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The nitrates produced after mineralization from compost may be prone to

leaching, especially in tropical sandy soils, because of the increased rate of

nitrification and the porous nature of such soils. This may result in low nitrogen

(N) use efficiency and adverse environmental effects. Inorganic nitrification

inhibitors are costly and mostly unavailable in Ghana. Research on simple but

effective local materials for use as nitrification inhibitors is therefore a priority.

Two such materials are neem materials and biochar. Neem materials can

suppress nitrifying bacteria due to their antimicrobial properties. Biochar can

hold ammonium in the soil, making it temporarily unavailable to nitrifying

bacteria. This study aimed to determine the efficacy of neem materials and

biochar as nitrification inhibitors and their influence on nitrate leaching. In

preliminary studies: 1) pot incubation was conducted for 60 days to estimate

the nitrification rate with manure, compost, and NH4Cl as the N source (150 kg

N/ha) in one set and neem seeds, bark, and leaves (1.25 µg azadirachtin/g) in

another set, using nitrate concentrations; and 2) the ammonium sorption and

desorption capacities of sawdust, rice husk, and groundnut husk biochar were

determined. In the main study, pot incubation with compost as the N source

but treated with milled neem seeds or bark (1.25 µg azadirachtin/g) or sawdust

biochar (20 t/ha) was conducted for 60 days, in which the nitrification inhibition

was determined using nitrate concentrations. A leaching experiment in

columns with similar treatments and maize sown was then conducted to

quantify the nitrate in leachates. A high nitrification rate was recorded in

compost-amended soil, almost half that of the standard (NH4Cl). The use of

sawdust biochar, which showed the highest ammonium sorption and

desorption capacity, resulted in 40% nitrification inhibition that lasted the

entire incubation period. The use of neem seeds with an azadirachtin

concentration of 3.92 mg/g resulted in a similar nitrification inhibition, but
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this only lasted 40 days. Inhibition caused by both materials resulted in about a

60% reduction in nitrate leached. Thus, neem seeds (498 kg/ha) and sawdust

biochar (20 mt/ha) could be used to control nitrate leaching for short-duration

and long-duration crops, respectively.
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1 Introduction

Soils in sub-Saharan Africa are low in nitrogen (1), but the

plant N requirement, as compared to many other nutrients, is

very high. The management of soil N is therefore critical for crop

production in sub-Saharan Africa, where soil fertility decline,

primarily due to soil nutrient mining, has been identified as a key

constraint to agricultural productivity (2). The low N in these

soils has been attributed to a number of reasons; key among

them is the rapid rate of mineralization due to increased

atmospheric temperature, which leads to significant N losses.

Thus, a normal farming practice is to supply N to soils through

organic or inorganic fertilizer application or other agronomic

cultural techniques (e.g., cultivation of legumes) in order to

achieve high crop yields (3).

Concerns have been raised, however, about the cost,

availability, and environmental friendliness of inorganic

fertilizers (4, 5). Consequently, the application of organic

fertilizers to farmlands has become an economical alternative

and provides a more sustainable mechanism for increasing crop

production (5). Organic fertilizers increase crop yields by

providing large amounts of nutrients and organic matter (5).

These organic fertilizers contain both mineral N (which may be

immediately available) and a large amount of organically bound

N, which undergo a microbially mediated mineralization process

in which ammonium (NH+
4 ) and nitrate (NO−

3 ) are released in

inorganic and soluble forms that can be utilized by plants (6).

The soluble and mobile N components of organic fertilizers are

important for consideration in terms of leachability in the soil,

especially during rain events (7). When water infiltrates 2.5 cm

of soil, it moves the NO−
3 2.5 and 6.5 cm downward in clayey

loam and sandy soils, respectively (8). Thus, during periods of

heavy rainfall, leaching may move NO−
3 out of the effective

rooting zone of plants (8). Nitrate leaching after organic fertilizer

application may even be more intense in soils such as Ferric

Luvisols due to the rapid rate of mineralization caused by soil

and climatic conditions. A wide variation (from 0.2 to over 200

kg N/ha) in the amount of soil N leached on the African

continent has been found, and these values are inconsistent

with the N inputs, e.g., high leaching even under zero fertilizer
02
application (9). Fertilized fields have also been found to contain

a three to four times higher NO−
3 concentration in underground

water than under the unfertilized control (9). This results in a

low N use efficiency, which affects crop production and causes

some environmental issues. Like other sub-Saharan African

countries, Ghana is faced with the problem of low soil N (10),

and attempts to improve the situation may bring up the issue of

soil N leaching.

