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Site-specific spatially continuous soil texture data is required for many purposes such

as the simulation of carbon dynamics, the estimation of drought impact on agriculture,

or the modeling of water erosion rates. At large scales, there are often only conventional

polygon-based soil texture maps, which are hardly reproducible, contain abrupt changes

at polygon borders, and therefore are not suitable for most quantitative applications.

Digital soil mapping methods can provide the required soil texture information in form

of reproducible site-specific predictions with associated uncertainties. Machine learning

models were trained in a nested cross-validation approach to predict the spatial

distribution of the topsoil (0–30 cm) clay, silt, and sand contents in 100m resolution.

The differential evolution algorithm was applied to optimize the model parameters.

High-quality nation-wide soil texture data of 2,991 soil profiles was obtained from the

first German agricultural soil inventory. We tested an iterative approach by training

models on predictor datasets of increasing size, which contained up to 50 variables.

The best results were achieved when training the models on the complete predictor

dataset. They explained about 59% of the variance in clay, 75% of the variance in

silt, and 77% of the variance in sand content. The RMSE values ranged between

approximately 8.2 wt.% (clay), 11.8 wt.% (silt), and 15.0 wt.% (sand). Due to their high

performance, models were able to predict the spatial texture distribution. They captured

the high importance of the soil forming factors parent material and relief. Our results

demonstrate the high predictive power of machine learning in predicting soil texture

at large scales. The iterative approach enhanced model interpretability. It revealed that

the incorporated soil maps partly substituted the relief and parent material predictors.

Overall, the spatially continuous soil texture predictions provide valuable input for many

quantitative applications on agricultural topsoils in Germany.

Keywords: soil texture, predictive soil mapping, pedometrics, machine learning, optimization

INTRODUCTION

Soil texture is one of the most important physical soil properties. It influences, for example, the
sequestration of carbon (1), it affects soil hydrological properties (2), and the susceptibility to soil
erosion (3). Consequently, soil texture data is required to simulate the carbon dynamics of soils
under different management practices (4–6), to estimate the drought impact on agriculture (7) or to
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model water erosion rates (8, 9). At large scales, site-specific
information on the spatial continuous distribution of clay,
silt, and sand contents is often missing. In many cases,
existing polygon-based maps are not suitable for quantitative
applications as they consist of complex compositions, are hardly
reproducible, and represent only abrupt changes at polygon
borders (10). Ließ et al. (11) discussed the limitation of
conventional national German soil maps with regards to their
usage in agricultural process models due to their composition of
map units comprising various soil systematic units of differing
properties and unspecified spatial allocation. Instead, predictive
soil mapping methods can provide the required soil information
in form of reproducible site-specific predictions with associated
uncertainties (12).

Predictive soil mapping (also known as digital soil mapping)
refers to the methodology for generating spatially continuous soil
information by applying numerical or statistical models. Models
are trained to extract the empirical relationship between soils and
their properties gathered at specific locations (response variables)
and the soil forming factors represented by spatially continuous
data products (predictor variables). McBratney et al. (13), Scull
et al. (14), and Zhang et al. (15) provide reviews. The approach
is rooted in the ideas of Jenny (16) and Dokuchaev (17), who
explained soil formation as a function of five soil forming factors:
climate (C), organisms (O), relief (R), parent material (P), and
time (A). McBratney et al. (13) extended the concept by adding
other soil properties (S) and the spatial position (N), formalizing
the scorpan approach. Nowadays, empirical models are trained
on various scorpan factor proxies, for example, proximal and
remote sensing data, interpolated meteorological observations,
or, geology and soil maps (13, 15).

Overall, the usage of machine learning models in predictive
soil mapping is increasing (18, 19). This can be attributed
to their ability to deal with complex non-linear dependencies
between predictor and response variables (20). Most soil
texture predictions are done using tree-based machine learning
algorithms. These include for example cubist decision tree
models (21–23), random forest models (24–26), or boosted
regression trees (27–29). Tree-based models have an important
advantage over most other machine learning models: they allow
the simple computation of the predictor importance and are
therefore comparatively easy to interpret (18, 19, 30). Other
machine learning algorithms used for the prediction of soil
texture are support vector machines (31–33) and artificial neural
networks (34–36). According to the no-free-lunch theorem, it can
be assumed that all algorithms perform equally well on average
(37). This is confirmed by comparisons of different machine
learning models in soil texture predictions [e.g., (32, 35, 36)]; no
model algorithm solved it all.

To fully exploit the potential of a machine learning algorithm,
the usage of appropriate parameter tuning is essential (11).
If the values of the tuning parameters can only be discrete
integers, it is usually sufficient to try out a certain number of
predefined values to adapt the machine learning algorithm to
the specific modeling problem. This can be done by using a
grid search, which is the standard method in predictive soil
mapping (38–40). If the tuning parameters are continuous real

numbers, exhaustive tuning requires numerical optimization
algorithms [e.g., (11, 41)]. One technique that allows for the
evaluation of the complete parameter space of real numbers is the
differential evolution algorithm (42). It can outperform various
other optimization algorithms (42–44) and has been applied
successfully in soil science. For example, to tune the parameters
of neural networks (45, 46), boosted regression trees (41), or
geostatistical models (47).

Often the quality and quantity of the training data is the most
influential factor in restricting model performance (18, 19, 48).
First and foremost, the response variable dataset must be of
high quality to avoid introducing uncertainty into the model
(49). Second, its size has to be large enough to capture the
complexity of the respective research area (19). Third, its size
must fit model requirements as the sensitivity to the size of the
training data set depends on the model algorithm (18). While a
suitable sampling scheme and accurate quality control help to
generate an appropriate response variable dataset, creating the
predictor dataset is oftenmore difficult.Most studiesmust rely on
readily available spatial data (13, 15) whose quality can be difficult
to verify (49). The scorpan factors that determine the spatial
distribution of the response variable in a given research area must
be represented by the predictor dataset to achieve reasonable
results (12, 13). The number of predictors also depends on
the number of sampled soil profiles. In order to represent the
predictors well, a sufficiently large sample size is necessary.

The increase in computing capacity nowadays allows
predictions at large scales (15, 48). Adhikari et al. (21), for
example, trained a cubist tree model to predict the soil texture of
Denmark. They used predictors derived from a digital elevation
model (DEM) as well as soil, geology, and land use maps.
Wadoux (50) applied a deep learning convolutional neural
network to predict the soil texture of France. It was trained
on coordinates, predictors derived from spectral images and a
DEM as well as climate, land cover, and parent material maps.
Liu et al. (51) trained a random forest model to predict the soil
texture of China. They used predictors derived from a DEM
and spectral images as well as climate and parent material maps.
Ramcharan et al. (52) predicted the percentage of clay and sand of
the conterminous Unites States using random forest and gradient
boosting algorithms. The models were trained on predictors
derived from a DEM and satellite images, climate data, soil
property maps, land cover information as well as fire regime
classes and aeroradiometric grids. The number of studies that
focus on large-scale texture predictions of soils under agricultural
land use is particularly scarce. One example is given by Piikki and
Söderström (53), who predicted the topsoil texture of arable land
in Sweden. High-resolution airborne gamma-ray spectrometry
data, DEM derived predictors, and a geology map enabled them
to obtain reasonable results.

The first predictive soil mapping study conducted at national
scale, Germany, was presented by Ließ et al. (11). They trained
support vector machine models to predict the spatial distribution
of agricultural soil functional types at 100m resolution. These
were defined by various soil parameters along the depth
profile and included soil texture data. However, until now, no
machine learning model was specifically trained to predict the
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spatial texture distribution of agricultural topsoils throughout
Germany. Models that were trained for larger scales and cover
Germany provide predictions in comparatively low resolutions.
Ballabio et al. (54), for example, used multivariate adaptive
regression splines to predict the topsoil (0–20 cm) texture in
500m resolution at continental scale (Europe). Their response
variable dataset was derived from the topsoil database of the land
use and cover area frame statistical (LUCAS) survey. Predictor
variables incorporated remotely sensed vegetation indices, DEM
derived variables, land cover information as well as temperature
and precipitation data. Hengl et al. (55) used various machine
learning models to predict the soil texture distribution in 250m
resolution at global scale. Predictions were done for seven
depths: 0, 5, 15, 30, 60, 100, and 200 cm. Their response
variable dataset was derived from various sources including
the LUCAS topsoil database. Predictor variables incorporated,
among others, remotely sensed spectral images, DEM derived
variables, land cover information, precipitation data, lithologic
units, landform classes as well as information on soil and
sedimentary deposit thickness.

