmogorov-Smirnov test to confirm the normal

distribution. The one-way analysis of variance (ANOVA) was

performed to assess if there was a statistically significant

difference between the means of the different sampling points.

The spatial distributions were characterised using a

deterministic model and the IDW interpolation technique. The

distribution of soil sampling locations and the spatial

distribution of metals were analysed and mapped using

ArcGIS Pro (ESRI Inc., USA). The PMF model was

implemented and the source of the metals in this study was

quantitatively identified using the EPA PMF 5.0 software (92).
4 Results and discussion

4.1 Descriptive statistics of metal
concentrations in soil

The statistical information of the metal concentrations in

surface soil samples is summarized in Table 2. The mean

concentrations of As, Ca, Mg, Na, K, Sr, Mn, and Fe in

recreational soil were 119.44 mg/kg, 20346.45 mg/kg, 1195.53

mg/kg, 1397.06 mg/kg, 3358.07 mg/kg, 514.10 mg/kg, 137.82

mg/kg, and 3700.52 mg/kg. The mean values of metal

concentrations in the agricultural soil were 76.90 mg/kg,

28975.41 mg/kg, 2838.28 mg/kg, 188.78 mg/kg, 5420.28 mg/kg,

352.66 mg/kg, 275.27 mg/kg, and 6933.74 mg/kg, respectively.

Overall, in both study areas’ soil, the mean value of metal

concentrations exceeded the corresponding permissible limits

or reference values for soils, except Na metal. The permissible

limits or reference values of metal concentrations in the surface

soil were As (22 mg/kg) (97), Ca (500 mg/kg) (98), Mg (60 mg/

kg) (98), Na (1550 mg/kg) (98), K (300 mg/kg) (98), Sr (200 mg/

kg) (99), Mn (85 mg/kg) (100), and Fe (300 mg/kg) (101). The
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mean concentrations of As, Ca, Mg, K, Sr, Mn, and Fe were

higher than the reference values in the recreational soil by

approximately 5.43, 40.69, 19.93, 11.19, 2.57, 1.62, and 12.34

times. And, for the agricultural soil by approximately 3.50, 57.95,

47.30, 18.07, 1.76, 3.24, and 23.11 times, respectively. Compared

with the permissible limit values defined by the various

researchers for soils, the mean concentrations of heavy metals

like As, Sr, Mn, and Fe were all higher than the severe risk

screening levels, revealing that the soil poses a health risk for

agricultural and recreational uses.

However, the concentration of As in recreational and

agricultural soil was around 5.43 and 3.50 times greater than

the permissible limit, revealing that As was enhanced in the

topsoil through metallurgical activities, irrigated groundwater,

and human activities. In addition, there is a major concern for

As in Mexican soils with rigorous monitoring in place to restrict

potential contamination. The ratio of standard deviation to

mean is known as the coefficient of variation (CV), and it can

be used to analyse the distribution of metal concentrations in the
Frontiers in Soil Science 08
soil as well as their variability (102). According to the study of

Wilding (103), the coefficient of variation is classified into three

different levels: low (CV< 0.16), medium (0.16< CV< 0.36), and

high (CV > 0.36). The coefficient of variation (CV) of Na in the

surface soil of both study areas was the highest (280.20%).

However, the CVs of As in the recreational and agricultural

topsoil recorded a high variation, 91.71%, and 50.05%,

respectively. The CVs of metals in the recreational soil were in

the following increasing order: Na (280.20%)< As (91.71%)< Mg

(49.67%)< Sr (48.49%)< Ca (35.99%)< Fe (35.32%)< K (29.72%)

<Mn (29.60%). Overall, the degree of variation for metals is high

for the recreational soil, except for K and Mn, which are in the

medium range. The same as the CVs of metals in the agricultural

soil were in the following increasing order: As (50.05%)< Na

(47.42%)< Sr (36.56%)< Fe (14.36%)< K (14.27%)< Mn (12.55%)

< Mg (9.47%)< Ca (4.29%). The findings (Table 2) showed that

CVs of As, Na, and Sr indicated a high variability, while those for

Fe, K, Mn, Mg, and Ca indicated low variability. Previous studies

showed that human influences have a significant impact on the
TABLE 2 Descriptive statistics of metal concentrations for soil physicochemical properties.