Many researchers have seen this as a problem when

inorganic fertilizer is involved, but not with organic fertilizer,

with the explanation of a slow N release (11). However, this may

not always be the case because nitrate leaching from agricultural

soils is a complex process closely related to local environmental

factors, such as soil characteristics and climatic variables (12),

and farm management practices in intensive agriculture. The use

of inorganic nitrification inhibitors applied elsewhere to control

such situations may not be practical in Ghana because of cost

and availability concerns. Accordingly, investigation into the use

of local materials that are readily available with few or no

competing demands is needed. Two such materials are neem

materials and biochar. Neem materials delay the bacterial

oxidation of NH+
4 to NO−

3 (nitrification) (13, 14) by

suppressing the nitrifying bacteria involved in the process due

to their antimicrobial properties (azadirachtin). In

microorganisms, azadirachtin inhibits proliferation and

monolayer formation and reduces the rates of protein

synthesis, which finally leads to cell death (15). Recent studies

by Altayb etal. (16) and Kebede etal. (17) have reported on the

strong antibacterial activity of neem materials against different

types of bacteria. Several studies have also been conducted to

evaluate the efficacy of aromatic plant materials (18), neem seed

cake and oil (19), and karanja seed powder (20) in suppressing

the nitrification of urea. Meena etal. (21) even reported that the

Government of India has mandated the production and

distribution of neem-coated urea in place of normal urea

across the country, as a responsible and sustainable model.

Biochar has also been shown to significantly influence almost

all forms of N, especially NH+
4 , either directly or indirectly (22,

23). Several mechanisms have been proposed for biochar– NH+
4

interaction, including higher pore space and surface area (24),
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oxygen-containing functional groups due to short- and long-

term oxidation (25, 26), sorption due to ion exchange, NH+
4

sorption via chemosorption ammonia fixation, ion exchange,

with columbic forces or an association with S-functional groups

(27, 28), chemistry of surface functional groups (29), and the

physical adsorption (van der Waals adsorption) of NH+
4 onto the

biochar surface (30). Based on these established interactions,

biochar can hold NH+
4 in the soil to make it temporarily

unavailable to nitrifying bacteria, thus slowing the rate of

nitrification and subsequently reducing the amount of

nitrate leached.

The reduction of soil NO−
3 leaching using these simple

materials is therefore a priority area of research due to its

agricultural, financial, health, and environmental relevance.

The main objective of this study was to determine the efficacy

of either neem seeds, bark, and leaves or biochar when each is

used as a nitrification inhibitor, their influence on the amount of

nitrate leached from a compost-amended Ferric Luvisol, and

their impact on some agronomic performance indices with

maize as a test crop and on the residual soil.
2 Materials and methods

2.1 Soil used

This study used a Varempere series soil. Adu and Asiamah

(31) classified this soil as a Ferric Luvisol. Ferric Luvisol is the

most dominant soil in the Ghanaian portion of the Black Volta

River basin, which lies between latitude 7°00'00'' N and 14°30'00''

N and longitude 5°30'00'' W and 1°30'00'' W (32). The soil is very

deep (>150 cm) and sedentary and developed from granite. It is

moderately well drained, brownish yellow to yellowish red in

color, with a sandy clay loam to a sandy clay texture, and is

found on gentle slopes. The top soil (0–25 cm) is dark brown, a

weak fine granular loamy sand, is non-sticky and non-plastic,

and is overlying the thick (25–155 cm) brownish yellow to

yellowish red subsoil. The subsoil has a moderate to strong

medium subangular blocky structure, is faintly mottled, has a

sandy clay to gritty clay texture, is slightly sticky, and is slightly

plastic in consistency. At 155–175 cm, it has a firm structure,

with a few to more common iron, manganese dioxide nodules,

and quartz stones and gravels.
2.2 Soil sampling

Surface soil (0–20 cm) was sampled from an uncultivated

land at Bawku, the capital town of Bawku Municipal District in

the Upper East Region of North Ghana. Bulk soil samples were

brought to the laboratory, air-dried, and then sieved with a 2-

mm sieve for chemical and physical analyses.
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2.3 Preliminary studies