This is the first study that deals exclusively with the spatial
prediction of the topsoil texture (0–30 cm) of agricultural soils in
Germany. Machine learning models were trained to predict clay,
silt, and sand contents in 100m resolution. We tested an iterative
approach to enhance model interpretability: models were trained
on predictor datasets of increasing size.

MATERIALS AND METHODS

Response Variable Datasets
Models were trained with regards to three response variables:
clay, silt, and sand content of the top 30 cm which will be referred
to as topsoil throughout this manuscript. We refrained from
treating clay, silt, and sand as compositional variables, as their
transformation can result in biased predictions (26). The required
data was obtained from the harmonized database of the first
German agricultural soil inventory (56). For a description of
the inventory, including details on the soil analysis and their
results please refer to the report of Jacobs et al. (57). Briefly, 3,104
soil profiles under agricultural land use (croplands, permanent
grassland, and special crops) were selected based on a German-
wide 8 km raster. Their topsoil was sampled from two depth
intervals while taking horizon boundaries into account: 0–10 and
10–30 cm. Among other lab measurements, the database includes
the mass of fine soil (<2,000µm) as well as the contents of clay
(<2µm), three silt fractions (2–6.3, 6.3–20, 20–63µm) and three
sand fractions (63–200, 200–630, and 630–2,000µm). Clay, silt,
and sand contents were determined by applying the sieve and
sedimentationmethod according to DIN ISO11277 (58). The fine
soil mass was calculated from the dry bulk density according to
HFA A2.8 (59).

We extracted the topsoil clay, total silt (2–63µm), and total
sand (63–2,000µm) contents as well as the fine soil mass from
the database. Excluding sites withmissing data—mostly peat soils
and soils with high organic matter contents—, we used topsoil
data from 2,991 sites. Likely due to the agricultural land use, the
texture in most profiles barely differed in the first 30 cm (57).

Consequently, we combined the texture data from the topsoil into
a weighted mean per soil profile. The fine soil mass was used as
the weighting factor.

Research Area and Predictor Datasets
Our research focuses on agricultural soils in Germany, which
cover more than half of the country (60). They were identified
using the CORINE land cover vectormap [©(61)] and encompass
an area of∼200,000 km2.

To find out how the different scorpan factors influence
the spatial topsoil texture distribution in German agricultural
soils, we followed an iterative approach and trained models
on predictor datasets of increasing size: scorpan factors mostly
approximated by quantitative, remotely sensed predictors with
high resolution were added to the dataset first, scorpan
factors mostly approximated by interpolations of meteorological
observations next, and scorpan factors mostly approximated
by polygon-based maps were added last. In concrete terms,
the first dataset included scorpan R predictors only. Second,
spatial position (R+N) and third, organisms proxies were
added (R+N+O). Fourth, models were trained on additional
climate predictors (R+N+O+C). Fifth, proxies for parent
material (R+N+O+C+P), and sixth, other soil properties were
added (R+N+O+C+P+S). Many studies [e.g., (24, 26, 30)]
suggest that the predictor influence is similar for sand, silt,
and clay models. Therefore, the iterative approach was only
performed for the silt models. The clay and sand models were
trained on the complete predictor dataset which incorporates
six scorpan factors. It consists of 50 variables, which are
summarized in Table 1. Selected predictors are visualized in
Figure 1. Classes of categorical predictors that could not be
represented by the response variable dataset sufficiently were
excluded from model development (please see section Response
Data and Predictor Representation). We used the EUROSTAT
(72) tool to create a standardized, INSPIRE compliant target
grid in 100m resolution. The 100m resolution was chosen as
a compromise between computing capacity, a useful resolution
for quantitative applications on agricultural soils in Germany,
and the input data. Predictors were resampled to the target
grid in SAGA GIS (73, 74): B-spline interpolation was applied
for quantitative predictors, nearest-neighbor interpolation for
categorical predictors. Further information on the sources and
the generation of the predictor variables is provided in the
following subsections.

Relief
The relief of Germany was approximated by 21 quantitative
and one categorical predictor. The quantitative predictors mostly
relate to water movement and erosion processes, which are
known to affect particle sorting (75). Elevation and slope
influence the erosion intensity; different landforms control
how surface water and eroded soil material move over the
landscape and where they accumulate (10). The catchment area
allows identifying areas with high surface and subsurface runoff,
while the SAGA topographic wetness index allows identifying
areas with high soil moisture (76). They are expected to
relate to lateral and vertical transport processes. Additionally,

Frontiers in Soil Science | www.frontiersin.org 3 January 2022 | Volume 1 | Article 770326

https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/soil-science#articles


Gebauer et al. Topsoil Texture Regionalization (Germany)

TABLE 1 | Predictor variables.

scorpan factor Predictor abbreviation Description type

Relief Elevation Elevation above sea level q

Aspect N/S 2 km; 4 km; 8 km North/South direction of the aspect (search radii: 2, 4, and 8 km) q

Aspect E/W 2 km; 4 km; 8 km East/West direction of the aspect (search radii: 2, 4, and 8 km) q

Slope 2 km; 4 km; 8 km Slope (search radii: 2, 4, and 8 km) q

TSC 2 km; 4 km; 8 km Terrain surface convexity (search radii: 2, 4, and 8 km) q

MRVBF Multi resolutional index of valley bottom flatness q

Wind exp. Wind exposition index q

Valley depth Valley depth q

CA SAGA catchment area q

Mod. CA SAGA modified catchment area q

TWI SAGA topographic wetness index q

Vertical OFD Vertical overland flow distance q

Horizontal OFD Horizontal overland flow distance q

GMK Geomorphic map of Germany c

Spatial position X X coordinate q

Y Y coordinate q

Organisms Max NDRE 16 Maximum NDRE (2016) q

Max NDVI 16 Maximum NDVI (2016) q

Max NDWI 16 Maximum NDWI (2016) q

Min NDRE 18 Minimum NDRE (2018) q

Min NDVI 18 Minimum NDVI (2018) q

Min NDWI 18 Minimum NDWI (2018) q

Range NDRE 16 Maximum NDRE (2016)—minimum NDRE (2016) q

Range NDVI 16 Maximum NDVI (2016)—minimum NDVI (2016) q

Range NDWI 16 Maximum NDWI (2016)—minimum NDWI (2016) q

Range NDRE 18 Maximum NDRE (2018)—minimum NDRE (2018) q

Range NDVI 18 Maximum NDVI (2018)—minimum NDVI (2018) q

Range NDWI 18 Maximum NDWI (2018)—minimum NDWI (2018) q

NDRE: max16–min18 Maximum NDRE (2016)—minimum NDRE (2018) q

NDVI: max16–min18 Maximum NDVI (2016)—minimum NDVI (2018) q

NDWI: max16–min18 Maximum NDWI (2016)—minimum NDWI (2018) q

CLC CORINE land cover map (2018) c

Climate Precipitation Long-term average precipitation (1961–2010) q

Temperature Long-term average temperature (1961–2010) q

Windspeed Windspeed q

Parent material BAG 5000 Soil parent material map of Germany c

HUEK litho. Lithology information from the hydrological map of Germany c

HUEK strati. Stratigraphy information from the hydrological map of Germany c

Soil BGL 5000 Soil scapes map of Germany c

BUEK 1000 Soil information from the soil map of Germany c

K factor Stone corrected K factor q

Wind EF Wind erodible fraction q

Quantitative (q) and categorical (c).

overland flow distances to the seas and the main rivers were
calculated, since most rivers no longer follow their natural
topographical streambeds.