Metals As Ca Mg Na K Sr Mn Fe

Study area 1: Recreational Soil Mean 119.44 20346.45 1195.53 1397.06 3358.07 514.10 137.82 3700.52

Standard Error 17.54 1172.56 95.09 626.84 159.82 39.91 6.53 209.28

Median 90.51 18009.31 1013.95 101.18 3628.40 468.63 137.81 3868.07

Standard Deviation 109.54 7322.62 593.85 3914.63 998.09 249.27 40.79 1306.97

Sample Variance 11998.65 53620774.31 352655.99 15324325.30 996180.51 62134.09 1663.99 1708161.39

Kurtosis 8.37 3.78 4.38 7.72 -0.51 8.19 0.77 0.44

Skewness 2.43 2.14 2.21 2.95 -0.49 2.38 0.81 0.40

Range 578.17 32782.24 2640.82 16649.79 3810.21 1362.29 175.25 5981.05

Minimum 13.14 10470.91 498.00 34.67 1172.16 221.15 69.47 1260.65

Maximum 591.31 43253.15 3138.82 16684.46 4982.37 1583.44 244.72 7241.70

Sum 4658.01 793511.46 46625.74 54485.43 130964.90 20049.84 5374.87 144320.22

Coefficient of variation (CV) (%) 91.71 35.99 49.67 280.20 29.72 48.49 29.60 35.32

Count 39 39 39 39 39 39 39 39

Confidence Level (95.0%) 35.51 2373.72 192.50 1268.98 323.54 80.80 13.22 423.67

Study area 2: Agricultural Soil Mean 76.90 28975.41 2838.28 188.78 5420.28 352.66 275.27 6933.74

Standard Error 7.70 248.37 53.75 17.90 154.66 25.79 6.91 199.16

Median 72.18 29080.35 2914.50 171.31 5503.50 346.61 284.00 7063.16

Standard Deviation 38.48 1241.84 268.77 89.52 773.29 128.94 34.54 995.78

Sample Variance 1481.07 1542165.83 72238.38 8013.95 597970.80 16626.53 1192.86 991579.00

Kurtosis 1.41 -0.69 12.73 9.72 6.74 9.41 4.09 6.19

Skewness 0.72 -0.25 -3.19 2.89 -2.09 2.49 -1.84 -1.60

Range 177.34 4421.62 1359.09 453.14 3859.78 675.97 155.62 5390.74

Minimum 8.03 26637.06 1720.93 80.70 2606.34 178.81 162.18 3392.66

Maximum 185.37 31058.68 3080.03 533.85 6466.12 854.78 317.80 8783.40

Sum 1922.48 724385.17 70957.05 4719.49 135506.99 8816.54 6881.81 173343.53

Coefficient of variation (CV) (%) 50.05 4.29 9.47 47.42 14.27 36.56 12.55 14.36

Count 25 25 25 25 25 25 25 25

Confidence Level (95.0%) 15.89 512.61 110.94 36.95 319.20 53.23 14.26 411.04

Reference values (mg/kg) 22 500 60 1550 300 200 85 300
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concentration of metals when the mean concentration value of

metals in the surface soil is higher than the reference value and

the CV is more than 0.2 (102, 104). Overall, there was more

variation and spatial dispersion in the concentration of metals in

the recreational soil of the study region than in agricultural soil,

and it is expected that anthropogenic activities have an impact

on this concentration.
4.2 Spatial distributions of metal
concentrations in soils