2.3.1 Incubation studies
Each incubation study was carried out in Sinna’s garden of

the College of Basic and Applied Sciences of the University of

Ghana. The objective of the first incubation study was to

determine whether the potential rate of nitrification in a

compost or cow dung manure-amended soil is rapid enough

to warrant considering leaching control measures. The compost

was prepared basically from market and household waste

materials, and the cow dung manure was collected from the

Livestock and Poultry Research Centre of the University of

Ghana. A total of 500 g of soil samples was weighed into

plastic pots, and substances such as stones and roots were

removed. The soil was neither air-dried nor sieved in order to

minimize disturbance of microbial activity. The soils were either

mixed with 2 g of the compost (150 kg N/ha), 2 g of the manure

(150 kg N/ha), or 0.12 g of NH4Cl (150 kg N/ha); the control

treatment received no amendment. Soil moisture content was

maintained at 70% water-holding capacity and incubated. The

incubation was carried out in a dark chamber at a temperature

range of 28°C–32°C under aerobic conditions for 60 days. This

experiment was conducted according to a completely

randomized design with three replications. Values of

mineralized NO−
3 were determined at the start of the

experiment and after 10, 20, 30, 40, 50, and 60 days of

incubation by destructive sampling.

The equation developed by Crawford and Chalk (33) was

used to calculate potential nitrification rates (n), as follows:

n μg   N g� 1 soil day� 1� �

=
(Amount   of   nitrate   at   t2) − (Amount   of   nitrate   at   t1)

Dt2 − Dt1
Eq: 1

where Dt2 is the number of days from the start of incubation

to time 2 and Dt1 is the number of days from the start of

incubation to time 1.

A similar 60-day incubation study was set up after the first one

to determine and account for potential mineralizable nitrate from

neem leaves, bark, and seeds to be used as inhibitors in a subsequent

study. The results were also used to establish the suitability or

otherwise of neem leaves and bark for use as substitutes for the well-

documented neem seeds when out of season. The materials

harvested from neem trees on the Legon Campus of the

University of Ghana were completely air-dried and milled into a

fine form. Methanolic extraction of azadirachtin was performed,

and filtrates were sent to the Ghana Standard Authority Pesticide

Laboratory for the determination of azadirachtin concentration

using the 6420 Triple Quad Liquid Chromatography Mass

Spectrometer (LC/MS) and a MassHunter WorkStation software

(Agilent Technologies, Santa Clara, CA, USA). The pots of soil were

treated with 1) 0.16 g of milled neem seeds, 2) 12.50 g of milled
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neem bark, or 3) 20.80 g of neem leaves, each containing 1.25 μg

azadirachtin/g soil, based on the conclusion made by

Sarawaneeyaruk etal. (34) that 1.25 μg azadirachtin/ml is the

minimum concentration of azadirachtin needed for microbial

inhibition. The unamended soil served as the control. Nitrate

(NO−
3 ) was determined at 10-day intervals.
2.3.2 Sorption and desorption study
An ammonium sorption and desorption study was

conducted by preparing concentrations of 0, 5, 10, 15, 20, 25,

30, and 40 mg NH+
4 /L from (NH4)2SO4 in a CaCl2 background

solution to attain an ionic strength of 0.01 M CaCl2. The purpose

of this study was to determine the biochar type with the highest

NH+
4 sorption and desorption ability that can be used as a

nitrification inhibitor in the subsequent inhibition study.