The quantitative predictors were derived from the remotely
sensed and quality-checked EU-DEM [(77) © (62)]. The
EU-DEM is offered in 25m resolution. It is visualized in
Figure 1A. We pre-processed the EU-DEM to obtain reliable

hydrology related relief predictors (catchment areas, wetness
index, flow distances): sinks of more than 1m depth were
filled using the spatial analyst extension in ArcGIS (78), the
main rivers were burnt into the DEM using the SAGA GIS
(73) preprocessing library (74). We extracted the main rivers
from the CCM river and catchment database [© (63, 79)].
They are visualized in Figure 1A. Except for the overland flow
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FIGURE 1 | Selected predictor variables. (A) elevation above sea level [© (62)] and main rivers [© (63)], (B) geomorphic map of Germany (GMK) (64) [legend], (C) soil

parent material map (BAG 5000) (65) [legend], (D) lithology information (HUEK litho), and (E) stratigraphy information (HUEK strati.) from the hydrological map of

Germany (66) [legend], (F) soil scapes map (BGL 5000) (67) [legend], (G) soil information from the soil map of Germany (BUEK 1000) (68) [legend], (H) stone corrected

K factor (69, 70), (I) wind erodible fraction (EF) (69, 71). Artificial surfaces, forests, semi natural areas, and water bodies were masked based on the CORINE land

cover map [© (61)]. For the classes of the categorical predictors that are described not only with numbers but also with letters, the following applies: the number

describes a category to which the classes can be summarized, the letter distinguishes the individual classes of a category. Classes of categorical predictors that were

excluded from model development are shown in black.
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distances, the quantitative relief predictors were calculated by
applying morphometry and hydrology terrain analysis tools of
the SAGA GIS (73) software (74). Aspect, slope, and terrain
surface convexity were calculated with three search radii (2,
4, and 8 km) to capture processes on different scales. The
circular variable aspect was split into North/South and East/West
direction. Overland flow distances to the center of the main
rivers were calculated by applying the D-Infinity method from
the spatial analyst extension in ArcGIS (78).

The only relief related categorical predictor is the geomorphic
map of Germany (GMK) (64). The original map distinguishes 25
landform classes that belong to five categories (Figure 1B): sink
areas (category 1), the North German lowland (category 2), the
Alpine foothills (category 3), the highland (category 4), and the
Alps (not represented).

Spatial Position
The X and Y coordinates were added to the predictor dataset to
represent the spatial position. Adding them early in the iterative
process, allows the tree models to distinguish the influence
of different predictors depending on the spatial position. For
example, it can be assumed that the topographic predictors
play a more important role in southern Germany than in the
comparatively flat northern Germany.

Organisms
The scorpan O was approximated by 15 quantitative and
one categorical predictor. The quantitative predictors relate to
vegetation, whose condition depends, amongst other factors, on
the available water (80). The root-zone plant-available water in
turn depends on the soil texture (2). The quantitative predictors
comprise three spectral vegetation indices. The normalized
difference vegetation index (NDVI) is highly correlated to the
green biomass and therefore to the vegetation condition (81). The
normalized difference red edge (NDRE) index is very similar to
the NDVI but allows the evaluation of later growth stages (82).
The normalized difference water index (NDWI) is directly related
to the liquid water contents of the vegetation (83).

We obtained yearly temporal statistics (minimum and
maximum) of NDRE, NDVI, and NDWI from the European
Data Portal (84). The indices are based on remotely sensed and
processed Sentinel 2 images in 10m resolution. The maximum
indices of a relatively wet year (2016) and the minimum indices
of a relatively dry year (2018) were integrated into the predictor
dataset. In addition, we calculated the difference (maximum–
minimum) within each of the 2 years and between 2016 and 2018.

According to Jacobs et al. (57) land use depends on soil
texture. We derived categorical land use data from the CORINE
land cover map. It offers classified satellite data in 100m
resolution. In Europe, it distinguishes 44 classes.

Climate
The influence of the climate was included in the predictor
dataset by three quantitative variables: long-term averages of
precipitation and temperature in 2m height and wind speed
in 10m height. Precipitation and temperature influence the
chemical and physical weathering processes which in turn can

result in different particle sizes (2). In addition, precipitation
provides the input for water erosion. Wind speed is directly
related to wind erosion.

Three gridded precipitation datasets (85–87) and three
gridded temperature datasets (88–90) were obtained from the
climate data center (CDC) of the national meteorological
service of Germany (DWD). The multi-annual datasets with
1 km resolution are based on quality-checked meteorological
observations that were interpolated using the elevation data
(91). We summarized the three interpolations by calculating the
long-term (1961–2010) means of precipitation and temperature.
Gridded wind speed data in 200m resolution was also obtained
from the CDC (92). It was modeled from quality-checked
meteorological observations (93).

Parent Material
The soil parent material strongly influences soil texture. Its
composition is known to control the resistance to weathering
(94). Depending on the stage of development, the texture of
a soil resembles the texture of its parent material (95). We
approximated the scorpan P by adding three polygon-basedmaps
to the predictor dataset. The original soil parent material (BAG
5000) map at scale 1:5,000,000 (65) distinguishes 18 classes. The
BAG 5000 classes that were included into model development
are shown in Figure 1C. The hydrological map of Germany
describes the properties of the uppermost aquifers at scale
1:250,000 (66). We extracted information on lithology (HUEK
litho.) and stratigraphy (HUEK strati.). The original lithology
map distinguishes 80 classes, which belong to five categories
(Figure 1D): sedimentary materials (category 1), unconsolidated
materials (category 2), igneous materials (category 3), composite
genesis materials (category 4), and other materials (category 5).
The original stratigraphy map distinguishes 97 classes, which
belong to four categories (Figures 1E,F): the Cenozoic period
(category 1), the Mesozoic period (category 2), the Paleozoic
period (category 3) as well as the Precambrian (category 4).

Soil
Soil can be predicted from other soil attributes (13). We included
two polygon-based soil maps and two grid-based erosion maps
into the predictor dataset. The soil scapes (BGL 5000) polygon
map at scale 1:5,000,000 aggregates similar soil typological units
(67). The original map comprises 38 classes that belong to 12
soil regions (Figure 1F): coastal Holocene (category 1), river
landscapes (category 2), young and old moraine landscapes
(categories 3 and 4), gravel plates and tertiary hills in the Alpine
foothills (category 5), loess and sand loess landscapes (category
6), mountainous and hilly areas with different non-metamorphic
rocks (categories 7, 8, and 9), or with many magmatites and
metamorphic rocks (category 10), or with many clay and silt
slates (category 11), and the Alps (category 12). Polygon-based
soil information was extracted from the land use-stratified soil
map (BUEK 1000) of Germany at scale 1:1,000,000 (68). The
original map distinguishes 72 classes that are grouped into soils
of the coastal area and peat soils (category 1), soils of broad
river valleys, (category 2), soils of the undulating lowlands and
hilly areas (category 3), soils in loess areas (category 4), soils of
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TABLE 2 | Tuning parameter limits that are required for optimization by differential

evolution.

Tuning parameter Lower optimization limit Upper optimization limit

n.trees 100 4,000

shrinkage 0.001 0.1

interaction.depth 1 15

bag.fraction 0.5 0.9

n.minobsinnode 5 10

the mountain and hilly regions as well as of the low mountain
ranges (category 5), and soils of the high mountains, anthrosols,
settlements and surface water (not represented) (Figure 1G).
Two erosion maps were obtained from the European soil data
center (69). The K factor map (Figure 1G) in 500m resolution
describes the soil erodibility taking into account the stoniness.
It was generated for Europe by applying a cubist model to
extract the relationship between K factor point data from the
European soil database and the LUCAS point survey, and spatial
predictors (70). The wind erodible fraction (EF)map (Figure 1H)
in 500m resolution is directly related to the soil wind erosion
susceptibility. Similar to the K factor, it was created by applying
a cubist model to extract the relationship between wind EF point
data from the LUCAS survey, and spatial predictors (71).