Finding contaminated regions with high metal

concentrations and identifying their potential sources can be

accomplished by analysing the spatial distribution approach of

metal concentration. The spatial distributions of As, Ca, Mg, Na,

K, Sr, Mn, and Fe were used to identify the distribution pattern

of metals in two study locations. Based on the spatial distribution

of metals, the polluted regions with high metal concentrations

were mostly found in both study areas and were comparable to

recreational and agricultural soil. In order to evaluate the risk

assessment and contamination hotspots, Figures 3, 4 show the

spatial distribution of the eight selected metals using the IDW

interpolation technique. It is considered that the assumptions

are quite a linear combination of the accessible data when using

the inverse distance weighting (IDW) interpolation technique

(50). According to Figures 3, 4, point source contamination can

be inferred from the concentrations of As, which were spatially

distributed as being relatively high. The highly contaminated

areas containing Ca, Mg, K, Sr, Mn, and Fe were found in the

south-western part of the recreational soil study area. The spatial

distribution of Ca, Mg, Sr, and Fe were similar, and the high-

value areas of all metals were quite extensive. The distribution

pattern of metals in agricultural soil was clear through spatial

analysis. Similar to the recreational soils, the agricultural soil

contained higher levels of Ca, Mg, K, Sr, Mn, and Fe, with the

highest values located in the northern to southern parts of this

area. Mg in the agricultural soil was mainly in the south and

south-eastern parts of the study area. The areas with the highest

As and Sr values were alongside narrow roads and the waterbody

and were mostly in the north-western part. As and Sr had

comparable spatial variation features. The As concentration

hotspots in both study areas were mainly associated with

irrigated groundwater and past mining activities. The

significantly related distinction of the parent material during

soil formation and other anthropogenic activities may be the

reason for the high concentrations of other metals (except Na) in

these regions. This indicated that climatic effects like wind and

rainfall events may potentially affect the distribution of metals in

the area of study. Since the climatic environment in the study

areas is semi-arid having limited precipitation, irrigated

cultivation is the preferred mode of agriculture. Due to this

reason, the concentration levels of heavy metals like As, Mg, Sr,
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and Fe are high in these study areas. As a result, it may be stated

that the study areas’ climate has some impact on the spatial

distribution of metal contaminations. On the whole, the metal

distribution in both recreational soils and agricultural soils

showed similar distribution patterns. Moreover, the high-value

range of all metal concentrations exceeded the permissible limits

or the reference values, and the cause may be connected to the

metallurgic and natural origin of metals, past mining industry,

groundwater irrigation, and intense human activities.
4.3 Contamination risk assessments
in soils

The Igeo analysis was utilised to determine the extent of

cumulative concentration of metals in the soil along with the

amount of heavy metal contamination. Figure 5 shows the box

plot diagram of metal contamination assessment based on Igeo
index for both recreational and agricultural soil. The descriptive

analysis of contamination risk assessment by different types of

contamination indices is shown in Table 3.

The mean Igeo index values of metals in recreational soil were

arranged in the decreasing order of Ca (4.69)> Na (3.83)> Mg

(3.61)> Fe (2.94)> K (2.82)> As (1.33)> Sr (0.65)> Mn (0.05),

while the mean Igeo values of metals in the agricultural soil were

in the following increasing order of Ca (5.27)> Mg (4.97)> Fe

(3.93)> Na (3.73)> K (3.57)> Mn (1.10)> As (0.99)> Sr (0.16).

The mean Igeovalues of all metals were greater than zero,

indicating that all metals contributed to pollution in the

surface soil in both study areas and more than 90% of the soil

samples were at polluted levels. In the recreational soil, the mean

Igeo values of Ca, Na, and Mg were greater than 3, indicating a

polluted condition. The mean Igeo values of Ca, Mg, Fe, Na, and

K in the agricultural soil were also more than 3, suggesting

contamination. Equally, the study area had high contamination

levels of heavy metals like As, Sr, Mn, and Fe.

The computation of the contamination factor assessment for

each metal is shown in Figure 6, and the classification criterion

for the contamination factor index is listed in Table 3. The mean

values of Cf of each metal in the recreational soil were ranked in

the decreasing order of Ca> Mg> Fe> K> As> Sr> Mn> Na, with

values of 40.69, 19.93, 12.34, 11.19, 5.43, 2.57, 1.62, and 0.90.

And for the agricultural soil, the mean values of Cf were ranked

in the following decreasing order of Ca> Mg> Fe> K> As> Mn>

Sr> Na, with values of 57.95, 47.30, 23.11, 18.07, 3.50, 3.24, 1.76,

and 0.12, respectively. The Cf values for As in the recreational

soils showed a ‘high to very high contamination’ category, while

the Cf values for As in the agricultural soils indicated moderate

to high contamination. More than 30% of soil samples of As are

in the extremely high level in the recreational soil, while less than

10% of the agricultural soil samples are in the extreme

contamination level (Figure 6). Hence, it can be concluded

that As contaminants are at a higher level in recreational soil
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FIGURE 3

Spatial distribution of metal concentrations in the recreational soil.
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FIGURE 4

Spatial distribution of metal concentrations in the agricultural soil.
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than in agricultural soil. The other heavy metals like Sr, Mn, and

Fe fluctuate at low to high levels of contamination in both

study soils.