Three feedstocks with no local competing demand—rice husk,

sawdust, and groundnut husk—were selected for pyrolysis from

the Soil and Irrigation Research Centre (SIREC) of the

University of Ghana, a sawmill, and a farm at Bawku in the

Northern Region of Ghana, respectively. The feedstocks were

air-dried to a moisture content of less than 10%, and all foreign

materials were removed. Charring was done in batches for each

feedstock using a locally manufactured kiln (kuntan kiln), and a

series of charring temperatures were recorded during each batch

using an infrared thermometer. The average of these

temperatures was calculated as the charring temperature for

each biochar type. A total of 2 g of rice husk biochar (RHB),

groundnut husk biochar (GHB), and sawdust biochar (SDB)

(charred at 480°C, 440°C, and 460°C, respectively) was weighed

into each solution and shaken for 30 min twice a day (at 9 a.m.

and 4 p.m.) at 125 oscillations per minute for 6 days. The

solutions were filtered, and 5 ml of 40% NaOH was added to a 5-

ml aliquot from each and distilled. The distillates were titrated

against 0.01 M HCl. The amount of NH+
4 sorbed by the various

biochar types was calculated as follows:

q  =   Co  −  Ceð Þ V
m

(Eq: 2)

where C0 and Ce are the initial and equilibrium ammonium

concentrations, respectively (in milligrams per liter); v is the

volume of the solution (in liters); and m is the mass of biochar

(in grams) (35).

A desorption study was also conducted using the residual

samples at the highest concentration level (40 mg/L). After

centrifugation at 3,500 rpm for 10 min at room temperature,

wet residues were shaken with 20 ml of 0.01 M KCl solution for 3

h. A 5-ml aliquot of the supernatant was taken for the

determination of NH+
4 . The extraction was repeated two more

times, and the NH+
4 released into the supernatant at each

extraction period was measured. The total amount desorbed

was the summation of the amount desorbed at each of the three

extractions.
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NH+
4   desorbability

% ) =
(NH+

4   adsorbed) − (NH+
4   desorbed)

(NH+
4   adsorbed)

�   100

�
(Eq: 3)
2.3.3 Inhibition study
A third similar 60-day incubation study was conducted with

2 g of compost (as the N source) mixed with 1) 0.16 g of milled

neem seeds (1.25 μg azadirachtin/g soil), 2) 12.50 g of milled

neem bark (1.25 μg azadirachtin/g soil), 3) 30.1 g sawdust

biochar (20 mt/ha) (36), or 4) 5.9 g dicyandiamide (DCD; 1.25

μg a.i./g soil). The purpose of this study was to determine the

percentage of nitrification inhibition caused in a compost-

amended soil treated with either neem seeds, neem bark, or

sawdust biochar. The neem leaves were dropped at this stage

because the results from the earlier study revealed a high amount

of N mineralized from the leaves. This defeats the basic principle

underlining the inhibition (i.e., reducing the amount of available

N susceptible to leaching). Soil mixed with compost only served

as a control. Mineralized nitrate (NO−
3 ) was determined at the

start of the experiment and after 10, 20, 30, 40, 50, and 60 days of

incubation by destructive sampling.

The percentage of nitrification inhibition (NI%) was also

calculated using the equation by Crawford and Chalk (33).

NI   %ð Þ = (n(compost   only) − n(NI)
n   (compost   only)

�   100 (Eq: 4)

NI is either neem seed, neem bark, or biochar.
2.4 Main study

2.4.1 Setup for leaching
Acrylic cylinder columns with a diameter of 16 cm (radius, 8

cm) and height of 40 cm were used. The bottoms of the columns

were covered with Whatman no. 42 filter paper, followed by a

nylon mesh of 25 μm pore size. The filter paper and nylon mesh

were secured at the mouth with circular metal clips to prevent

soil particles from falling. A depth of 10 cm from the top of the

height of each column was left for water after saturation. The

remaining 30 cm was divided into two exact parts (15 cm each)

for soil sampled from 20–40 cm (at the bottom) and from 0–20

cm (on top). A soil mass of 4.9 kg was poured first into the

columns (according to its bulk density of 1.54 Mg/m3) and was

packed to the 15-cm mark by gently tapping the sides of the

cylinders carefully. Water was added to reach 70% field moisture

capacity. Then, 4.7 kg (according to its bulk density of 1.56 Mg/

m3) of topsoil (0–20 cm) was thoroughly mixed with compost at

150 kg N/ha and treated with 1) milled neem seeds (1.25 μg

azadirachtin/g soil), 2) milled neem bark (1.25 μg azadirachtin/g

soil), 3) sawdust biochar (20 mt/ha), and 4) DCD (1.25 μg a.i./g

soil) or 5) left unamended. Each was packed to the 15-cm mark
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by gently tapping the sides of the cylinder carefully. Treatments

were left for 1 week (7 days) to equilibrate (during this period,

the moisture content was maintained at 70% field capacity), after

which five seeds of the Obaatanpa maize variety (test crop) per

cylinder were sown and thinned to three plants per cylinder after

germination. All treatments were replicated four times and

completely randomized. On days 30 and 50 after amendment,

the moisture content of the soils was brought above 100% field

capacity in order to leach soils completely with deionized water,

and the leachate was collected into a 1,000-ml conical flask

placed under the columns for the determination of NO−
3

concentration in each.