Model Development and Evaluation
Model development and statistical analysis were done using
the R language (96). We applied the boosted regression trees
(BRT) algorithm for model development because it can use
categorical and quantitative predictors without preprocessing,
it considers predictor interaction, and it is robust to irrelevant
predictors, predictors with missing data as well as overfitting
(97). We trained and applied BRT models using the “gbm” R-
package (98). For a detailed explanation of the BRT algorithm,
please refer to the publications of Elith et al. (97) and Ridgeway
(99). Briefly, the BRT algorithm combines two machine learning
techniques: regression trees and stochastic gradient boosting.
Regression trees recursively divide the response variable data
into increasingly similar subgroups. All predictor variables are
compared to find the best decision rule for each binary split.
Finally, the response variable values of the terminal regression
tree nodes are averaged per subgroup. Boosting combines many
simple models to form a linear combination. The BRT algorithm
fits simple regression trees to random training data subsets and
adds them iteratively. To improve the overall model accuracy,
new trees are trained to reduce the residuals of the previous trees.
The “gbm” R-package includes a function to calculate the relative
importance of each predictor variable. The importance depends
on how often the respective predictor was used to divide the
response variable data into BRT subgroups, and how much its
usage improved model performance (100).

Two continuous and three discrete valued model parameters
were tuned to adapt the BRT algorithm: the number of
simple regression trees to be combined (n.trees, discrete),
the contribution of each tree to the final model (shrinkage,

continuous), the number of splits to divide the data
(interaction.depth, discrete), the fraction to subset the response
variable dataset randomly (bag.fraction, continuous), and the
minimum number of observations in the terminal tree nodes
(n.minobsinnode, discrete). We applied the differential evolution
algorithm for parameter tuning using the R-package “DEoptim”
(101). For a detailed explanation of the differential evolution
algorithm, we refer to the book of Price et al. (102). Briefly,
the differential evolution algorithm is based on evolutionary
theory. It consists of the steps mutation, crossover, and selection
that are repeatedly applied to a population. The fitness of the
population is optimized by minimizing an objective function. In
this study, each member of the population is reflected by a vector
of five elements. Each vector element represented the value of
one tuning parameter. During optimization, the differential
evolution algorithm allows any real tuning parameter value
between two user-defined limits. To choose these limits, we
extended the recommendations of Elith et al. (97) and Ridgeway
(99) to accommodate the complex dataset used in our study.
The chosen limits are summarized in Table 2. Besides that, the
differential evolution algorithm was applied in the same way
as described in Gebauer et al. (41): a population consisted of
100 members, the root mean squared error (RMSE) was used as
objective function value, and optimization was either stopped
after 200 repetitions or after the 10th repetition without any
RMSE improvement.

To ensure independent test and training datasets for a
reliable model performance evaluation, we applied k-fold cross-
validation (CV) for two purposes. First, to calculate the objective
function during parameter tuning, and second to evaluate the
final models with optimized parameter values using two common
errormetrics: RMSE and the coefficient of determination (R2). To
combine both purposes, we used a nested CV approach similar
to Guio Blanco et al. (103). During k-fold cross-validation the
dataset is divided into k folds; k−1 folds form the training dataset,
one-fold forms the test dataset. Model training and evaluation
are repeated k times until each fold is used as a test set once. To
include parameter tuning, an inner parameter tuning CV loop
is nested in an outer final model evaluation CV loop. For this
purpose, the training folds of the outer loop form the total dataset
for the inner loop. The dataset of the inner loop is divided into
test and training folds, to compare the performance of models
with different tuning parameter values. We used k = 5 fold CV
with one repetition for parameter tuning and with five repetitions
for model evaluation.

To guarantee that each fold is representative of the whole
dataset, we divided the datasets pseudo-randomly using spatial
stratification. In addition, this ensured the direct comparability
of all models, since the clay, silt, and sand response variable
datasets were divided into test and training folds in the same
way. First, Germany was divided into 50 strata based on a 100
× 100 km raster. For this, we used the INSPIRE-compliant grid
generation tool (72). Second, these strata were sampled randomly
and data was distributed into the folds. Spatially autocorrelated
training and test data, which could cause overly optimistic error
metrics, can be precluded because of large distances between
neighboring sampling points: on average the distance is 8,120m;
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FIGURE 2 | Response variable datasets. Data was obtained from the harmonized database of the first German agricultural soil inventory (56). 2.1 location and 2.2

data distribution of the topsoil (A) clay, (B) silt, and (C) sand contents.

for <0.02% of the sampling points the distance is between 1,400
and 7,900 m.

RESULTS AND DISCUSSION

Response Data and Predictor
Representation
The topsoil clay, silt, and sand data are visualized by maps in
Figure 2.1, and by boxplots and violin plots in Figure 2.2. Most
of the sampled topsoils contain less clay than silt and sand. The
median clay content is 15.9 wt.%, the median silt content is 35.4
wt.%, and the median sand content is 41.6 wt.%. Overall, the sand
contents cover the widest range. They vary between 0.8 and 97.1

wt.%, while silt contents range between 1.7 and 86.5 wt.%, and
clay contents between 1.0 and 77.7 wt.%. Most of the high clay
and silt contents were measured in southern Germany, most of
the high sand contents in northern Germany.

The high quality of the first German agricultural soil inventory
data and its representativeness for mineral soils under croplands
and grassland has already been confirmed by Jacobs et al.
(57). The plots in Figure 2.2 reveal that the extracted response
datasets cover a wide range of texture values very well. Only
some comparatively high clay contents (>48.0 wt.%) are rare.
Most of the high clay contents belong to soil profiles that are
located comparatively close to the main rivers. Their median
horizontal overland flow distance to the center of the closest main
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river is 5,400m. The median distance of the other soil profiles
is 8,500 m.

Not only the response data influences the model performance
but also the predictor data. The better the spatial predictors are
represented by the predictor values at the sampling points of
each CV test and training dataset, the more information can be
used by the model and the more stable the spatial predictions.
Therefore, we compared the predictor subspace of each CV fold
of the outer loop to the complete spatial predictor space under
agricultural land use. The large difference in the size of the
two datasets did not allow to perform a robust statistical test.
For each quantitative predictor, we compared the medians and
interquartile ranges of both datasets instead. The results of the
comparisons are similar for each CV fold because the spatial
stratification resulted in similar predictor subspaces per fold
(section Model Development and Evaluation). Consequently, we
averaged the differences in medians and interquartile ranges per
quantitative predictor across all 25-folds resulting from five-fold
CV with five repetitions. The comparison shows that the spatial
predictor space under agricultural land use can be represented
by our test and training datasets. For almost all quantitative
predictors, the averaged difference of the medians of the two
data sets ranges only between 0.1% [X and Y coordinates, terrain
surface convexity (8 km search radius)] and 9.4% (range NDRE
2016). For half of the quantitative predictors, the difference
is <3%. The only exception is the SAGA catchment area; the
average difference of the medians is 23.9%. The interquartile
ranges of the two data sets differ more than the medians.
Predictors at sampling sites cover a smaller interquartile range
than the spatial predictors. The averaged difference of the
interquartile ranges of the two data sets varies between 0.3%
[North/South direction of the aspect (4 km search radius)] and
44.3 % (minimum NDVI 2018). For half of the quantitative
predictors, the difference is higher than 9.5%. Comparatively
large differences in the interquartile ranges occur because small
areas with extreme quantitative predictor values are unlikely to
be represented by the soil survey sites. These are mainly areas
in the Alps with elevations of more than 1,100m above sea level
(a.s.l.). They cover only 1.2% of the area of agricultural soils.