Figure 6A showed that the levels of contamination were

extremely high for all recreational soil samples of Ca and Mg.
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And Figure 6B shows that all agricultural soil samples of Ca, Mg,

K, and Fe had high levels of contamination. Overall, the mean

modified degree of contamination (mCd) computed for the

recreational and agricultural soils was 11.83 and 19.38,

respectively. These values indicate that the recreational soils
A

B

FIGURE 5

Box plot of metal contamination assessment based on Geo-accumulation index (Igeo) for (A) recreational soil and (B) agricultural soil.
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have a very high contamination level while the agricultural soils

have an extremely high degree of contamination level. When

Nemerow Pollution Index (PIN) > 3, metal contamination in soil

is considered to be high. However, the mean PIN values for

surface soil in the study areas of recreational and agricultural

soils were 29.97 and 43.22, respectively, showing that the

majority of the soil samples in both soil areas were extremely

polluted by metals. However, reports of As pollution and risk for

the recreational soil and agricultural soil area have already been

published previously (19, 20, 67). The highly contaminated and

precautionary stages were observed in both study areas, due to

past metalliferous mining and anthropogenic activities.

Therefore, it was possible to conclude that the soil in the

abandoned metal lurgical region had been severely

contaminated. And the level of pollution is increasing because

of natural soil formation, the use of contaminated groundwater
Frontiers in Soil Science 13
for irrigation, and human activities. It was suggested that specific

environmental restoration should be carried out.
4.4 Source apportionment of metals
using PMF

The identification of sources and apportionment of metals

in the soils were further determined using the PMF model.

The model’s starting parameters included 3, 4, and 5 factors, a

start seed number chosen at random from 20 iterations. The

lowest and most reliable Q true value was used to calculate the

ideal number of factors (4, 61). To regulate the residual matrix

E, the minimum Q must be found, after which one can

determine an acceptable number of factors (105). The least

Q value was obtained from the optimum output of the PMF
TABLE 3 The metal contamination and risk assessment by different types of contamination indices.

Metals As Ca Mg Na K Sr Mn Fe mCd PIN

Contamination indices Igeo Cf Igeo Cf Igeo Cf Igeo Cf Igeo Cf Igeo Cf Igeo Cf Igeo Cf

Study area 1:
Recreational Soil

Mean 1.33 5.43 4.69 40.69 3.61 19.93 -3.83 0.90 2.82 11.19 0.65 2.57 0.05 1.62 2.94 12.34 11.83 29.97

Median 1.46 4.11 4.59 36.02 3.49 16.90 -4.52 0.07 3.01 12.09 0.64 2.34 0.11 1.62 3.10 12.89 10.75 26.45

Minimum -1.33 0.60 3.80 20.94 2.47 8.30 -6.07 0.02 1.38 3.91 -0.44 1.11 -0.88 0.82 1.49 4.20 5.72 15.35

Maximum 4.16 26.88 5.85 86.51 5.12 52.31 2.84 10.76 3.47 16.61 2.40 7.92 0.94 2.88 4.01 24.14 23.81 63.01

Standard
deviation

1.32 4.98 0.42 14.65 0.56 9.90 2.28 2.53 0.51 3.33 0.58 1.25 0.42 0.48 0.56 4.36 3.89 10.69

Study area 2:
Agricultural Soil

Mean 0.99 3.50 5.27 57.95 4.97 47.30 -3.73 0.12 3.57 18.07 0.16 1.76 1.10 3.24 3.93 23.11 19.38 43.22

Median 1.13 3.28 5.28 58.16 5.02 48.58 -3.76 0.11 3.61 18.35 0.21 1.73 1.16 3.34 3.97 23.54 19.52 43.29

Minimum -2.04 0.36 5.15 53.27 4.26 28.68 -4.85 0.05 2.53 8.69 -0.75 0.89 0.35 1.91 2.91 11.31 15.60 39.70

Maximum 2.49 8.43 5.37 62.12 5.10 51.33 -2.12 0.34 3.84 21.55 1.51 4.27 1.32 3.74 4.29 29.28 20.98 45.94

Standard
deviation

0.95 1.75 0.06 2.48 0.16 4.48 0.52 0.06 0.26 2.58 0.45 0.64 0.21 0.41 0.25 3.32 1.08 1.71
fro
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FIGURE 6