2.4.2 Plant materials
The maize plants were harvested 10 weeks after planting.

The chlorophyll content in the leaves was determined using the

Apogee CCM-200 plus chlorophyll content meter (Apogee

Instruments, Logan, UT, USA) before harvesting. The

harvested plants were separated into shoots and roots and

dried in an oven at a temperature of 68°C for 48 h. The

weight of the dried samples was then taken as the dry

matter weight.
2.5 Statistical analysis

All data were subjected to analysis of variance (ANOVA).

The statistical package used was GenStat 2012 version. The least

significance difference method was used for the mean separation

at the 5% level of probability.
3 Results and discussion

3.1 Preliminary studies

3.1.1 Soil used
Some of the physiochemical properties of the soil used for the

study are shown in Table 1. The soil had a high sand content of

80.8%, with silt and clay contents of 12.9% and 6.3%, respectively.

The soil is classified as a loamy sand according to the U.S.

Department of Agriculture (USDA) system. It has a high bulk

density of 1.59 Mg/m3 and a low moisture content at field capacity

of 16.1%. The pH of the soil in water was near neutral, with a value

of 6.5. A low organic carbon content of 0.34% was recorded, with

very low total nitrogen and available phosphorus contents of 0.02%

and 7.41 mg/kg, respectively. The low value of organic carbon

would not maintain a sustainable crop yield, as Garten and

Wullschleger (37) documented that the critical value is 1%. The

low organic carbon value for the soil could be attributed to the

sparse grass vegetation covering the soil. The low available nitrogen

recorded could be due to the effect of the intense leaching of nitrate

as a result of the sandy nature of the soil. The calcium concentration
Frontiers in Soil Science 05
was 1.34 cmol/kg, and sodium had the lowest concentration of 0.01

cmol/kg. All of these physical and chemical characteristics are

consistent with what have been reported by numerous

researchers, including Nketia etal. (38) and Adu and Asiamah (31).

3.1.2 Potential nitrification rate after compost
or manure amendment

The results for the nitrate concentrations at 10-day intervals for

the incubation period were used to calculate the overall potential

nitrification rate, as shown in Figure 1. The highest rate of

nitrification was recorded in the NH4Cl-amended soil (10.4 μg

g−1 day−1). This was expected because of the readily available NH+
4

released into the solution upon the application of NH4Cl. The

manure- and compost-amended soils had insignificantly (p > 0.05)

different rates of 4.4 and 4.6 μg g−1 day−1, respectively, representing

about half the rate of the NH4Cl-amended soil. The similarity in the

properties (e.g., total N, CN ratio, and lignin and phenol contents)

of the two materials, as shown in Table 2, may have accounted for

their nitrification rates not being significantly different.

This suggests a relatively high-potential nitrification rate in

the manure- and compost-amended soils. The physiochemical

properties of the soil used, as shown in Table 1 (especially pH

and texture), could be attributed to the rapid mineralization of

the materials. This supports the findings of Chèneby etal. (39),

who reported a high amount of labile N fractions of compost

(34%) in sandy soils. The quality of the compost and manure

(Table 2) may have also contributed to this observation.

Similarly, a high rate of mineralization was observed by He

etal. (40), who recommended that the application rates of
TABLE 1 Physiochemical properties of the soil used.