We excluded classes of categorical predictors from model
development that were not included in each CV fold of the outer
loop at least once. Except for the CLC land cover predictor,
the excluded categorical classes are visualized as black areas
in Figure 1. As indicated by Jacobs et al. (57), only small
areas are not covered sufficiently by the sampling sites of the
agricultural soil inventory. The excluded predictor classes cover
only 1.1% (5 GMK classes), 4.3% (8 agricultural CLC classes
that occur in Germany), 0.1% (4 BAG 5000 classes), 6.1% (60
HUEK litho. classes), 13.0% (72 HUEK strati. classes), 1.8% (5
BGL 5000 classes), and 6.2% (25 BUEK 1000 classes) of the
area of agricultural soils. This leaves 20 GMK classes, 3 CLC
classes, 14 BAG 5000 classes, 20 HUEK litho. classes, 25 HUEK
strati. classes, 33 BGL 5000 classes, and 47 BUEK 1000 classes
forming the categorical predictor input. Most of them are well
represented. Only 20 classes occur <25 times in the model input
(i.e., on average five times per fold): GMK classes 3c and 3d, CLC
vineyards, HUEK strati. classes 1c, 1j, 2b, 3c, and 4a, BGL 5000

class 6b, and BUEK 1000 classes 1a, 2b, 2c, 2f, 4a, 4c, 4f, 4g, 5g,
5h, and 5j (class labels refer to the legend in Figure 1). They cover
only 1.5% (GMK), 0.6% (CLC), 3.4% (HUEK strati.), 5.9% (BGL
5000), and 7.7% (BUEK 1000) of the area of agricultural soils.

Predictor Importance
The relative importance of each predictor per iterative step of the
silt models is shown in Figure 3 by boxplots. While considering
only scorpan R (iterative approach, step 1), elevation is by far
the most important predictor (Figure 3A). Its median relative
importance among all predictors of scorpan R is 41%. This is
not surprising as the elevation is already related to other scorpan
factors. It for example relates to the climate and allows to divide
Germany into 5 major landscapes (104): the glacially shaped
North German lowlands with elevations mostly below 100m a.s.l.
(dark green areas, Figure 1A), the adjacent low mountain ranges
with elevations up to ∼1,000m a.s.l. (mostly yellow, orange, and
red areas, Figure 1A), the Upper Rhine valley with elevations
around 150m a.s.l. (mostly light green areas, Figure 1A), the
Alpine foothills with elevations between ∼500 and 750m a.s.l.
(orange and red areas, Figure 1A), and the Alps with elevations
of more than ∼1,100m a.s.l. (gray areas, Figure 1A). To some
extent, the landscapes differ in their parent materials (compare
e.g., Figures 1A,D) and their susceptibility to wind and water
erosion (compare Figures 1A,H,I). While the potential relief
energy in the North German lowlands, the Upper Rhine valley,
and the Alpine foothills is comparatively low, the steep slopes
in the low mountain ranges and the Alps are much more
susceptible to topography-induced mass movements (105, 106).
The second most important relief predictor is the geomorphic
map of Germany (GMK). Its median relative importance is
10%. It adds important information to the predictor space by
classifying the landscapes into different landforms. In addition,
it is related to the parent material and the soil distribution
(compare e.g., Figures 1B,C,G). Another important scorpan R
predictor is the multi resolutional index of valley bottom flatness
(MRVBF). It allows identifying depositional areas (107), which
explains its comparatively high median relative importance of
6%. Its relevance for texture predictions was also reported by
studies conducted in Iran (26, 35), Denmark (21), and Europe
(54). We assume that, together with the elevation and the GMK
map, it covers most topography-driven transport processes. This
explains the comparatively low importance of the other relief
related predictors. Their median relative importance is <5%.

Adding the spatial position to the predictor dataset (scorpan
R+N, Figure 3B) decreases the relative importance of the relief
predictors. Instead, the X and Y coordinates account for about 8
and 10% of the relative importance. Together with the elevation
and the geomorphic map of Germany (GMK), they are among
the predictors with a median relative importance of more than
5%. The comparatively high importance of the coordinates
indicates that factors influencing the spatial texture distribution
are still missing in the predictor data set (13). It is not surprising
that the relief predictors alone are not able to explain the soil
texture distribution completely. Similar findings weremade when
predicting the soil texture in Denmark (30) and a small area in
East Germany (108). In addition, the Y coordinates can be used
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FIGURE 3 | Boxplots comparing the relative predictor importance of the iterative approach (silt models). Variables that approximate six scorpan factors were added

iteratively to the predictor dataset: (A) relief (R), (B) spatial position (R+N), (C) organisms and land use (R+N+O), (D) climate (R+N+O+C), (E) parent material

(R+N+O+C+P), and (F) other soil properties (R+N+O+C+P+S). Predictor abbreviations are explained in Table 1. Gray, dotted lines are used for orientation; solid,

black lines separate the scorpan factors. Each boxplot is based on 25 values resulting from five-fold CV with five repetitions.
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to partially distinguish the sandy deposits (HUEK litho. class 1a,
Figure 1D) in the north from the other parent materials.

Adding the organisms predictors barely causes any changes
(scorpan R+N+O, Figure 3C). The minimum NDWI 2018 is
the most important scorpan O related predictor. Still, its median
relative importance is only 3%. We believe that the BRT models
were not able to effectively learn from the vegetation indices
because of three reasons. First, due to the large research area
and satellite data as composite of many scenes recorded during
1 year, the vegetation indices refer to different plant species of
different growing stages. Second, Reinermann et al. (109) were
able to show that the impact of the 2018 drought in Germany
depended on the crop type. Third, the plant condition onGerman
agricultural soils does not only depend on soil texture but also
for example on climate, on diseases and pests, fertilization, and
irrigation. This is known to complicate deriving useful predictors
from spectral images (110). Even though, the soil texture differs
between grassland and croplands (57), the CORINE land cover
map (CLC) has a rather low importance. The reason for this
is probably its rather low information content compared to
the other predictors: the CLC map only allowed to distinguish
between three land use classes, with 94% of the sampled soil
profiles already classified as grasslands or croplands. The low
importance corresponds to the results of Ballabio et al. (54). Even
though their continental-scale study area (Europe) allowed to
incorporate 44 CLC classes, the land cover map was not among
the 38 most important predictors.

Adding the climate predictors causes only a few changes
(scorpan R+N+O+C, Figure 3D). The most important climate
predictor is the long-term average temperature. Its median
relative importance is only 2%. We assume that the scorpan C
predictors are comparatively unimportant as they are substituted
by the scorpan R and N predictors, which were available at higher
resolution. Air temperature and precipitation are for example
influenced by the increasing continentality from northwest to
southeast and depend on the elevation (111–113). Besides, both
datasets are based on meteorological observations that were
interpolated using the elevation data (section climate). The
relief influences also the wind: in the flat coastal regions it
is usually very windy, while the mountains in the south slow
down the wind speed (114). In general, the used scorpan C
predictors can maximally reflect the Holocene climate up to the
end of the Weichselian ice age about 10,000 years ago (115).
Our results contrast those of Ballabio et al. (54), who rated
precipitation and temperature as very important even though
they also used scorpan R variables. Therefore, we assume that
scorpan C predictors have a more significant influence on the
texture distribution at larger scales due to their higher range. In
general, the results depend on the iterative order.