Contamination factor (Cf) percentage of metals for (A) recreational soil and (B) agricultural soil at different contamination level.
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model, which included four factors. The predicted residuals

of most soil samples were normally distributed within a range

of -4 and 4. The past mining activities as well as

industrialization, natural soil formation, groundwater

sources, and human activities were identified as the four

main sources of metal pollution. Sources were not identified

based on one characteristic of a factor but also using the

process of evidence by conflict, which involved additional

factors. In general, the mean metal concentration values were

initially used to determine whether the major sources of the

metal contamination were natural or anthropogenic. The

relationship between observed and predicted metal

concentrations for the recreational and agricultural soil is

shown in Figures S1, S2. The R2 values of selected metals in

recreational soil (Figure S1) were as follows after model

fitting: As (0.99), Ca (0.90), Mg (0.94), Na (0.99), K (0.79),

Sr (0.99), Mn (0.83), and Fe (0.95); and for the agricultural

soil (Figure S2) were as follows: As (0.99), Ca (0.40), Mg

(0.94), Na (0.99), K (0.81), Sr (0.99), Mn (0.75), and Fe (0.84).

All of these models generated R2 values of more than 0.7,

indicating a significant correlation between selected metals

and the utilisation of a sufficient number of factors obtained

from the PMF model.
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4.4.1 Identification of source factorization to
recreational soil

The results of the source contribution and factorization of

metal concentration in recreational soil by PMF analysis are

shown in Figure 7. The geographical interpolation method

produced the spatial distribution characteristics of four factors.

Figure 8 shows four factors whose spatial distribution patterns

were formed using the deterministic IDW interpolation

approach and which indicated significant spatial correlation

with strong outputs. The source profiles in mg/kg and source

contribution rates in percentages (%) of each factor to the metals

using the PMF model are shown in Table 4.

Factor 1 was mostly affected by K and Sr with source profiles

of 1554.50 mg/kg and 261.30 mg.kg-1, and the contribution rate

of 46.1% and 51%, respectively (Table 4). It also contributed

37.2% and 34.3% to Ca and Fe in this factor. The areas with

high-level factor 1 values were found in minor quantities at

scattered locations. Soil-Sr concentration is typically considered

to be a key factor for the deposition of air dust particles that have

interacted with strontium ions from industrial operations and

may potentially be exacerbated by human activity. The reason

behind the increase in K levels in this area were includes the

tillage system, soil temperature, soil permeability, oxygen
FIGURE 7

Factor profiles and source contributions of metal concentrations from PMF for recreational soil.
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content, and soil moisture. The higher soil moisture often results

in more K being generated. As a result, factor 1 could mostly be

considered to involve natural activities.

Factor 2 provided an explanation for the high loadings of

Mn (53.1%), Fe (53.1%), Mg (43.1%), and K (42.7%) (Table 4).

Mn and Fe are widely found at higher acidic levels in soils,

increasing alkalinity levels. Metal casting, soil formation by
Frontiers in Soil Science 15
chemical processes, and other industrial activities all have the

potential to produce Mg and K in the environment (106). As a

result , factor 2 possibly reflected past mining and

industrialization activity sources.

Factor 3 described the significant loadings of heavy metals like

As (95.8%) and Sr (32.4%) (Table 4). Possible sources of Sr bonded

to As include paedogenic processes, mining and ore processing
TABLE 4 Source contribution rates of factors for metal concentrations in the soil.

Soil type Elements Source profiles (mg/kg) Source contribution (%)

F1 F2 F3 F4 F1 F2 F3 F4

Recreational Soil As 0 2.58 115.50 2.53 0 2.1 95.8 2.1

Ca 7552.80 6469.30 3903.80 2369.90 37.2 31.9 19.2 11.7

Mg 319.44 512.70 199.54 157.23 26.9 43.1 16.8 13.2

Na 0 71.28 0 1335.20 0 5.1 0 94.9

K 1554.50 1437.00 377.37 0 46.1 42.7 11.2 0

Sr 261.30 0 166.24 84.93 51.0 0 32.4 16.6

Mn 42.37 73.07 17.91 4.14 30.9 53.1 13.0 3.0

Fe 1270.30 1967.70 280.86 187.74 34.3 53.1 7.5 5.1

Total source contributions – – – – 28.30 28.89 24.49 18.33

Agricultural Soil As 11.47 0 11.24 54.21 14.9 0 14.6 70.5

Ca 11044.00 10778.00 2393.10 4718.20 38.2 37.3 8.3 16.3

Mg 1469.20 1022.80 209.39 134.67 51.8 36.1 7.4 4.7

Na 73.38 6.45 108.97 0 38.9 3.4 57.7 0

K 2859.40 2114.70 442.72 10.35 52.7 39.0 8.2 0.2

Sr 0 65.48 75.80 211.77 0 18.5 21.5 60.0

Mn 158.10 103.85 0.76 11.56 57.6 37.9 0.3 4.2

Fe 3845.10 2757.70 322.06 0 55.5 39.8 4.7 0

Total source contributions – – – – 38.69 26.50 15.34 19.48
frontiers
FIGURE 8

Spatial variations for the normalization from each of the four factors within the recreational soil.
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operations, As-contaminated groundwater, and waste disposal. But

previous studies have shown that arsenic levels in these soils are

elevated only for the As-contaminated irrigated groundwater.