Parameter Result

Moisture content at field capacity (%) 16.1

Bulk density (Mg/m3) 1.59

Porosity (%) 36.15

Sand (%) 80.8

Silt (%) 12.9

Clay (%) 6.3

Texture Loamy sand

pH (H2O, 1:1) 6.5

EC (μS/cm) 700

Organic C (g/kg) 3.4

Total N (g/kg) 0.2

Ca (cmol kg−1) 1.34

Mg (cmol kg−1) 0.70

K (cmol kg−1) 0.11

Na (cmol kg-1) 0.09

NH+
4 (mg/kg) 18.0

NO−
3 (mg/kg) 0.0

Available P (mg/kg) 7.41
fro
EC, electrical conductivity.
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composts similar to biosolids, which contain a high N

concentration, should be adjusted for high N release in order

to minimize the risk of NO−
3 leaching into groundwater. This

result therefore formed the basis for consideration of N

leaching control.

3.1.3 Azadirachtin concentrations and
mineralizable N of neem materials

The azadirachtin concentration was found to be highest in

the neem seeds (3.92 mg/g), which was significantly different

from that in the leaves (0.03 mg/g) and the bark (0.05 mg/g), as

shown in Table 3. The higher azadirachtin concentration in the

seeds, as compared to the leaves and bark, is consistent with

what has been widely reported in the literature (41): the

secretory cells for the synthesis of azadirachtin are more

abundant in the seeds than in the other parts. Therefore, based

on the active ingredient, one would need 80 times as much leaves

or bark, compared to seeds, to perform the same function.

The concentrations of NO−
3 in the soil after amendment with

neem leaves, bark, or seeds are shown in Figure 2. There was a
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significantly (p< 0.05) higher concentration of NO−
3 in the soil

amended with neem leaves (57.8 μg/g) compared to those

amended with seeds (25.6 μg/g) and bark (16.7 μg/g) and the

control (4.1 μg/g).

The highest concentration of total N found in the neem leaves,

as well as the relatively low values of some of the other properties,

such as the C/N ratio and the lignin and phenol contents (as

shown in Table 2), might account for the high mineralizable N.

Therefore, for the purpose of nitrification inhibition, neem leaves

may not be appropriate as the high amount of mineralizable N

from the material defeats the principle involved in its use. This

result formed the basis for the exclusion of neem leaves as an

inhibitor in the subsequent incubation study.

3.1.4 Sorption and desorption study
The properties of the three biochar types are shown in

Table 4. The results revealed similarities in the key sorption-

and desorption-determining properties, such as pyrolysis

temperature and cation exchange capacity (CEC), among the

biochar types.

Differences in the pH of the equilibrium solution of the three

biochar types could thus have contributed to the differences in

the amount of NH+
4 sorbed. These different pH values might

have resulted in either a competitive action (low pH of RHB),
FIGURE 1

Potential nitrification rate in each amended soil after the incubation period. *Values followed by different letters above the bar are significantly
different at the p < 0.05 level.
TABLE 2 Properties of the manure and compost used.

Parameter Manure Compost

pH (H2O, 1:1) 7.9a 9.0b

Organic C (g/kg) 452.8a 431.0a

Total N (g/kg) 15.7a 15.9a

NO−
3 (mg/kg) 62.0a 55.8b

NH+
4 (mg/kg) 27.0a 25.2a

Available P (mg/kg) 124.5a 295.9b

C/N ratio 28.85a 27.10a

Lignin (mg/g) 13.2a 12.9a

Phenols (mg/kg) 0.53a 0.48a
Values followed by different letters for each parameter is significantly different at the p<
0.05 level.
TABLE 3 Properties of the neem materials used.

Parameter Leaves Bark Seeds

Azadirachtin (mg/g) 0.03 0.05 3.92

Organic C (g/kg) 439.5a 438.3a 456.5a

Total N (g/kg) 27.3b 9.7c 18.9d

C/N ratio 16.10e 45.18f 24.15g

Lignin (mg/g) 13.7h 18.4i 14.4j

Phenols (mg/kg) 0.52k 0.67l 0.58
frontier
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FIGURE 2

Nitrate concentration in soil after neem material amendment.
TABLE 4 Chemical properties and average pyrolysis temperature of the biochar types.