Adding the parent material related predictors (scorpan
R+N+O+C+P, Figure 3E) remarkably changes the relative
importance of the previous predictors. Now, the by far most
important predictor is no longer the elevation, but the soil parent
material map (BAG 5000). Its median relative importance is
47%. The second most important predictor is the stratigraphy
information from the hydrological map of Germany (HUEK
strati.). Its median relative importance is 10%. The elevation

accounts for about 6% of the relative importance and the
geomorphic map of Germany (GMK) for about 5%. The median
relative importance of the other predictors is <5%. According
to the review of Zhang et al. (15), missing parent material
information is one of the main reasons for poor predictive soil
mapping results. If it is available, it is almost always one of the
most important predictors of soil texture. This is confirmed,
for example, by the results of three studies that focused on
the soil texture predictions in Denmark (30), the French
metropolitan territory (50), and New South Wales (Australia)
(22). In Germany, we are in the fortunate situation that several
maps with information on the parent material were available. We
assume that the BAG 5000 map is much more important than
the HUEK litho. and HUEK strati. maps because of two reasons.
First, its classes can be better represented by the predictors at
sampling sites than the HUEK litho. and HUEK strati. classes
(section Response Data and Predictor Representation). Second,
the BAG 5000 map provides detailed information on the soil
parent material, while the HUEK maps focus on the geology
of the uppermost aquifers. The BAG 5000 map distinguishes
for example floodplain sediments, sands and thick sandy cover
layers, as well as intertidal sediments in the North German
lowlands (classes 1, 8, 12, Figure 1C), while the HUEK litho.
map assigns most of the North German lowlands to sand
(class 1a, Figure 1D). The HUEK strati. map assigns the North
German lowlands mostly to the Saalian, Weichsalian, and Ionian
ages (classes 1d, 1e, 1g, Figure 1E). This slightly more detailed
subdivision might explain why it is more important than the
HUEK litho. map.

Adding the scorpan S variables to the predictor dataset
(scorpan R+N+O+C+P+S, Figure 3F) also led to major
changes. The four variables that were assigned to the scorpan
S factor, are the most important predictors in step six. Their
median relative importances are 32% (BUEK 1000), 25% (BGL
5000), 16% (K factor), and 7% (wind EF). The soil parent
material map (BAG 5000) now accounts for about 5% of the
relative importance. The median relative importance of the other
predictors is <5%. Our results correspond to those of Adhikari
et al. (21), who emphasize the importance of soil maps when
predicting the soil texture of Denmark. The main reason for
the high importance of the scorpan S predictors in our study
is that they can partly substitute the predictors of the previous
step. A phenomenon in predictive soil mapping that was also
described by Miller et al. (108). Soil development in Germany
depends a lot on relief and parent material (116, 117). The soil
map (BUEK 1000) was derived on behalf of relief and parent
material information. Not only the BUEK 1000 but also the soil
scapes (BGL 5000) map reflect the scorpan R and P predictors
(compare Figures 1B,C,F,G). The soil erodibility (K factor) and
the wind erodible fraction (wind EF) were, among others, derived
on behalf of elevation data (93, 94; compare Figures 1A,H,I).
Overall, the low relative predictor importance of the X and Y
coordinates, which is much below 1%, indicates that the predictor
dataset of the last iteration covers almost all factors influencing
the silt distribution in Germany.

As expected, the influence of the predictors for the clay, silt,
and claymodels is similar. Predictor variables of the clay and sand

Frontiers in Soil Science | www.frontiersin.org 11 January 2022 | Volume 1 | Article 770326

https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/soil-science#articles


Gebauer et al. Topsoil Texture Regionalization (Germany)

FIGURE 4 | Boxplots comparing the relative importance of the most important predictors. (A) Clay, (B) silt, and (C) sand models. Only predictors that account for at

least 1% of the relative importance are shown. Models were trained on predictors approximating the scorpan factors R, N, O, C, P, and S. Predictor abbreviations are

explained in Table 1. Each boxplot is based on 25 values resulting from five-fold CV with five repetitions.

models that account for at least 1% of the relative importance
are compared to those of the silt models in Figure 4. Similar to
the silt models, the scorpan S predictors play an important role
when predicting the clay and sand distribution. The soil map
(BUEK 1000) accounts for about 15% (clay) and 23% (sand)
of the relative predictor importance, the soil scapes map (BGL
5000) for about 21% (clay) and 9% (sand). Erosion influences not
only the silt distribution but also the clay and sand distribution.
However, the influence of the K factor and the wind EF in the
clay and sand models differs from that in the silt models. The
most important predictor of the clay and sand models is the wind
EF. Its median relative importance is 31% (clay) and 39% (sand).
While the wind EF plays a more important role in predicting
the clay and sand distribution than the K factor, which accounts
for about 1% (clay) and 6% (sand), the reverse is true for silt.
It remains difficult to interpret why the predictor importance
of K factor and wind EF differs. The correlation between both
predictors (Spearman’s rho: −0.63∗∗∗∗) would suggest that they
influence all three texture classes. Similar to the silt models,
the most important scorpan P predictors in the clay and sand
models are the soil parent material map (BAG 5000) and the
stratigraphy information from the hydrological map of Germany

(HUEK strati.). The BAG 5000 map accounts for 2% (clay) and
7% (sand) of the relative importance, the HUEK strati. map
for 7% (clay) and 4% (sand). The median relative predictor
importance of the elevation, the geomorphic map of Germany
(GMK), and the lithology information from the hydrological map
of Germany (HUEK litho.) is<5%; in the case of the silt and sand
models, partly even <1% (elevation, HUEK litho). Similar to the
silt models, the relative importance of the X and Y coordinates
is much below 1%, which indicates that the overall predictor
dataset covers almost all factors influencing the clay and sand
distribution in Germany.

Model Performance
The predictive model performance is visualized by R2 and RMSE
values in Figure 5. The error metrics are compared to the results
of Ballabio et al. (54) and Hengl et al. (55). Their results were
evaluated using our test datasets to allow for a direct comparison.

Even though the results of the iterative approach (Figure 5B)
depend on the iterative order, they allow detailed insights into
model interpretation. They confirm the results described in
section Predictor Importance; certain predictor variables can
substitute others to some extent: The scorpan R predictors
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FIGURE 5 | Boxplots comparing the model performance. (A) Clay, (B) silt, and (C) sand models. (5.1) Root mean squared error (RMSE) and (5.2) coefficient of

determination (R2). Models were trained on predictors approximating the scorpan factors R, N, O, C, P, and S. Each boxplot is based on 25 values resulting from

five-fold CV with five repetitions. The dotted gray lines refer to the publication of Ballabio et al. (54), who predicted the topsoil (0–20 cm) texture of Europe. The dashed

gray lines refer to the publication of Hengl et al. (55), who predicted soil texture in 30 cm depth on global scale. Both publications used USDA texture class limits: clay

(<2µm), silt (2–50µm), and sand (50–2,000µm). We followed Shang (118) and used spline interpolation to convert their predictions to the texture class limits used in

this study. The predictions of Ballabio et al. (54) and Hengl et al. (55) were evaluated using our test datasets to allow for a direct comparison. Please note the different

axis labels in 5.2 (RMSE).

and their interactions are related to other scorpan factors.
They are assumed to cover most topography driven transport
processes. Therefore, BRT models trained only on scorpan R
predictors already explain about 53% of the silt variance; their
median RMSE is 15.5 wt.%. Nevertheless, important predictor
information is still missing which is why adding the spatial
position to the predictor dataset improves model performance
by about 11% (median R2) and 10% (median RMSE). The
scorpan O and C predictors seem to barely improve the model
performance. However, this might look different if the spatial
position would have been excluded. R² values of the respective silt
models range between 0.60 (R+N+O) and 0.63 (R+N+O+C);
RMSE values range between 13.6 wt.% (R+N+O+C) and
14.1 wt.% (R+N+O). In correspondence to their high relative
importance, adding the scorpan P predictors to the dataset
improves model performance by about 14% (median R2) and
12% (median RMSE). Despite their high relative importance,
the scorpan S predictors cause comparatively little additional
improvement. Median R2 and median RMSE improved by only
4%. As explained in section Predictor Importance, this is because
the scorpan S predictors rather substitute other predictors, than

provide additional information: the BUEK 1000 soil map, for
example, was derived on behalf of relief and parent material
information, the two soil erosion maps, among others, on
behalf of elevation data. Still, the best results are achieved
by training the BRT clay (Figure 5A), silt (Figure 5B), and
sand (Figure 5C) models on the complete predictor dataset.
Altogether, the interaction of 50 predictor variables enabled the
BRTmodels to explain about 59% of the clay variance, 75% of the
silt variance, and 77% of the sand variance. Their median RMSE
values are 8.2 wt.% (clay), 11.8 wt.% (silt), and 15.0 wt.% (sand).