Studies conducted in the past revealed that the groundwater in

the study area contained exceptionally high levels of As, which came

from the dissolution of metallurgical wastes from an abandoned

smelter upstream, near Matehuala (18, 19, 67). Here, the soccer

fields are maintained by irrigation using groundwater. Hence, the

contaminated groundwater might be interpreted as factor 3.

Factor 4 was mainly contributed by Na with source contribution

amount and rate of 1335.20 mg/kg and 94.9%, respectively (Table 4).

In the study, Na was the only metal with concentrations below

permissible levels. The high-value locations of factor 4 and soil-Na

concentration were mainly distributed in the middle of the study area

which refers to the soccer pitch (Figure 8). The majority of Na

concentration in soil was from pesticides, fertilizers, and other human

activity. Therefore, factor 4 may represent anthropogenic activities

such as different types of human activities.

4.4.2 Identification of source factorization to
agricultural soil

The schematic of the factor profiles and source contributions

percentages for various metals in agricultural soil based on PMF
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results is shown in Figure 9. Table 4 depicts the parameters for

the PMF modelling with four factors of sources. The spatial

distribution mapping of source contributions determined by the

PMF results was assessed using the IDW interpolation

technique, shown in Figure 10.

Factor 1 revealed the specific representation of the factor

profiles and source contribution of each metal using the PMF

model, which shows Mg (51.8%), K (52.7%), Mn (57.6%), and Fe

(55.5%) having high factor loadings than the other metals

(Table 4). According to the spatial distribution map of factor

1, the high-value locations are clustered around the agricultural

land and the south-eastern part (Figure 10). The soils in the

study area were severely polluted by heavy metals like Mn and Fe

and indicating substantial mining activities and industrialization

impacts. The soils with high contents of Mg and K in the study

area revealed the rapid increase in industrialization activities.

But it can be stated that a high amount of K is good for the

agricultural soil because it is an important component that

supports plant growth. Therefore, factor 1 was probably

related to mining and industrialization activities.

Factor 2 had a contribution rate of 26.5% (Table 4), and was

dominated by Ca (37.3%), Mg (36.1%), K (39%), Mn (37.9%) as

well as Fe (39.8%). The spatial distribution patterns of Ca, Mg, K,
FIGURE 9

Factor profiles and source contributions of metal concentrations from PMF for agricultural soil.
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Mn, and Fe were consistent with the higher values in the north-

west and north-east locations and lower values in the southern

parts of the study area (Figure 10). Moreover, Ca and Mg

concentration levels were rather consistent across all sample

locations and had lower CV values than the other metals,

suggesting that these elements were mostly inherited through

parent materials. Mn and Fe were reported to be the other

abundant elements in a continental crust and common

lithophilic elements found in various minerals (107). The

possibilities of a higher amount of potassium levels in the soil

include over-fertilization and a large range of rocks and minerals

in the study area. Therefore, it might be interpreted that factor 2

is of natural source.

Factor 3 was mainly contributed by Na, with a source

contribution amount of 57.7% (Table 4). Na was the only

metal with concentration levels below permissible limits in this

study. The high amount of sodium salt concentrations in the soil

is caused by pesticides, fertilisers, and other soil inorganic

biofertilizers that are accumulated in the runoff. In agricultural

land, sodium chloride is used as a fertiliser, an insecticide, a plant

disease preventative, and a water softener in addition to certain

uses. But the high amount of sodium usage in agricultural soil

affects the metabolism of the plants and can cause drought
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conditions. Therefore, factor 3 was probably related to human

incidents due to agricultural activities.