Property GHB RHB SDB

Pyrolysis temperature (°C) 440 ± 22.5 480 ± 15.9 460 ± 33.7

C (g/kg) 673.1 339.2 743.4

N (g/kg) 7.0 6.3 5.2

pH (1:10 H2O) 9.81 6.73 9.14

pH (1:10 KCl) 8.79 6.34 8.12

EC (μS/cm) 1251.7 328.0 326.3

CEC (cmol/kg) 10.78 9.16 10.27

Solution pH after shaking 8.5 6.3 7.5
Frontiers in Soil Science
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Mean values are the averages of triplicate measurements.
EC, electrical conductivity; CEC, cation exchange capacity; GHB, groundnut husk biochar; RHB, rice husk biochar; SDB, sawdust biochar.
FIGURE 3

Amount of NH+
4 sorbed and desorbed for the three biochar types at 40 mg/L. *Values followed by different letters above the bar are significantly

different at the p < 0.05 level.
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volatilization (high pH of GHB), or enhanced sorption

(near-neutral pH of SDB). SDB sorbed the highest amount of

NH+
4 , while RHB sorbed the least (Figure 3). The woody nature

of sawdust (making it more porous) relative to its agricultural

waste counterparts may also explain the relatively higher

sorption capacity of SDB. The higher porous nature of

SDB further corroborated its relatively higher ease of

desorbability. Thus, upon amendment to soils, SDB would

make NH+
4 more bioavailable by acting as a buffer for storage

and release into the soil solution. Based on this, SDB was selected
Frontiers in Soil Science 08
for use as the nitrification inhibitor in the subsequent

inhibition study.

3.1.5 Inhibition study
Figures 4, 5 show the effects of neem seeds, neem bark, SDB,

and DCD treatments on NH+
4 and NO−

3 mineralization in a

compost-amended soil. The greatest effects were observed in the

neem seed and SDB treatments.

These results, translated into evidential similar percentage

inhibition in each treatment, are shown in Figure 6. The highest
FIGURE 4

Ammonium concentration after amendment.
FIGURE 5

Cumulative nitrate concentration after amendment.
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percentage of inhibition was recorded for the seed treatment

until day 30, after which the SDB treatment took the lead. The

inhibition caused by the neem materials may be attributed to the

delay they cause in the bacterial oxidation of NH+
4 to NO−

3

(nitrification) (14) by suppressing the nitrifying bacteria

involved in the process due to the azadirachtin.

The antimicrobial effect of the treatments using neem

materials was evident in the results showing the total

nitrifying bacteria population after application (Figure 7). A

similar nitrification inhibition by blending neem cake with

urea has also been observed and reported by several researchers

(42, 43). The combined effect of azadirachtin and the oil in the
Frontiers in Soil Science 09
neem seeds might account for the highest rate of inhibition.

However, the inhibitory property of the neem materials was

short-lived (40 days), after which negative inhibition rates were

recorded. The inhibitory effect of SDB, on the other hand,

continued throughout the incubation period. This could be

attributed to the inert or recalcitrant nature of biochar in the

soil, which gives it the ability to resist decomposition for a long

period of time. The high amount of NH+
4 recorded in the

residual soil (Table 6) explains its inhibition mechanism of

holding onto NH+
4 . Therefore, neem seeds could be used for

nitrification inhibition in short-duration crops, such as cereals,

vegetables, and other grain crops. Sawdust biochar, however,
FIGURE 6

Percentage of nitrification inhibition over time after amendment. *Values with different letters are significantly different at the p < 0.05 level.
FIGURE 7

Total nitrifier population in the soil over time after amendment. *Values with different letters are significantly different at the p < 0.05 level.
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may be appropriate for nitrification inhibition in long-duration

crops, such as tree crops.
3.2 Leaching study

The results from both leaching days (3 and 6 weeks after

sowing) are shown in Figure 8. The results indicated that the

highest amount of nitrate in the leachates came from the compost-

only soil. This result was contrary to the conclusion drawn by

Amlinger et al. (44) that, in lysimeter experiments, there is no

increase in the leaching of N as a result of compost application.

The contradictory results might be due to differences in the

climatic (Irish) and soil (loamy) conditions of their work. The

results further revealed similar nitrate contents of 28.48, 28.67,

and 27.32 μg/g in the leachates from the soils treated with neem

seeds, neem bark, and SDB, respectively, on the first leaching day.