It is not surprising that our results differ from those of Ballabio
et al. (54) andHengl et al. (55) as their models were not developed
for agricultural soils in Germany specifically, but for continental
(Europe) and global scales. Our silt models that were trained
on scorpan R and N predictors already resulted in lower RMSE
and higher R2 values than those derived from the predictions
of Hengl et al. (55). While we obtained the response variable
datasets from one national soil inventory, Hengl et al. (55) had
to harmonize different data sources due to the larger research
area. Adding scorpan P predictors to the dataset resulted in
lower RMSE and higher R2 values than those derived from the
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predictions of Ballabio et al. (54). While we used three scorpan P
predictors, Ballabio et al. (54) did not incorporate variables that
are directly related to the parentmaterial. It is difficult to compare
our results to further texture predictions due to differences in
the research area characteristics, the model algorithms, and most
importantly, the input data. For texture predictions in particular,
missing scorpan P information is critical. The topsoil texture
predictions of Gray et al. (22), Greve et al. (30), and Wadoux
(50) are roughly comparable to ours. In Denmark, Greve et al.
(30) trained regression tree models on response variable datasets
sampled in 7 km intervals and on predictor variables representing
the scorpan factors S, C, R, and P. The resulting models explained
between 52% (fine sand) and 60% (clay, silt) of the response
variable variance. Wadoux (50) trained a convolutional neural
network to predict the topsoil texture in the French metropolitan
territory. His response variable data was obtained from the
LUCAS topsoil database and the predictor variables represented
all scorpan factors. However, the resulting R2 values ranged only
between 0.22 (clay) and 0.40 (silt). Gray et al. (22) predicted the
clay distribution in New South Wales (Australia). Their random
forest model was able to explain 57% of the clay variance after
being trained on more than 2,600 point values as well as a
predictor dataset approximating scorpan C, O, R, and P factors.

Although our error metrics are comparatively good, some
texture values are difficult to reproduce. The scatterplots in
Figure 6were drawn to identify high absolute deviations between
measured and predicted clay, silt, and sand contents. Predictive
uncertainties occur over the entire range of texture values.
Overall, the mean is unbiased for clay, silt, and sand. However,
it is particularly noticeable that high absolute deviations from
the measured values occur when predicting high clay contents
(>48.0 wt.%) and medium sand contents (30.0–60.0 wt.%).
The median predictions of the high clay contents are up to
approximately 52 wt.% too low. These comparatively high
deviations can be attributed to the distribution of the respective
response variable: high clay contents are rather rare (Figure 2.2).
The medium sand contents are both, overpredicted (up to 51.4
wt.%) and underpredicted (up to 44.1 wt.%). Approximately
22.0% of them belong to soils that developed from boulder clay
(BAG class 4, Figure 1C). For comparison, only 7.5% of the other
soil profiles were assigned to this class.

Calculating the relative residuals by dividing the median
absolute residuals by the measured texture values allows a more
differentiated analysis. The relative residuals of models that have
been trained on the complete predictor dataset are mapped
in Figure 7. The relative clay and silt residuals are relatively
similar; they range between −0.8 and 7.5 (clay), and −0.7 and
12.4 (silt). The relative sand residuals are higher; they range
between −0.9 and 45.8. Even though some relative residuals are
particularly high, the BRT models can reproduce most values
well. Approximately 76% (clay), 81% (silt), and 69% (sand) of
the relative residuals range between −0.5 and 0.5; ∼20% (clay),
28% (silt), and 31% (sand) range between −0.1 and 0.1. Relative
residuals that range between 0.1 and 0.5 or −0.5 and −0.1 are
uniformly distributed throughout Germany in all three texture
classes. The same applies to the relative clay and silt residuals
between−0.1 and 0.1. The lowest relative sand residuals (−0.1 to

0.1) concentrate in the North German lowlands. More than 71%
of them belong to soil profiles with high topsoil sand contents
(66.6 wt.% on average) that developed from Saalian, Weichselian,
and Ionian (HUEK strati. classes 1d, 1e, and 1g, Figure 1) sand
deposits (HUEK litho. class 1a, Figure 1). These predictor classes
are particularly well-represented by the response variable data
set, which might explain the comparatively good predictions.
More than 50% of all soil profiles were assigned to at least
one of the described HUEK classes. In addition, high absolute
uncertainties in the predictions of the high sand contents have
comparatively little effect on the relative residuals. The relative
residuals show, that not only the rare high clay and medium sand
contents but also some rather low values cannot be reproduced
by the BRT models. Comparatively high relative clay and silt
residuals (< −0.5 or more than 0.5) can be found throughout
Germany, but occur slightly more frequently in the North. This is
because the clay and silt contents that were measured in northern
Germany were mostly low so that even small absolute prediction
uncertainties could cause high relative residuals. Most of the high
relative clay and silt residuals do not belong to soil profiles with
specific predictor values or classes. Only seven soil profiles, which
partially correspond, stand out. Their particularly low topsoil clay
(2.6 wt.% on average) and silt (3.3 wt.% on average) contents
cannot be reproduced at all and belong to relative residuals of
more than 5. Most of these profiles are situated in sink areas of
river valleys (GMK category 1, Figure 1B). The small-scale water
erosion processes that determine the spatial texture pattern here
could probably not be captured by our response and predictor
data. Some comparatively high relative sand residuals (< −0.5
or more than 0.5) can be found in North Germany close to
the coast or in the river valleys. They are probably also caused
by unrepresented small-scale water erosion processes. But most
of the high relative sand residuals occur in South Germany.
This is because low sand contents were mainly measured in the
South, where small absolute prediction uncertainties can cause
high relative residuals. Additionally, ∼39% of the high relative
sand residuals can be explained by the fact that the respective
soil profiles belong to at least one either poorly represented or
excluded class of the categorical predictors (section Response
Data and Predictor Representation). For comparison, this applies
to only 17% of the other soil profiles. Approximately 2% of
the sand measurements cannot be reproduced at all. These
particularly low sand contents (3.5 wt.% on average) belong to
relative residuals that are higher than 5. Most of them are located
in central Germany where the parent material is highly variable.

Spatial Predictions
Models that were trained on the complete predictor dataset
were applied to predict the spatial clay, silt, and sand content
distributions for soils under agricultural land use in Germany.
The median of the 25 models’ predictions are visualized
in Figure 8. The corresponding interquartile ranges, as a
representation of the model uncertainty, are visualized in
Figure 9. The median clay content predictions range between 2.8
and 64.1 wt.%, the median silt content predictions range between
3.1 and 89.2 wt.%. The median sand predictions cover the widest
range. They range between 0.0 and 96.1 wt.%.
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FIGURE 6 | Scatterplots comparing the measured and the predicted texture values. (A) Clay, (B) silt, and (C) sand contents. Models were trained on predictors

approximating the scorpan factors R, N, O, C, P, and S. Each point represents the median of 25 predictions resulting from five-fold CV with five repetitions.

FIGURE 7 | Maps showing the relative residuals. Relative (A) clay, (B) silt, and (C) sand residuals. Models were trained on predictors approximating the scorpan

factors R, N, O, C, P, and S. The relative residuals were calculated by dividing the median residual of 25 predictions resulting from five-fold CV with five repetitions by

the measured value.