Factor 4 was mainly characterized by As and Sr with 70.5%

and 60% as source contribution of 19.48% (Table 4). According

to the study by Razo et al. (66), the prevalence of As is attributed

to industrial and mining wastes in the aquatic environment. As

and other heavy metal concentrations in soils were higher in all

of the study areas’ water storage basins. The highest amounts of

As and other heavy metals were found in the soils near streams

and ponds that were adjacent to tailings impoundments. The

previous study by Ruıź-Huerta et al. (20), suggested that by using

contaminated water to irrigate agricultural land in Matehuala,

the content of As in soil has significantly increased. Moreover, it

has led to As bioaccumulation in maize crops as well as

translocation within plants. Moreover, industrial wastes and

sludges may be the most probable factor contributing to the

occurrence of As and Sr in the agricultural soil since these are

immediately discharged into the water body within the study

area. Therefore, factor 4 is identified as the groundwater used for

irrigational activities.

To summarize, Mg, Mn, and Fe indicate the sources of past

mining activity and industrialization in recreational and

agricultural soil, whereas the sources of human activities reveal
FIGURE 10

Spatial variations for the normalization from each of the four factors within the agricultural soil.
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Na in recreational soil and, Na and Sr in agricultural soil.

Moreover, As and Sr heavy metal is indicative of the sources

of irrigational groundwater for both types of soil, while Ca and K

point to natural activity. But the contribution of Ca and Mg is

moderate in both types of soils. The total percentage

contribution of each source was calculated using the factor

fingerprint of each metal, as shown in Figure 11. The past

mining and industrialization activities were apportioned as

having the highest percentage contribution to the recreational

soil (29%) and the agricultural soil (39%). For the agricultural

soil, other contributing factors were the natural source (28%),

irrigational groundwater source (25%), and human or

anthropogenic activities (18%). For the agricultural soil, the

corresponding contributions are natural sources (27%),

irrigational groundwater sources (19%), and human or

anthropogenic activities (15%). The source determination of

each factor for both types of soil indicated that Ca and K were

from soil parent materials, while As and Sr could be associated

with heavy metal-contaminated sewage irrigation and fertilizer

application. Other metals, namely, As, Mg, Mn, and Fe were

mainly attributable to mining and smelting, coal burning, ore

and waste mineralogy, and waste management during the mine

operation. But Na was related to natural sources and human

incidents such as concentrated runoff of pesticides, fertilizers,

and other soil amendments. Therefore, it is impossible to

overlook the fact that mining and industrialization activity had

a significant impact on the levels of heavy metals like As, Sr, Mn,

and Fe in the soils.
5 Conclusions

Through the use of numerous auxiliary data, this study

created a unique integrated spatial technique for quantifying

source apportionment and defining metal contamination in
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surface soils in Cerrito Blanco, Matehuala, San Luis Potosi,

Mexico. The results of the metal concentrations in soils

revealed that the mean concentrations of the selected eight

metals in the soil were much higher than their specific

permissible limits with the exception of Na. The mean

concentration levels of heavy metals like As, Sr, Mn, and Fe

were higher than their respective permissible limits by around

5.43, 2.57, 1.62, and 12.36 in recreational soil, and 3.50, 1.76,

3.29, and 23.11 times in agricultural soil. The results indicate that

natural soil formation, contaminated groundwater use, and

mining activities increased heavy metals in the topsoil. The Igeo
was higher than zero for all selected metals, while the Igeo values

of As and Fe were greater than one, which indicates that As and

Fe were the main heavy metal elements that caused

contamination in the recreational soil. Similarly, As, Mn and

Fe were the key heavy metal elements that caused contamination

in the agricultural soil. The mean value of the modified degree of

contamination (mCd) was 11.83, which indicates a very high

degree of contamination in recreational soil and, mCd for the

agricultural soil was 19.38, which indicates an extreme degree of

contamination. Moreover, the PIN values of these two soils are

29.97 and 43.22, which confirms that the area is highly

contaminated. According to the PMF results, the four

potential source contributions of recreational and agricultural

soil for metal concentrations in this study area are natural

sources, past mining and industrial activities, irrigational

groundwater, and human activities. The results of the source-

specific risk assessment didn’t reflect the source apportionment

factors for the concentration of metals; the order of the

contribution of the risk factors in recreational soil was, factor

1 (28%, natural sources), factor 2 (29%, mining activities and

industrialization), factor 3 (25%, groundwater sources), and

factor 4 (18%, human activities). Similarly, in the agricultural

soil, the corresponding contributions are factor 1 (39%, mining

activities and industrialization), factor 2 (27%, natural sources),
A B

FIGURE 11

Source factorization of (A) recreational soil and (B) agricultural soil.
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factor 3 (15%, human activities), and factor 4 (19%, groundwater