These values were not significantly (p > 0.05) different from each

other, but not the standard (DCD). On the second leaching day,
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however, significantly lower amounts of nitrate were recorded in

the neem seed and SDB treatments relative to the other

treatments. The inhibitory ability of these materials, as discussed

earlier, explains these observations. Additionally, characteristics

such as the oil present in neem seeds (45) and the high water-

holding capacity of biochar (46, 47) could also have played a role

in enhancing their effectiveness as leaching control materials.
3.2.1 Chlorophyll content of leaves and the
shoot and root dry weight of maize

The results for the chlorophyll content of leaves, as well as

the shoot and root dry weight, of the maize plants 10 weeks after

planting are shown in Table 5. For each of these agronomic

parameters, maize plants that received neem seed and SDB

treatments registered higher values relative to those given

other treatments. The lower amount of NO−
3 lost in these

treatments, which may have resulted in a higher uptake, could

explain these results. This is because the chlorophyll content has
TABLE 5 Leaf chlorophyll content and root and shoot dry weight of maize plants 10 weeks after planting.

Treatments Chlorophyll (µmol/m2) Root dry weight (g) Shoot dry weight (g)

Control 3.7c ± 0.33 41.83d ± 1.15 54.03g ± 1.72

Neem bark 7.5b ± 0.51 47.40e ± 1.29 72.28i ± 2.34

Neem seeds 9.7a ± 0.68 61.53f ± 2.0 110.97j ± 5.17

Biochar 9.8a ± 0.62 62.18f ± 2.11 119.94j ± 5.39

DCD 4.0c ± 0.39 42.74d ± 1.35 59.33h ± 1.83
Values are the mean ± SD of quadruplicates. Values followed by different letters are significantly different at the p < 0.05 level.
DCD, dicyandiamide.
FIGURE 8

Nitrate concentration in leachates from the first and second leaching determinations. *Values with different letters are significantly different at
the p < 0.05 level. D.A.A., days after amendment.
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been found to be approximately proportional to the shoot

nitrogen content (48) since nitrogen is directly involved in the

synthesis of chlorophyll (49). Nitrogen has also been found in

molecules such as adenosine triphosphate (ATP), nicotinamide

adenine dinucleotide hydrogen (NADH), nicotinamide adenine

dinucleotide phosphate hydrogen (NADPH), storage proteins,

nucleic acids and enzymes (50), cytochrome molecules, and

chlorophyll (51), providing evidence that nitrogen is directly

related to plant development and productivity. Figure 9 gives a

visual evidence of treatment induced differences in

plant development.
FIGURE 9

Maize plants 10 weeks after sowing (before harvesting).
TABLE 6 Residual soil available N.

Treatments NO−
3 (µg/g) NH+

4 (µg/g)

Compost only 21.35a 19.5d

Compost + bark 37.71b 17.8d

Compost + seeds 42.61b 15.1d

Compost + biochar 30.81c 35.2e

Compost + DCD 38.78b 18.3d
Values are the mean ± SD of quadruplicates. Values followed by different letters are
significantly different at the p< 0.05 level.
DCD, dicyandiamide
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3.2.2 Residual soil available N
The nitrate and ammonium concentrations in the residual

soil of all treatments are shown in Table 6. All treatments had a

significantly higher amount of NO−
3 relative to the control. This

may be attributed to the lower amount of NO−
3 loss recorded

compared to the control. The increase in NO−
3 release because of

the reduced inhibitory effect of these materials may also explain

this observation. Soil from the SDB treatment, however, had the

least amount of NO−
3 , but nearly double the amount of NH+

4 ,

compared to soils from the other treatments. This supports the

reported ability of biochar to interact with NH+
4 by sorption (30),

making it temporarily unavailable to nitrifying bacteria.
4 Conclusion and recommendations
Fron
1. A high rate of nitrification occurs in manure- or

compost-amended Ferric Luvisol soils; thus, possible

ways of controlling nitrate leaching must be considered.

2. Neem seeds are recommended as a nitrification

inhibitor in the soil. However, inhibition with this

treatment only lasted 40 days after amendment; due to

this, the application of neem seed may be recommended

for use in short-duration crops, such as some cereals,

vegetables, and legumes.

3. The application of sawdust biochar resulted in

nitrification inhibition throughout the entire

incubation period and, thus, may be recommended for

use in long-duration crops, such as trees.

4. Replication of these studies is recommended under field

conditions.
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