The detailed spatial soil texture patternmainly reflects scorpan
S, P, and R predictors. In the North German lowlands, glacial
deposits explain the comparatively low clay and silt contents.
During the three Pleistocene ice ages, glaciers that progressed
from Scandinavia reached up to today’s low mountain ranges
(115, 119). After melting they left mostly coarse sedimentary
deposits (120). Due to the high predictive performance of the
BRT models, the resulting spatial predictions can differentiate

between the up to 96.1 wt.% high sand contents in the northwest
and the slightly lower sand contents in the northeast. The
comparatively high sand contents mainly result from sand and
thick sandy cover layers (BAG 5000 class 8, Figure 1C) in old
moraine landscapes (BGL 5000 category 4, Figure 1F). The last
ice sheet, that progressed from the North about 20,000 years ago,
extended not that far inland (115). Only in the northeast, it left
a young moraine landscape (BGL 5000 category 3, Figure 1F)
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FIGURE 8 | Maps showing the median spatial texture predictions. (A) Clay, (B) silt, and (C) sand content. Models were trained on predictors approximating the

scorpan factors R, N, O, C, P, and S. Soils that are not under agricultural land use were masked. The medians were calculated from 25 predictions resulting from

five-fold CV with five repetitions.

with boulder clay and loam partly alternating with cover layers
of different thicknesses (BAG 5000 classes 4 and 5, Figure 1C).
The slightly lower sand contents of these soils also show a higher
erodibility (K factor, Figure 1H). The high clay and silt contents
along the North Sea and those in the river valleys form a strong
contrast to the high sand contents in North Germany. The tides
led to the deposition of fine sediments along the North Sea coast,
from which fertile marsh soils developed (BUEK 1000 classes
1a, 1b, Figure 1G) (121–123). Despite the strong wind in the
coastal regions, the marsh soils have a comparatively low wind EF
due to their high organic matter contents (Wind EF, Figure 1I).
The flow velocity of the rivers is reduced due to the low relief
energy inNorth Germany (105). Consequently, their fine-grained
sediments are deposited mostly in depressions (GMK class 1a
Figure 1B; 121). The soil parent material map classifies them
as alluvial sediments (BAG 5000 classes 2, Figure 1C), the soil
scapes map assigns themmostly to lowlands and glacial valleys of
the young moraine area (BGL 5000 class 2a, Figure 1F), and the
soil map allows to distinguish 8 soils of broad river valleys (BUEK
1000 category 2, Figure 1G). Additionally, small areas with high
silt contents are prominent in contrast to the surrounding high
sand contents within northern Germany. They can be explained
by the difference in parent material: the corresponding soils
developed from sand loess (BAG 5000 class 9, Figure 1C). Even

though the comparatively high silt contents are realistic, we
suggest that the strict separation from the surrounding area does
not correspond to the real situation. Strict prediction boundaries,
in particular when using polygon maps as predictors, are a well-
known problem of tree-based model algorithms [e.g., (29, 124)].

The low mountain ranges are characterized by a very variable
soil texture distribution. This is probably due to the complex
geology and strong differences in relief energy. For example, the
oldest magmatic andmetamorphically altered sedimentary rocks,
but also traces of volcanism are found here (119). Additionally,
the periglacial climate during the ice ages led to solifluction layers
on the slopes (115). While most of the low mountain ranges are
characterized by rather low relief energy and thus a comparatively
low influence of topography-related erosion processes, there are
also steep slopes (105, 106). Nevertheless, silt contents of up to
89.2 wt.% stand out in some areas of the low mountain ranges.
The high silt contents belong mainly to the source material of
the loess and loess derivatives (BAG 5000 class 7, Figure 1C).
They were formed during the ice ages when silt sediments were
blown out of non-glaciated, vegetation-free areas (115). They
were deposited in basins and in front of steeply rising terrain
(125). As a result, the most fertile soils in Germany were formed
in the area between the flat North German lowlands and the low
mountain ranges (122).

Frontiers in Soil Science | www.frontiersin.org 16 January 2022 | Volume 1 | Article 770326

https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/soil-science#articles


Gebauer et al. Topsoil Texture Regionalization (Germany)

FIGURE 9 | Maps showing the interquartile ranges of the spatial texture predictions. (A) Clay, (B) silt, and (C) sand content. Models were trained on predictors

approximating the scorpan factors R, N, O, C, P, and S. Soils that are not under agricultural land use were masked. The interquartile ranges were calculated from 25

predictions resulting from five-fold CV with five repetitions.

The more uniform texture distribution of the Upper Rhine
valley stands out from the low mountain ranges. This is probably
due to the low relief energy and consequently the comparatively
low influence of erosion processes (105). The parent material is
also rather similar: the Upper Rhine valley is mainly filled with
aeolian and fluviatile sediments (126). Loess deposits (BAG 5000
class 7, Figure 1C) explain the relatively high silt contents (122).

Similar to the North German lowlands the texture of the
Alpine foothills is also influenced by glacial deposits. During the
four Pleistocene ice ages, glaciers progressed from the Alps (115).
In addition to their coarse-grained deposits, blanket gravels and
sediments of the hilly lands are still found in the Alpine foothills
(116). These are partially covered with loess (BAG 5000 class 7,
Figure 1C) (125), which explains why the sand contents are not
as high as in the North German lowlands.

In the Alps, the soil texture was predicted only very
fragmentarily. The reason for this is that the rather shallow soils
often do not allow agricultural land use (116). Despite strong
relief differences, their soil texture does not seem to differ from
the Alpine foothills.

Altogether, the spatial texture distribution can be predicted
with a high model performance (section Model Performance).
However, when using the predictions, for example in process
models, it must be pointed out that they are subject to certain
uncertainty. Accordingly, the clay, silt, and sand predictions do
not add up to 100%. Therefore, we propose to calculate the spatial

clay distribution from the silt and sand predictions as the clay
models had the lowest predictive performance according to R2.
We tested this on basis of the CV clay test data, which improved
the median R2 value by 10.9%.

The interquartile ranges in Figure 9 can be used to identify
areas whose spatial predictions are comparatively uncertain.
Interquartile ranges of the clay predictions vary between 0.1
and 15.3 wt.%. Interquartile ranges of the silt predictions vary
between 0.1 and 13.7 wt.%. In correspondence with the higher
relative sand residuals, the interquartile ranges of the sand
predictions are higher. They range between 0.2 and 20.4 wt.%.
The spatial predictions are most uncertain in areas where the
soil-forming processes are not captured by the predictor dataset
and where the spatial predictors are not represented by the
predictor values at the sampling points. Uncaptured small-scale
processes in river valleys and along the coast line, for example,
resulted in comparatively high clay, silt, and sand interquartile
ranges. The high interquartile ranges in the Alps are caused
by extreme predictor values that could not be represented by
the predictor values at the sampling points. Additionally, high
interquartile ranges indicate that the strict boundaries of the high
silt predictions in the North do not correspond to the natural
situation. In general, we assume that the human influence on
the distribution of soil texture also introduces a certain degree
of uncertainty. One example is the impact on soil erosion in
agricultural soils (127).
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CONCLUSIONS

We successfully trained BRT models on basis of high quality
soil texture data. Applying the differential evolution algorithm
ensured exhaustive parameter tuning. Even though the results
of the iterative approach depend on the iterative order, they
allow to gain detailed insights into model interpretation. They
revealed that the incorporated soil maps partly substituted the
relief and parent material predictors. For the first time, the
spatial distribution of the topsoil texture was predicted explicitly
for agricultural topsoils in Germany at 100m resolution.
The high predictive model performance resulted in spatially
continuous clay, silt, and sand content predictions, which
strongly reflected the influence of the parent material and the
relief. They allow, for example, to distinguish high clay contents
resulting from fluvial and tidal deposits, high silt contents
resulting from loess deposits, and high sand contents resulting
from glacial deposits. The reproducible site-specific predictions
provide valuable input for many quantitative applications on
agricultural topsoils in Germany, such as the simulation of
carbon dynamics, the estimation of drought impact, or the
computation of water erosion rates. Still, any pedometric model
is subject to a certain uncertainty and could be improved

by using more training data with higher information content.
To allow future users to account for this uncertainty, we
provide not only the spatial texture predictions but also the
associated uncertainty.
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