sources). As explained, a 95.8% loading on factor 3 for

contamination in recreational soil and 70.5% loading on factor

4 in agricultural soil due to irrigational groundwater sources,

contributed primarily to the overall contamination risk. The

contamination risk for As, Ca, Mg, K, Sr, Mn, and Fe indicated

identical spatial distributions with high risk, except for Na. But it

can be noted that some of these metals such as Ca, Mg, and K are

not providing a significant risk for soil contamination despite

being present in high amounts in soil, due to the beneficial role

of these metals for soil health. The results of this study indicated

that past mining activities and metallurgical pollution

contributed most significantly to the contamination risk. In

conclusion, further restrictions on the discharge of wastewater

from mining industries, along with conventional emission

controls, could be adopted to reduce contamination risks in

soils. The results of the PMF model, GIS spatial distribution

mapping, and contamination risk indices have significant

implications for decision-makers to reduce threats to human

health and environmental risk from possible sources

of pollution.
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22. Saha A, Gupta BS, Patidar S, Martıńez-Villegas N. Evaluation of potential
ecological risk index of toxic metals contamination in the soils. IOCAG Chem Proc
(2022) 10(1):59. doi: 10.3390/IOCAG2022-12214

23. Yang S, Zhou D, Yu H, Wei R, Pan B. Distribution and speciation of metals
(Cu, zn, cd, and Pb) in agricultural and non-agricultural soils near a stream upriver
from the pearl river, China. Environ Pollut. (2013) 177:64–70. doi: 10.1016/
j.envpol.2013.01.044

24. Shen W, Hu Y, Zhang J, Zhao F, Bian P, Liu Y. Spatial distribution and
human health risk assessment of soil heavy metals based on sequential Gaussian
simulation and positive matrix factorization model: A case study in irrigation area
of the yellow river. Ecotoxicol. Environ Safety. (2021) 225:112752. doi: 10.1016/
j.ecoenv.2021.112752

25. Miao F, Zhang Y, Li Y, Fang Q, Zhou Y. Implementation of an integrated
health risk assessment coupled with spatial interpolation and source contribution:
A case study of soil heavy metals from an abandoned industrial area in suzhou,
China. In: Stochastic environmental research and risk assessment (Springer-Verlag
GmbH Germany: Springer Nature) (2022). 36:2633–47. doi: 10.1007/s00477-021-
02146-2

26. Xu Y, Wang X, Cui G, Li K, Liu Y, Li B, et al. Source apportionment and
ecological and health risk mapping of soil heavy metals based on PMF, SOM, and
GIS methods in hulan river watershed, northeastern China. Environ Monit Assess.
(2022) 194(3):1–17. doi: 10.1007/s10661-022-09826-8

27. Taghipour M, Ayoubi S, Khademi H. Contribution of lithologic and
anthropogenic factors to surface soil heavy metals in western Iran using
multivariate geostatistical analyses. Soil Sediment Contam.: Int J (2011) 20
(8):921–37. doi: 10.1080/15320383.2011.620045

28. Zhang P, Qin C, Hong X, Kang G, QinM, Yang D, et al. Risk assessment and
source analysis of soil heavy metal pollution from lower reaches of yellow river
irrigation in China. Sci Total Environ. (2018) 633:1136–47. doi: 10.1016/
j.scitotenv.2018.03.228

29. Zhang X, Wei S, Sun Q, Wadood SA, Guo B. Source identification and
spatial distribution of arsenic and heavy metals in agricultural soil around hunan
industrial estate by positive matrix factorization model, principle components
analysis and geo statistical analysis. Ecotoxicol. Environ safety. (2018) 159:354–62.
doi: 10.1016/j.ecoenv.2018.04.072

30. Su C, Meng J, Zhou Y, Bi R, Chen Z, Diao J, et al. Heavy metals in soils from
intense industrial areas in south China: Spatial distribution, source apportionment,
and risk assessment. Front Environ Sci (2022) 10:820536. doi: 10.3389/
fenvs.2022.820536

31. Su H, Hu Y, Wang L, Yu H, Li B, Liu J. Source apportionment and
geographic distribution of heavy metals and as in soils and vegetables using
kriging interpolation and positive matrix factorization analysis. Int J Environ Res
Public Health (2022) 19(1):485. doi: 10.3390/ijerph19010485
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